
Modular Verification of Software Components in C∗

Sagar Chaki Edmund Clarke Alex Groce
Carnegie Mellon University

{chaki|emc|agroce}@cs.cmu.edu

Somesh Jha
Univ of Wisconsin
jha@cs.wisc.edu

Helmut Veith
TU Vienna

veith@dbai.tuwien.ac.at

Abstract

We present a new methodology for automatic verifica-
tion of C programs against finite state machine specifica-
tions. Our approach is compositional, naturally enabling
us to decompose the verification of large software systems
into subproblems of manageable complexity. The decom-
position reflects the modularity in the software design. We
use weak simulation as the notion of conformance between
the program and its specification. Following the abstract-
verify-refine paradigm, our tool MAGIC first extracts a fi-
nite model from C source code using predicate abstraction
and theorem proving. Subsequently, simulation is checked
via a reduction to Boolean satisfiability. MAGIC is able
to interface with several publicly available theorem provers
and SAT solvers. We report experimental results with pro-
cedures from the Linux kernel and the OpenSSL toolkit.

1 Introduction

State machines have been recognized repeatedly as a car-
dinal point in the software development process; in fact,
variants of state machines have been proposed for virtually
all software engineering methodologies, including, most
notably, Statecharts [25] and the UML [9]. The sustained
success of state machines in software engineering derives
from the fact that state machines provide for both a concise
mathematical theory, and an intuitive semantics of system
behavior which naturally allows for visualization, hierarchy,
and abstraction.

Traditionally, state machines are mainly used in the de-
sign phase of the software life-cycle; they are intended to
guide and constrain the implementation and the test phase,

∗This research was supported by the NRL-ONR under Grant No.
N00014-01-1-0796, by the NSF under Grant No. CCR-9803774, CCR-
0121547 and CCR-0098072, by the Army-ARO under Grant No. DAAD
19-01-1-0485, the Austrian Science Fund Project NZ29-INF, the EU Re-
search and Training Network GAMES and graduate student fellowships
from Microsoft and NSF. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors and do
not necessarily reflect the views of NSF or the United States Government.

and may later be reused for documentation purposes. In
most cases, however, the assertion that a state machine
safely abstracts the existing implementation is kept implicit
and informal.

With the rise of Internet-based technologies, the signif-
icance of state machines has only increased. In particular,
security protocols and communication protocols are natu-
rally specified in terms of state machines. Similar applica-
tions of state machines can be found in other safety-critical
domains including medicine and aerospace.

Moreover, the dramatic change of focus from relatively
monolithic systems to highly distributed and heteroge-
neous systems whose development cycles are interdepen-
dent, calls for new specification methodologies; for exam-
ple, in August 2002, IBM, Microsoft, and BEA announced
the publication of three specifications (WS-Coordination,
WS-Specification, BPEL4WS [3]) which ”collectively de-
scribe how to reliably define, create and connect multiple
business processes in a Web services environment”. We
foresee state machines being used for contracts describing
software capabilities. In both cases – protocol specifica-
tion and distributed computation – we observe that state
machines are no longer just tools for internal use, but are
increasingly introduced into the public domain.

In this paper, we describe our tool MAGIC (Modular
Analysis of proGrams In C) which is capable of verifying
whether a state machine (or, more precisely, a labeled tran-
sition system) is a safe abstraction of a C procedure; the C
procedure in turn may invoke other procedures which are
themselves specified in terms of state machines.

Our approach has a number of tangible benefits:

• Utility. The capability of MAGIC to verify formally the
correctness of state-machine specifications closes an ev-
ident gap in many software development methodologies,
most notably, but not only, for security-related system
features. In the future we envision that tools based on
ideas from MAGIC will assist the contracting process
with third party software providers.

• Compositionality. MAGIC verification can be used
early on during the development cycle, as specifica-

tions can be plugged in for missing system components.
Compositionality evidently fosters concurrent develop-
ment by independent groups of developers.

• Complexity. State-space explosion [18] remains the
bottleneck of most automated verification tools. Due
to compositionality, the size of the individual system
parts to be verified by MAGIC remains manageable, as
demonstrated by our experiments. Moreover, the verifi-
cation process in MAGIC is reduced to computing a sim-
ulation relation between finite state systems, for which
we can provide highly efficient algorithms.

• Flexibility. Internally, MAGIC uses several theorem
provers and SAT solvers. The open design of MAGIC
facilitates the easy integration of new and improved
tools from this quickly developing area.

Consequently, we believe that MAGIC like tools have
the potential to become indispensable in the software engi-
neering process. In the rest of this section we describe the
technical contributions of this paper.

Labeled Transition Systems as Specification Mecha-
nism. In the literature, several variants of state machines
have been investigated; purely state-based formalisms such
as Kripke structures [18] are often used to model and spec-
ify systems. For the MAGIC framework, however, we em-
ploy labeled transition systems (LTS), which are similar to
Kripke structures but for the fact that state transitions are
labeled by actions.

From a theoretical point of view the presence of actions
does not increase the expressive power of LTS. In our ex-
perience, however, it is more natural for designers and soft-
ware engineers to express the desired behavior of systems
using a combination of states and actions. For example, the
fact that a lock has been acquired or released can be ex-
pressed naturally by lock and unlock actions. In the absence
of actions, the natural alternative is to introduce a new vari-
able indicating the status of the lock, and update it accord-
ingly. The LTS approach certainly is more intuitive, and
allows both for a simpler theory and for an easier specifica-
tion process. A simple example of an LTS is shown in the
left part of Figure 1. A formal definition will be given in
Section 2.

