
Efficient Type Matching∗

Somesh Jha

University of Wisconsin†
Jens Palsberg

Purdue University‡
Tian Zhao

Purdue University‡

September 21, 2001

Abstract

Palsberg and Zhao [14] presented an O(n2) time algorithm for matching two recur-
sive types. In this paper, we present an O(n log n) algorithm for the same problem.
Our algorithm works by reducing the type matching problem to the well-understood
problem of finding a size-stable partition of a graph. Our result may help improve
systems, such as Polyspin and Mockingbird, that are designed to facilitate interoper-
ability of software components. We also discuss possible applications of our algorithm
to Java. Issues related to subtyping of recursive types are also discussed.

1 Introduction

Interoperability is a fundamental problem in software engineering. Interoperability issues
arise in various contexts, such as software reuse, distributed programming, use of legacy
components, and integration of software components developed by different organizations.
Interoperability of software components has to address two fundamental problems: matching

and bridging. Matching deals with determining whether two components A and B are com-
patible. Bridging allows one to use component B using the interface defined for component
A.

Matching: A common technique for facilitating matching is to associate signatures with
components. These signatures can then be used as keys to retrieve relevant components from
an existing library of components. Use of finite types as signatures was first proposed by
Rittri [16]. Zaremski and Wing [20, 21] used a similar approach for retrieving components
from an ML-like functional library. Moreover, they also emphasized flexibility and support
for user-defined types.

Bridging: In a multi-lingual context, bridge code for “gluing” components written in
different languages (such as C, C++, and JAVA) have to be developed. CORBA [12],
PolySpin [4], and Mockingbird [2, 3] allow composing components implemented in different
languages. Software components are considered to be of two kinds: objects, which provide

∗Palsberg was supported by an NSF CAREER award, CCR–9734265, and by IBM.
†Computer Sciences Department, University of Wisconsin, Madison, WI 53706, jha@cs.wisc.edu.
‡Dept. of Computer Science, Purdue University, W. Lafayette, IN 47907, {palsberg,tzhao}@cs.purdue.edu.

1

public interfaces, and clients, which invoke the methods of the objects and thereby use the
services provided by the objects.

CORBA: The CORBA approach utilizes a separate definition language called IDL.
Objects are associated with language-independent interfaces defined in IDL. These interfaces
are then translated into the language being used by the client. The translated interface
then enables the clients to call the objects. Since the IDL interfaces have to be translated
into several languages, their type system is very restrictive. Therefore, IDL interfaces lack
expressive power because, intuitively speaking, the type system used in IDL has to be the
intersection of the type system for each language it supports. Restrictions for CORBA-style
approaches to interoperability are well articulated in [3, 4].

Polyspin and Mockingbird: The Polyspin and Mockingbird approaches do not require
a common interface language, such as IDL. In both these approaches, clients and objects
are written in their own type systems and an operation that crosses the language boundary
is supported by bridge code that is automatically generated. Therefore, systems such as
Polyspin and Mockingbird support seamless interoperability since the programmer is not
burdened with writing interfaces in a second language, such as IDL in CORBA. Polyspin
supports only finite types. Mockingbird on the other hand supports recursive types, includ-
ing records, linked lists, and arrays. The type system used in Mockingbird is called the
Mockingbird Signature Language or MockSL. The problem of deciding type equivalence for
MockSL remains open [2]. In this paper we consider a type system which is related to the
one used in Mockingbird.

Megaprogramming: Techniques suitable for very large software systems has been a
major goal of software engineering. The term megaprogramming was introduced by DARPA
to motivate this goal [5]. Roughly speaking, in megaprogramming, megamodules provide a
higher level of abstraction than modules or components. For example, a megamodule can
encapsulate the entire logistics of ground transportation in a major city. Megaprogramming
is explained in detail in [19]. Interoperability issues arise when megaprograms are constructed
using megamodules (see [19, Section 4.2]). We believe that the framework presented in this
paper can be used to address mismatch between interfaces of megamodules.

The Problem: Assume that we use types as signatures for components. Thus, the type
matching problem reduces to the problem of determining whether two types are equivalent.
Much previous work on type focuses on non-recursive types [7, 8, 11, 15, 16, 17, 18, 20]. In
this paper, we consider equivalence of recursive types. Equality and subtyping of recursive
types have been studied in the 1990s by Amadio and Cardelli [1]; Kozen, Palsberg, and
Schwartzbach [10]; Brandt and Henglein [6]; Jim and Palsberg [9]; and others. These papers
concentrate on the case where two types are considered equal if their infinite unfoldings are
identical. Type equivalence can be decided in O(nα(n)) time, and a notion of subtyping
defined by Amadio and Cardelli [1] can be decided in O(n2) time [10].

If we allow a product-type constructor to be associative and commutative, then two
recursive types may be considered equal without their infinite unfoldings being identical.
Alternatively, think of a product type as a multiset, by which associativity and commuta-
tivity are obtained for free. Such flexibility has been advocated by Auerbach, Barton, and
Raghavachari [2]. Palsberg and Zhao [14] presented a definition of type equivalence which
supports the idea. They also presented an O(n2) time algorithm for deciding their notion of
type equivalence.

2

Our result: We present an O(n log n) time algorithm for deciding the type equivalence
of Palsberg and Zhao [14]. Our algorithm works by reducing the type matching problem to
the well-understood problem of finding a size-stable partition of a graph [13].

The rest of the paper: In Section 2.1 we will recall the notions of terms and term
automata [10], and we will state the definitions of types and type equivalence from the paper
by Palsberg and Zhao [14]. In Section 3 we prove our main result. Applications to Java and
an implementation of our algorithm are discussed Section 4. Subtyping of recursive types is
discussed in Section 5. Concluding remarks and future directions appear in Section 6.