In the MAGIC framework, we use actions to denote ex-
ternally visible behaviors of the system being analyzed, e.g.
acquiring a lock. Actions are atomic, and are distinguished
simply by their names. Often, the presence of an action
indicates a certain behavior which is achieved by a sub-
procedure in the implementation. Since we shall analyze
a procedural language, namely C, we will model the ter-
mination of a procedure (i.e., a return from the procedure)
by a special class of actions called return actions. Ev-
ery return action a is associated with a unique return value

RetV al(a). Return values are either integers or void. All
actions which are not return actions are called basic actions.

The use of LTSs is also motivated by work in concur-
rency. Process algebras like CCS [33], CSP [28] and the
π-calculus [34] have been used widely to reason formally
about message passing concurrent systems. In these for-
malisms, actions are crucial for modeling the sending and
receiving of messages across channels. Process algebras
lead very naturally to LTSs. Thus, even though we cur-
rently only analyze sequential programs, we believe that the
use of LTSs will facilitate a smooth transition to concurrent
message-passing programs in the future.

Procedure Abstractions. The goal of MAGIC is to verify
whether the implementation of a system is safely abstracted
by its specification. To this end, MAGIC verifies individual
procedures against the respective LTS. In our implementa-
tion, it is possible to handle a group of procedures with a
tree-like call graph as a single one by inlining; for sim-
plicity, we speak only of single procedures in this paper.
Figure 1 describes a simple case of a procedure proc and a
corresponding LTS. We will use proc as a running example.

Spec State Machine Code to be analysed

 return 0;
 else
 return 1;
}

 if(do_lock())
{
int proc()

MSpec STOPreturn{1}

lock return{0}

Figure 1. The example MSpec and proc.

In practice, it often happens that single procedures per-
form quite different tasks for certain settings of their param-
eters. In our approach, this phenomenon is accounted for
by allowing multiple LTSs to represent a single procedure.
The selection among these LTSs is achieved by guards, i.e.,
formulas, which describe the conditions on the procedure
parameters under which a certain LTS is applicable.

This gives rise to the notion of procedure abstraction
(PA); formally a PA for a procedure proc is a tuple 〈d, l〉
where

• d is the declaration for proc, as it appears in a C header
file.

• l is a finite list 〈g1,M1〉, . . . , 〈gn,Mn〉 where each gi
is a guard formula ranging over the parameters of proc,
and each Mi is an LTS with a single initial state.

The procedure abstraction expresses that proc conforms to
one LTS chosen among the Li’s. More precisely, proc

conforms to Li if the corresponding guard gi evaluates to
true over the actual arguments passed to proc. We require
that the guard formulas gi be mutually exclusive so that the
choice of Li is unambiguous. The goal of MAGIC then is
to prove that a user-defined PA for proc is valid. The role of
PAs in this process is twofold:

1. A target PA is used to describe the desired behavior of
the procedure proc.

2. To assist the verification process, we employ valid PAs
(called the assumption PAs) for library routines used
by proc.

Thus, PAs can be seen both as conclusions and as as-
sumptions of the verification process. Consequently, our
methodology yields a scalable and compositional approach
for verifying large software systems. Figure 2 illustrates
this by depicting the call graph of an implementation and
the verification steps; note that due to compositionality no
particular order of these steps is required.

Without loss of generality we will assume throughout
this paper that the target PA contains only one guard GSpec

and one LTS MSpec . To achieve the result in full general-
ity, the described algorithm can be iterated for each guard
of MSpec .

foo

bar

baz Verify baz’s PA

Verify foo’s PA

Verify bar’s PA

Call Graph

Target PAOther Library
Routines Assumption PA

Verification Steps

Figure 2. Compositional verification.

Algorithms and Tool Description. The MAGIC tool fol-
lows the well-known abstract - verify - refine paradigm
[13, 16, 21, 27]:

• Step 1 : Model Creation. Extract an LTS MImp from
proc using the assumed PAs and the guard GSpec .

In MAGIC, the model is computed from the con-
trol flow graph (CFG) of the program in combination
with an abstraction method called predicate abstraction
[16, 19, 37]. To decide properties such as equivalence of
predicates, we use theorem provers. The details of this
step are described in Section 3.

• Step 2 : Verification. Check whether MSpec safely ab-
stractsMImp . If this is the case, the verification success-
fully terminates; otherwise, extract diagnostic feedback
and perform step 3.

In MAGIC, the verification step amounts to checking
whether a simulation relation holds between MSpec and
MImp , cf. Section 2. We reduce simulation to the satis-
fiability of a certain Boolean formula, thus deferring the
solution to highly efficient SAT procedures. The details
of this step are described in Section 2.

• Step 3 : Refinement. Use the diagnostic feedback to
determine the reason behind the failure of the safe ab-
straction property. If the cause is a bug in proc we are
done. Otherwise the property fails because MImp is not
a sufficiently precise model for proc. In this case return
to step 1 to compute an improved MImp .

At its current stage of development, MAGIC performs
the first two of these steps automatically, while the third step
is manually guided. The input to MAGIC consists of (i) a
set of preprocessed ANSI-C files representing proc and (ii)
a set of specification files containing textual descriptions of
MSpec , GSpec and predicates for predicate abstraction. The
textual descriptions of LTSs are given using an extended
version of the FSP notation by Magee and Kramer [30]. For
example, the LTS shown in Figure 1 is described textually
as follows:

MyLock = (lock -> return {$0 == 0} -> STOP

| return {$0 == 1} -> STOP).

The schematic in Figure 3 explains the software archi-
tecture of MAGIC. Model Creation is handled by Stage I
and II of the program. In Stage I the input files are parsed
and the control flow graph (CFG) of the C program is con-
structed. Simplifications are made so that the resulting CFG
only has simple statements and side-effect free expressions.
Then relevant predicates at each control location are com-
puted and the CFG is annotated with them. In Stage II,
MImp is extracted from the annotated CFG using the as-
sumed PAs, GSpec and the predicates. As described later,
this process requires the use of theorem provers. MAGIC
can interact with several public domain theorem provers viz.
Simplify [36], CVC [39], ICS [23] and CPROVER [29].

Verification is performed in Stage III. As mentioned
above, simulation here is reduced to Boolean satisfiabil-
ity. MAGIC can interface with several publicly available
SAT solvers viz. Chaff [35], FGRASP [31] and SATO [40].
We also have our own efficient SAT solver implementa-
tion which leverages the specific nature of SAT formulas
that arise in this stage to deliver better performance than
the public domain solvers. MAGIC does not generate di-
agnostic feedback yet, nor does it support automatic model

Annotated CFG

LTS Descriptions

C Files

Spec Files

Implementation LTS

Specification LTS

SAT Solvers

YES

NO + Diagnostic
Feedback

Stage I Stage II Stage III

Chaff FGRASP SATO
Our

Implementation

Predicates
Guard

Simplify CVC ICS CPROVER

Decision Procedures

Assumed PAs

Figure 3. Overall architecture of MAGIC.

refinement. We consider this a significant area for future
research.

Related Work. During the last years advances in verifi-
cation methodology as well as in computing power have
promoted renewed interest in software verification. The
resulting systems – most notably Bandera [1] and Java
PathFinder [5, 26], ESC Java [4], SLAM [7], BLAST [2]
and MC [22, 24] – are increasingly able to handle indus-
trial software. Among the six mentioned systems, the for-
mer three focus on Java, while the latter three all deal with
C. Java verification is quite different from C, because ob-
ject orientation, garbage collection and the logical memory
model require specific analysis methods. Among the C ver-
ification tools, MC (which stands for meta-compilation) has
a distinguished place because it amounts to a form of pat-
tern matching on the source code, with surprisingly good re-
sults for scanning relatively simple errors in large amounts
of code. SLAM and BLAST are closely related tools, whose
technical flavor is most akin to ours. SLAM is primarily
optimized to analyse device drivers, and is going to be in-
cluded in the Windows development cycle. In contrast to
SLAM which uses symbolic algorithms, BLAST is an on-
the-fly reachability analysis tool. MAGIC is the only tool
which uses LTS as specification formalism, and simulation
as the notion of conformance. This choice reflects the area
of security currently being our primary application domain.

Except for MC, the mentioned tools are based on vari-
ations of model checking [15, 18], and they all require ab-
straction methods to alleviate the state explosion problem,
most notably data abstraction [17] and the more general
predicate abstraction [37]. The abstraction method used in
SLAM and BLAST is closest to ours. However, due to com-
positionality, we can afford to invest more computing power
into computing abstractions, and are therefore able to im-
prove on Cartesian abstraction [12]. Generally, we believe

that the form of compositionality provided by MAGIC is
unique among existing software verification systems.

Virtually all systems using abstraction interface with the-
orem provers for various purposes. The software architec-
ture of MAGIC is designed as to facilitate the integration of
various theorem provers. In addition, MAGIC is the only
tool in this area which attempts to transfer the enormous
success of SAT procedures in hardware verification [14] to
software.

2 Transition Systems and Simulation

A labeled transition system (LTS) M is a 4-tuple
(S, S0,Act , T), where (i) S is a finite non-empty set of
states, (ii) S0 ⊆ S is the set of initial states, (iii) Act is the
set of actions, and (iv) T ⊆ S × Act × S is the transition
relation.

We assume that there is a distinguished state STOP ∈
S which has no outgoing transitions, i.e., ∀s′ ∈ S,∀a ∈
A, (STOP , a, s′) 6∈ T . In addition we assume the presence
of a distinguished action in the set Act , which we denote
by ε. If (s, a, s′) ∈ T , then (s, s′) will be referred to as a
a-transition and will be denoted by s

a→ s′. If s is reachable
from s′ via zero or more ε-transitions, we will denote this

by s
ε?→ s′. The relation⇒ is defined as follows: s

a⇒ s′ iff

there exist s1 and s2 such that s
ε?→ s1

a→ s2
ε?→ s′.

Conformance via Simulation. In the context of LTS,
simulation [33] is the natural notion of conformance be-
tween a specification LTS and an implementation LTS. We
will therefore use simulation as our notion of conformance
between the specification LTS and the program. Compared
to conformance notions based on trace containment [13],
simulation has the additional advantage that it is computa-
tionally less expensive to check. Among the many technical

variants of simulation [33], we choose weak simulation be-
cause it allows for a limited form of asynchrony between the
LTSs, i.e., one step of the specification LTS may simulate
multiple steps of the implementation. This feature of weak
simulation is crucial to our approach, because one step in
MSpec typically corresponds to multiple steps in MImp .

Weak Simulation. Let M = (S, S0,Act , T) and M ′ =
(S′, S′0,Act , T ′) be two LTSs. A relation E ⊆ S × S ′ is
called a weak simulation between M and M ′ iff (i) for all
s ∈ S0 there exists s′ ∈ S′0 such that (s, s′) ∈ E, and
(ii) (s, s′) ∈ E implies that for all actions a ∈ Act \ {ε}
if s

a⇒ s1, then there exists s′1 ∈ S′ such that s′
a⇒ s′1

and (s1, s
′
1) ∈ E. We say that LTS M ′ weakly simulates

M (denoted by M � M ′) if there exists a weak simula-
tion relation E ⊆ S × S′ between M and M ′. In the rest
of the paper, we use the convention that the terms simula-
tion and simulates will always mean weak simulation and
weakly simulates respectively.

Algorithm for Computing Weak Simulation. The ex-
istence of a simulation relation between M and M ′ can
be checked efficiently by reducing the problem to an in-
stance of Boolean satisfiability [38]. Interestingly the SAT
instances produced by this method always belong to a re-
stricted class of SAT formulas known as the weakly negated
HORN formulas. In contrast to general SAT (which has no
known polynomial time algorithm), satisfiability of weakly
negated HORN formulas can be solved in linear time [20].
As part of MAGIC, we have implemented an online lin-
ear time HORNSAT algorithm based on [10]. MAGIC can
also interface with public domain general SAT solvers like
Chaff [35], FGRASP [31] and SATO [40].

3 Model Creation

Let MSpec = (SSpec , S0,Spec ,ActSpec , TSpec) and the
assumption PAs be {PA1, . . . ,PAk}. In this section we
show how to extract MImp from proc using the assumption
PAs, the guard GSpec and the predicates. The extraction of
MImp relies on several principles:

• Every state of MImp models a state during the execu-
tion of proc; consequently every state is composed of a
control component and a data component.

• The control components intuitively represent values of
the program counter, and are formally obtained from the
CFG of proc.

• The data components are abstract representations of the
memory state of proc. These abstract representations
are obtained using predicate abstraction.

• The transitions between states inMImp are derived from
the transitions in the control flow graph, taking into ac-
count the assumption PAs and the predicate abstraction.
This process involves reasoning about C expressions,
and will therefore require the use of a theorem prover.

In the rest of this section, we will describe these steps in
detail.

Control Flow Graph. The CFG of proc is a finite graph
describing the flow of control in proc. The nodes of the
CFG are called control locations, and intuitively correspond
to the values of the program counter; the edges denote trans-
fer of control. Ordinary C code however contains nested
procedure calls, expressions with side-effects and other sim-
ilar constructs that make it difficult to construct precise
CFGs. In order to alleviate this problem, our tool first per-
forms a set of natural simplifications on proc before con-
structing its CFG. The simplified procedure body contain
only normal assignments (e.g. x = y + 5; or *x = *y
+ 10;), call assignments (e.g. x = foo(y + 5);),
branches (e.g. if (x) { ... } else { ... }),
gotos and returns (e.g. return (*y + 5);). The left
hand side of assignments must always be either a variable or
a single address dereference (such as *v = 5;). Note that
in the resulting program loop statements such as while
and for are substituted by appropriate if and goto state-
ments. Moreover, we can assume that each variable has a
unique scope, and each procedure always terminates with
explicit return statements. These preprocessing steps are
not very complicated, and are omitted here. The CFG for
our example proc is shown in Figure 4.

C

B

Dreturn 0

FINALE

true false
if(t != 0)

return 1

Expanded CFG

B

D D

E

CC

(t == 0)

(t == 0) (t == 0)

(t == 0) (t != 0)

(t != 0)

(t != 0)

return{0} return{1}return{0}return{1}

(t != 0)

ε ε B

E

A t = do_lock() A (t == 0) (t != 0) A

CFG

Figure 4. CFG and expanded CFG.

Control Locations. After this simplification, the defini-
tion of control locations becomes straightforward: Each
normal assignment, call assignment, goto and return state-
ment gives rise to a control location with a unique successor.
In contrast, a branch yields a control location with exactly
two successors. We assume that for each control location in

the CFG, the associated conditions and statements are avail-
able. In addition, we introduce a unique final control loca-
tion and make it the unique successor of all return control
locations. Depending on the statement to which the control
location is referring we speak of normal assignment loca-
tions, branch locations etc. Formally, C denotes the set of
control locations of proc.

Expanding the Control Flow Graph. The CFG is the
simplest reasonable finite model of proc. However, for ver-
ification purposes the CFG is too imprecise because it mod-
els only control flow, but ignores data (memory). On the
other hand, it is computationally unfeasible to model the
memory explicitly.

We will now show how to incorporate abstract memory
state information into the CFG. To this end, we will con-
sider a set of properties at each control location. These
properties are described by C expressions similar to those
used as branching conditions. Thus, if we have k data prop-
erties, each of which can be true or false, then each con-
trol location corresponds to 2k possible states in our model,
each of them corresponding to a particular valuation of the
properties considered. Intuitively, the construction of the
LTS MImp proceeds stepwise:

1. Construct the CFG.

2. Construct an expanded CFG MExp =
(SExp , S0,Exp ,ActSpec , TExp) as follows:

• For each control location c, we include 2k states in
SExp ; each state thus is a combination of a control
location and a valuation of the considered properties.

• Consider an edge (c1, c2) in the CFG. Then c1 and c2
correspond to 2k states in SExp each. Consequently,
(c1, c2) may be correspond to up to 2k × 2k transi-
tions in TExp . However, not all of them will be in-
cluded because not all transitions are consistent with
the abstract memory state information. We will use
a theorem prover to determine which of these tran-
sitions indeed are admissible. We will only rule out
transitions whose admissibility can be disproved by
the theorem prover.

3. MExp is a more precise model of proc than the CFG.
However it does not model the behavior of the library
routines called by proc. To achieve this we incorporate
the assumption PAs into MExp . This step also requires
the use of a theorem prover. The LTS obtained after
incorporating the assumption PAs is MImp .

In the following two sections, we will describe step 2 of
this process in detail; in Section 3.4, we will explain step 3.

3.1 Predicate Abstraction

Predicate abstraction is an approach to model abstractly
the state of a system by a set of logical predicates [19, 37].
We use predicate abstraction techniques only to model the
memory state. As we aim to verify C programs, it is nat-
ural to express these properties by pure (side-effect free)
Boolean C expressions. Since we assumed the scope of each
variable to be unique, this definition is unambiguous.

Thus, we shall use C expressions very much in the same
way as quantifier-free first order formulas. Because of this
conceptual proximity we will use logical connectives such
as ∧, ∨ and ¬ instead of their C equivalents &&, || and
!.

In order to describe abstract memory states, let us fix a
certain set P = {P1, . . . Pk} of expressions which we call
the predicates. Note that we do not use float and string con-
stants in predicates at the current stage of the implementa-
tion. Given a concrete memory state m and a predicate P ,
we say that m satisfies P iff P evaluates to true (i.e., a non-
zero numerical value) during the execution of proc when the
memory state is m. A valuation for P is a vector v1, . . . vk
of Boolean values, such that vi expresses the Boolean value
of Pi. V denotes the set of all valuations, i.e., the set of ab-
stract memory states. Intuitively, a concrete memory state
m is modeled by v1, . . . vk if for 1 ≤ i ≤ k, m satisfies Pi
iff vi is true.

A valuation v typically models many concrete mem-
ory states. This set is characterized by a formula (called
the concretization of v) which expresses truth or falsity of
the involved properties in the natural way: Given a valu-
ation v = v1, . . . vk, the concretization γ(v) is defined as∧k
i=1 P

vi
i where P vii is equal to Pi if vi is true, and equal

to ¬Pi if vi is false. Thus, γ(v) describes the property cap-
tured by the valuation v; all memory states which are mod-
eled by v satisfy γ(v).

Example 1 In our example, P contains a single predicate
(t == 0) and therefore has two valuations - [true] and
[false]. Hence γ([true]) := (t == 0) and γ([false]) :=
¬(t == 0). Thus [true] models all concrete memory states
where the variable t is equal to 0 and false models all con-
crete memory states where the variable t is not equal to 0.

State Space ofMExp . We combine the control flow graph
and the predicate abstraction to obtain the state space
SExp := C × V of MExp . Thus a state of MExp is a pair
〈c, v〉 where c ∈ C and v ∈ V . It models all execution
states of proc where the control location is c and where the
memory state is modeled by v. In Section 3.3 we show how
to compute the transitions between states in SExp ; in Sec-
tion 3.4 we show how to extend MExp to incorporate the
specification PAs. Before we can do this, we need to give
some details about our use of theorem provers.

3.2 Application of Theorem Provers

We will use theorem provers to reason about C expres-
sions. Since these expressions may involve integer as well
as Boolean arithmetic, and, importantly, pointer arithmetic,
the logic involved is quite complicated, and certainly unde-
cidable.1 It is therefore important to our approach that we
use the theorem prover conservatively, i.e., we only assume
logical relationships which the theorem prover actually can
prove.

In this section, we will describe the principles of our us-
age of theorem provers so as to give an intuition of our ap-
proach. The logical intricacies involved (including, for ex-
ample, uninterpreted function symbols to model the heap)
are handled by our tool, but would exceed the scope of this
paper, and are therefore omitted.

For the construction of the abstract transition relation it
will often be necessary to determine whether two C expres-
sions e1 and e2 are mutually exclusive. To this end, we use
the theorem prover to compute a meta-predicate A(e1, e2)
with the following properties:

• If A(e1, e2) is false, then e1 and e2 are provably mutu-
ally exclusive.

• If A(e1, e2) is true, then this indicates that the theorem
prover could not prove that e1 and e2 are mutually ex-
clusive, either because they indeed are not mutually ex-
clusive, or because proving mutual exclusiveness was
beyond the capabilities of the theorem prover.

The meta-predicate A has a crucial role in the definition
of the transition relation. We will see that the definition of
A ensures that the abstraction is safe. We illustrate the use
of A by the following important example:

Given any C expression e1 and a normal C assignment
s, we define the weakest precondition of e1 with respect
to s in the same way as [11] and denote it by WP(s, e1).
Intuitively,WP(s, e1) is a C expression which denotes the
weakest assumption that has to be true before the execution
of s in order for e1 to become true after the execution of s.
Given s and e1,WP(s, e1) can be computed as follows:

• If s is the assignment statement v = e2 thenWP(s, e1)
is obtained from e1 by replacing all occurrences of v in
e1 with e2.

• If s is an assignment statement of the form ∗v = e2,
then we have to take into account aliasing possibilities
as well. For example if e1 is the expression a == 5
thenWP(s, e1) is ((v == &a) ∧ (e2 == 5)) ∨ ((v! =
&a) ∧ (a == 5)).

1It follows from the famous negative solution to Hilbert’s tenth problem
[32] that checking the equivalence of two C expressions is undecidable
even for simple integer arithmetic; even when we restrict the range of the
variables to 32 bit, the question is computationally very hard.

Let Asgn be the set of normal C assignments in P . The
relation Update ⊆ V × Asgn × V denotes how normal
assignments affect the valuations, and is defined as follows.

Update = {(v1, s, v2) | A(γ(v1),WP(s, γ(v2)),

v1, v2 ∈ V, s ∈ Asgn}

Intuitively Update(v1, s, v2) means that if proc is in a mem-
ory state modeled by v1, and the assignment statement s is
executed, then we need to admit the possibility that a mem-
ory state abstracted by v2 can be reached.

3.3 Transition Relation TExp

We are now ready to define the transition relation
TExp ⊆ SExp ×ActSpec × SExp for MExp .

Consider any two states s and s′ of MExp . We have al-
ready seen that state s = (c, v) models all concrete states
of proc whose control component is c and whose data com-
ponent is modeled by v. Let t and t′ denote two concrete
states modeled by s and s′ respectively. If there is a con-
crete transition for any such t and t′ then we must include
a transition (s, s′) in TExp . This approach guarantees that
MExp is a sound model of proc.

The rest of this section describes a procedure to decide
whether to include such a transition (s, s′) in TExp or not.
We will make a case distinction by the type of c. If c is a
final location, then there are no outgoing transitions from s.
Otherwise c can be of five different types and we consider
each type separately.

Goto. Let c′ be the unique successor control location of c.
Then we include ((c, v), ε, (c′, v)) in TExp . Thus we change
the control state according to the program flow and keep the
data state unaltered.

Normal Assignment. Let z be the assignment statement
at c and c′ be the unique successor control location of c.
For every valuation v′ such that Update(v, z, v′), we in-
clude ((c, v), ε, (c′, v′)) in TExp . Thus we let the control
state change according to the control flow of the program
and allow any data state change not disproved by the theo-
rem prover.

Branch. Recall that in the CFG, every branch has two
successors. Let e be the branching condition, and let c′T and
c′E be the true and false successors of c. If A(γ(v), e), then
we include ((c, v), ε, (c′T , v)) in TExp . If A(γ(v),¬e), then
we include ((c, v), ε, (c′E , v)) in TExp . Thus we allow for
any successor control state that is not provably impossible
and we keep the data state unchanged.

Return. Let e be the return expression at the return loca-
tion c in root and c′ be the unique successor location of c.
Note that c′ must be the final location. For all return actions
a ∈ ActSpec , if A(γ(v), (e == RetV al(a))) (i.e., if the
return value described by the action is possibly equal to the
value actually returned) then we include ((c, v), a, (c′, v))
in TExp . If there is no return action a ∈ ActSpec , then we
include ((c, v), ε, (c′, v)) in TExp .

Call Assignment. Since we do not incorporate the speci-
fication PAs at this stage, we do not include any transitions
originating at call assignment locations. These transitions
will be explained in Section 3.4.

Initial States. The initial states are those states which are
consistent with the guard GSpec . Thus, S0,ECFG is the set
of states (c, v) where A(γ(v), GSpec) and c is the initial lo-
cation of CFG.

Example 2 The expanded CFG for our example is shown
in Figure 4. Since there are two valuations, there are two
states corresponding to every control location in the actual
CFG. The corresponding control locations and states in the
MExp have the same color and are marked with the same
letter. In addition every state corresponding to valuation v
is marked with γ(v) (¬(t == 0) is written (t! = 0).)

3.4 Inlining the Specification PAs

In this section, we show how to conclude the construc-
tion of MImp by incorporating the assumption PAs into
MExp . Recall that the purpose of this step is to model calls
made by proc to library routines. Intuitively, this is achieved
by inline copies of appropriate LTSs between call assign-
ment locations and their respective successors in the CFG.
MImp is obtained from MExp by adding new states and

transitions: Consider a state (c, v) where c is a call assign-
ment, and let c′ be the unique successor of c in the CFG.
Let x = lib(. . .); be the call assignment statement at c.
Assume that proc is not a function pointer; we will deal
with this special case later. Let 〈g1, P1〉, . . . , 〈gn, Pn〉 be
the guard and LTS list in the assumption PA for lib. For
each i, we do the following:

1. Let g′i be the guard obtained from gi by replacing every
parameter of lib by the corresponding argument passed
to it at c. If A(g′i, γ(v)), then proceed, otherwise move
on to the next guard.

2. Let Pi = (Si, Acti, {s0,i}, Ti). For each state s ∈ Si
which is not STOP, introduce a new state (c · s, v) into
SImp . These states represent the inlined states of Pi.

3. Add a transition ((c, v), ε, (c · s0,i, v)) into TImp . This
transition connects the call location state to the initial
inlined state.

4. For each transition (s, a, t) ∈ Ti where t is different
from STOP, add a transition ((c · s, v), a, (c · t, v)) into
TImp .

5. For each transition (s, a,STOP) ∈ Ti where a is not a
return action, and for each v′ such that A(γ(v), γ(v′))
is true, add ((c · s, v), a, (c′, v′)) into TImp .

6. For each transition (s, a,STOP) ∈ Ti where a is a re-
turn action, and for each v′ such thatUpdate(v, x =
RetV al(a), v′) is true, add ((c · s, v), ε, (c′, v′)) into
TImp .

If lib is a function pointer, then we repeat the construc-
tion described above for each possible target of lib listed by
the user.

Example 3 The assumption LTS for do lock is shown at
the top of Figure 5. The MImp obtained by incorporating
the LTS for do lock into MExp of Figure 4 is shown at
the bottom. The corresponding states in MExp and MImp

are colored identically. Similarly the states of the LTS for
do lock and the corresponding inlined states in MImp

have identical colors. It is clear that MImp is simulated
by the MSpec in Figure 1.

B

D D

E

CC

(t == 0)

(t == 0) (t == 0)

(t == 0) (t != 0)

(t != 0)

(t != 0)

return{0} return{1}return{0}return{1}

(t != 0)

ε ε B

E

A (t == 0)

(t == 0)

(t == 0)

A(t != 0)

(t != 0)

(t != 0)

ε ε

ε ε

εε

lock lock

S1

S2
lock

Implementation LTS

Assumption LTS for do_lock

STOP
return{0}

return{1}

Inlined States
Inlined States

A.S2

A.S1 A.S1

A.S2

Figure 5. LTS for do lock and MImp .

3.5 Enhancements and Implementation Issues

We now describe several enhancements to the above
described basic framework that we have implemented in

MAGIC, but have been omitted to keep the presentation
simple.

Making predicate abstraction more efficient. The set of
valuations V is exponential in the number of predicates in
P . MAGIC also uses the theorem prover to group together
predicates that are mutually exclusive. Since at most one
predicate in such a group can be true at any time the number
of possible valuations of that group is equal to the size of the
group. This reduces the size of the state space dramatically.
For example suppose we had four predicates originally and
we formed two groups of two predicates each. Then the
number of possible valuations reduces from sixteen to four.

Even though we have assumed a fixed set of predicates
P in the above discussion, MAGIC allows different sets
of predicates. Since not all predicates are useful to be ab-
stracted at all control locations, using them indiscriminately
would be inefficient. A similar method has been used by
BLAST [27].

Automatic predicate discovery. The effectiveness of
predicate abstraction relies critically on the set of predi-
cates. The model extraction process described above re-
quires that the predicates be supplied externally. However,
if directed, MAGIC can also try to discover suitable sets of
predicates. We do not discuss the full details of this predi-
cate discovery process in this paper. However in almost all
of our experiments MAGIC manages to automatically dis-
cover good predicate sets and correctly prove/disprove the
simulation property with them.

Interfacing with theorem provers. As explained before,
during the construction of MImp we use efficient theorem
provers. We have integrated MAGIC with various pub-
licly available theorem provers. In some cases, like Sim-
plify [36], CVC [39] and ICS [23], the version of the soft-
ware available to us can only be used via command line ar-
guments. We run them as separate processes and interface
with them via their standard inputs and outputs. In other
cases, like CPROVER [29], the software is available as li-
braries with well-defined APIs and we link them directly
with MAGIC. Also in all the cases we cache results to avoid
redundant calls to the theorem prover.

4 Case Studies

Our experiments were guided by three general goals:
First, we wanted to assure the correctness of the tool by ex-
perimenting with examples where the correct outcome was
already known. Second, we wanted to evaluate the relative
performances of various publicly available software (theo-
rem provers, SAT solvers) that were integrated into our sys-

tem. Third, we wished to validate the usefulness of our tool
in handling large real life examples.

Regression Tests. The first two goals were achieved by a
suite of 10 regression tests of small size. All these tests were
derived from actual Linux kernel code. Figure 6 describes
the source of each test briefly. LOC indicates the number
of post-processed lines of C. The name of the procedure
analysed is given in italics in the description. A modified
procedure means that the source code was changed so that
it would no longer be safely abstracted by the specification
LTS. The library to which the procedure belongs is given in
brackets after the procedure name.

Regression LOC Description
lock-y 27 pthread mutex lock (pthread)

unlock-y 24 pthread mutex unlock (pthread)
socket-y 60 socket (socket)

sock alloc-y 24 sock alloc (socket)
sys send-y 4 sys send (socket)

sock sendmsg-y 11 sock sendmsg (socket)
lock-n 27 modified pthread mutex lock

unlock-n 24 modified pthread mutex unlock
sock alloc-n 24 modified sock alloc

sock sendmsg-n 11 modified sock sendmsg

Figure 6. Descriptions of regression tests.

Verifying OpenSSL. To achieve the third goal we opted
to work with OpenSSL [6], an open source implementation
of the publicly available SSL [8] specification. This proto-
col is used by a client (typically a web browser) and a server
to establish a secure socket connection over a malicious net-
work using public and symmetric key cryptography.

A critical component of the protocol is the handshake.
First we verified that the openssl-0.9.6c implementation of
the server side of the handshake conforms to its specifica-
tion. This implementation is encapsulated in a single proce-
dure of about 347 lines of C. We constructed the target LTS
MSpec manually by reading the SSL specification [8]. The
LTS had 28 states and 67 transitions. A total of 19 predi-
cates and PAs for 14 library routines were supplied exter-
nally. We carried out two experiments. The first was done
with the correct target LTS. The second was done with a
modified the target LTS (of same size) so that a correct im-
plementation would no longer be simulated by it. Next we
repeated identical experiments with the client side imple-
mentation. It was encapsulated within a single procedure of
345 lines. The target LTS had 28 states and 60 transitions.
A total of 18 predicates and PAs for 12 library routines were
supplied externally.

lock-y

unlock-y

socket-y

sock_alloc-y

sys_send-y

sock_sendmsg-y

lock-n

unlock-n

sock_alloc-n

sock_sendmsg-n

Regression Test

1

10

100

1000

10000

T
im

e
to

 c
on

st
ru

ct
 I

m
pl

em
en

ta
ti

on
 L

T
S

(m
s)

Simplify

ICS

CVC

CPROVER

Figure 7. Time to construct MImp .

Regression Test Results. All our experiments were done
on a 1.4 GHz AMD Athlon machine with 1 GB of RAM
running RedHat Linux 7.1. Figure 7 summarizes the per-
formance results for various theorem provers obtained via
the regression suite. The y-axis (drawn in log scale) shows
the time needed to constructMImp in milliseconds which is
a clear indicator of the performance of the theorem prover.
Similarly, Figure 8 summarizes the performance results for
various SAT solvers obtained via the regression suite. The
y-axis indicates the time in milliseconds needed to check
simulation since this is the step where the SAT solver is
used.

OpenSSL Results. In the case of the OpenSSL server ex-
periments, the fact that the correct specification LTS safely
abstracts the OpenSSL implementation was then proved by
our tool in 255 seconds using about 130 MB of memory.
The tool also successfully verified that the modified spec-
ification LTS does not safely abstract the implementation
in 247 seconds using 115 MB of memory. For the client
experiments the corresponding figures were 226 seconds,
107MB and 227 seconds, 111MB. Owing to composition-
ality we did not have to verify the validity of the assumption
PAs used for these experiments.

Comparison of Theorem Provers and SAT Tools. A
closer look at the two bar graphs reveal several consistent
trends. First, for the purposes of our tool, the theorem
provers can be arranged in decreasing order of efficiency
as follows: Simplify, ICS, CVC and CPROVER. The first
three theorem provers have comparable efficiency and seem
clearly superior to CPROVER. Second, the SAT solvers
can also be arranged in decreasing order of efficiency as

lock-y

unlock-y

socket-y

sock_alloc-y

sys_send-y

sock_sendmsg-y

lock-n

unlock-n

sock_alloc-n

sock_sendmsg-n

Regression Test

0

5

10

15

20

T
im

e
to

 c
he

ck
 S

im
ul

at
io

n
(m

s)

Horn

Chaff

FGRASP

SATO

Figure 8. Time to check simulation.

follows: Horn, Chaff, FGRASP and SATO. Of the exter-
nal solvers we used Chaff seems to be easily the best, al-
most matching our own HORNSAT based implementation.
FGRASP and SATO are less easily distinguishable.

The difference in performance between general SAT
solvers and the HORNSAT solver we implemented be-
comes prominent for the larger OpenSSL example. The
time required for checking simulation for the first OpenSSL
server experiment and the first OpenSSL client experiment
were 42 seconds and 32 seconds respectively when using
our HORNSAT solver. In comparison the same figures for
Chaff were 386 seconds and 265 seconds respectively.

Negative Results. The reported figures were obtained us-
ing user supplied predicates. When we repeated the experi-
ments using automatically discovered predicates, higher ex-
ecution times were observed. The reason is that our au-
tomatic predicate discovery process yields more predicates
than are necessary. This leads to a larger number of states
in MImp and hence to greater execution times. We believe
that improving the predicate discovery technique is a good
area for further research.

5 Future Work

There is enormous potential for extending the basic
framework implemented by MAGIC. In conclusion we list
notable areas for future research: (i) generation of diagnos-
tic feedback and automatic model refinement, (ii) abstrac-
tion techniques for more precise modeling of the heap, (iii)
extending the MAGIC infrastructure to OO languages like
Java and C++, (iv) handling concurrency, and (v) automatic
predicate discovery.

References

[1] Bandera. http://www.cis.ksu.edu/santos/bandera.
[2] BLAST. http://www-cad.eecs.berkeley.edu/ rupak/blast.
[3] Business Process Execution Language for Web Services.

http://www.oasis-open.org/cover/bpel4ws.html.
[4] ESC-Java. http://www.research.compaq.com/SRC/esc.
[5] Java PathFinder. http://ase.arc.nasa.gov/visser/jpf.
[6] OpenSSL. http://www.openssl.org.
[7] SLAM. http://research.microsoft.com/slam.
[8] SSL 3.0 Specification. http://wp.netscape.com/eng/ssl3.
[9] Unified Modeling Language. http://www.uml.org.

[10] G. Ausiello and G. F. Italiano. On-line algorithms for poly-
nomially solvable satisfiability problems. Journal of Logic
Programming, 10(1,2,3 & 4):69–90, January 1991.

[11] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of c programs. In SIGPLAN
Conference on Programming Language Design and Imple-
mentation, pages 203–213, 2001.

[12] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Carte-
sian abstraction for model checking C programs. Lecture
Notes in Computer Science, 2031:268–??, 2001.

[13] T. Ball and S. K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. Lecture Notes in Com-
puter Science, 2057, 2001.

[14] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. Lecture Notes in Computer Sci-
ence, 1579:193–207, 1999.

[15] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Auto-
matic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Pro-
gramming Languages and System (TOPLAS), 8(2):244–263,
April 1986.

[16] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Com-
puter Aided Verification, pages 154–169, 2000.

[17] E. M. Clarke, O. Grumberg, and D. E. Long. Model
checking and abstraction. ACM Transactions on Program-
ming Languages and System (TOPLAS), 16(5):1512–1542,
September 1994.

[18] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 2000.

[19] S. Das, D. L. Dill, and S. Park. Experience with predicate
abstraction. In Computer Aided Verification, pages 160–171,
1999.

[20] W. F. Dowling and J. H. Gallier. Linear time algorithms
for testing the satisfiability of propositional horn formula.
Journal of Logic Programming, 3:267–284, 1984.

[21] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S.
Pasareanu, H. Zheng, and W. Visser. Tool-supported pro-
gram abstraction for finite-state verification. In International
Conference on Software engineering, pages 177–187. IEEE
Computer Society, 2001.

[22] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. In Symposium on Operating Systems De-
sign and Implementation, 2000.

[23] J.-C. Filliatre, S. Owre, H. Ruess, and N. Shankar. ICS:
Integrated canonizer and solver. In Computer-Aided Verifi-
cation, 2001.

[24] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
SIGPLAN Conference on Programming Language Design
and Implementation, 2002.

[25] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274,
June 1987.

[26] K. Havelund and T. Pressburger. Model checking JAVA pro-
grams using JAVA pathfinder. International Journal on Soft-
ware Tools for Technology Transfer, 2(4):366–381, 2000.

[27] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Symposium on Principles of Programming
Languages, pages 58–70, 2002.

[28] C. A. R. Hoare. Communicating sequential processes. Com-
munications of the ACM (CACM), 21(8):666–677, August
1978.

[29] D. Kroening. Application specific higher order logic theo-
rem proving. In S. Autexier and H. Mantel, editors, Proc.
of the Verification Workshop - VERIFY’02, pages 5–15, July
2002.

[30] J. Magee and J. Kramer. Concurrency: State Models & Java
Programs. Wiley, 2000.

[31] J. P. Marques-Silva and K. A. Sakallah. GRASP – a new
search algorithm for satisfiability. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design, November
1996.

[32] Y. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.
[33] R. Milner. Communication and Concurrency. Prentice-Hall,

1989.
[34] R. Milner. Communicating and Mobile Systems: the π-

Calculus. Cambridge University Press, 1999.
[35] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-

lik. Chaff: Engineering an efficient sat solver. In Design
Automation Conference, June 2001.

[36] G. Nelson. Techniques for Program Verification. PhD thesis,
Stanford University, 1980.

[37] S. Graf and H. Saidi. Construction of abstract state graphs
with PVS. In O. Grumberg, editor, Computer Aided Verifi-
cation, volume 1254, pages 72–83. Springer Verlag, 1997.

[38] S. K. Shukla. Uniform Approaches to the Verification of
Finite State Systems. PhD thesis, SUNY, Albany, 1997.

[39] A. Stump, C. Barrett, and D. Dill. CVC: A cooperating va-
lidity checker. In Conference on Computer-Aided Verifica-
tion, 2002.

[40] H. Zhang. SATO: An efficient propositional prover. In Con-
ference on Automated Deduction, 1997.