2 Definitions

This section has all the relevant definitions. Term automata and representation of types are
described in Subsection 2.1. A definition of type equivalence for recursive types in terms of
bisimualtion is give in Subsection 2.2. An efficient algorithm for determining whether two
types are equivalent is given in Section 3.

2.1 Terms and Term Automata

Here we give a general definition of (possibly infinite) terms over an arbitrary finite ranked
alphabet Σ. Such terms are essentially labeled trees, which we represent as partial functions
labeling strings over ω (the natural numbers) with elements of Σ.

Let Σn denote the set of elements of Σ of arity n. Let ω denote the set of natural numbers
and let ω∗ denote the set of finite-length strings over the alphabet ω.

A term over Σ is a partial function

t : ω∗ → Σ

satisfying the following properties:

• the domain of t is nonempty and prefix-closed;

• if t(α) ∈ Σn, then { i | αi ∈ the domain of t } = {0, 1, . . . , n − 1}.

Let t be a term and α ∈ ω∗. Define the partial function t↓α : ω∗ → Σ by t↓α(β) = t(αβ).
If t↓α has nonempty domain, then it is a term, and is called the subterm of t at position α.

A term t is said to be regular if it has only finitely many distinct subterms; that is, if
{t↓α | α ∈ ω∗} is a finite set.

Every regular term over a finite ranked alphabet Σ has a finite representation in terms of
a special type of automaton called a term automaton. A term automaton over Σ is a tuple

A = (Q, Σ, q0, δ, `)

where:

• Q is a finite set of states,

• q0 ∈ Q is the start state,

3

• δ : Q × ω → Q is a partial function called the transition function, and

• ` : Q → Σ is a (total) labeling function,

such that for any state q ∈ Q, if `(q) ∈ Σn then

{i | δ(q, i) is defined} = {0, 1, . . . , n − 1} .

The partial function δ extends naturally to an inductively-defined partial function:

δ̂ : Q × ω∗ → Q

δ̂(q, ε) = q

δ̂(q, αi) = δ(δ̂(q, α), i).

For any q ∈ Q, the domain of the partial function λα.δ̂(q, α) is nonempty (it always contains
ε) and prefix-closed. Moreover, because of the condition on the existence of i-successors in
the definition of term automata, the partial function

λα.`(δ̂(q, α))

is a term.
Let A be a term automaton. The term represented by A is the term

tA = λα.`(δ̂(q0, α)) .

A term t is said to be representable if t = tA for some A.
Intuitively, tA(α) is determined by starting in the start state q0 and scanning the input

α, following transitions of A as far as possible. If it is not possible to scan all of α because
some i-transition along the way does not exist, then tA(α) is undefined. If on the other hand
A scans the entire input α and ends up in state q, then tA(α) = `(q).

It is straightforward to show that a term t is regular if and only if it is representable.
Moreover, a term t is regular if and only if it can be described by a finite set of equations
involving the µ operator.

2.2 Recursive Types and Type Equivalence

A type is a regular term over the ranked alphabet

Σ = Γ ∪ {→} ∪ {
n∏

, n ≥ 2},

where Γ is a set of base types, → is binary, and
∏n is of arity n. Given a type σ, if

σ(ε) =→, σ(0) = σ1, and σ(1) = σ2, then we write the type as σ1 → σ2. If σ(ε) =
∏n and

σ(i) = σi , ∀i ∈ {0, 1, . . . , n − 1}, then we write the type σ as
∏n−1

i=0 σi.
Palsberg and Zhao [14] presented three equivalent definitions of type equivalence. Here

we will work with the one which is based on the idea of bisimilarity. A relation R on types
is called a bisimulation if it satisfies the following three conditions:

4

• if (σ, τ) ∈ R, then σ(ε) = τ(ε)

• if (σ1 → σ2, τ1 → τ2) ∈ R, then (σ1, τ1) ∈ R and (σ2, τ2) ∈ R

• if (
∏n−1

i=0 σi,
∏n−1

i=0 τi) ∈ R, then there exists a bijection b : {0..n − 1} → {0..n − 1} such
that ∀i ∈ {0..n − 1}, (σi, τb(i)) ∈ R.

Bisimulations are closed under union, therefore, there exists a largest bisimulation

R =
⋃

{ R | R is a bisimulation }.

It is straightforward to show that R is an equivalence relation. Two types τ1 and τ2 are said
to be equivalent (denoted by τ1

∼= τ2) iff (τ1, τ2) ∈ R.

3 An Efficient Algorithm for Type Equivalence

Assume that we are given two types τ1 and τ2 that are represented as two term automata
A1 and A2. Lemma 1 proves that τ1

∼= τ2 (or (τ1, τ2) ∈ R) if and only if there is a reflexive
bismulation C between A1 and A2 such that the initial states of the term automata A1

and A2 are related by C. Lemma 3 essentially reduces the problem of finding a reflexive
bisimualtion C between A1 and A2 to finding a size-stable coarsest partition [13]. Theorem 4
uses the algorithm of Paige and Tarjan to determine in O(n log n) time (n is the sum of the
sizes of the two term automata) whether there exists a reflexive bisimulation between C
between C1 and C2.

Throughout this section, we will use A1, A2 to denote two term automata over the alpha-
bet Σ:

A1 = (Q1, Σ, q01, δ1, `1)

A2 = (Q2, Σ, q02, δ2, `2).

We assume that Q1 ∩ Q2 = ∅. Define Q = Q1 ∪ Q2. Define also δ : Q × ω → Q where
δ = δ1 ⊕ δ2, and ` : Q → Σ, where ` = `1 ⊕ `2, where ⊕ denotes disjoint union of two
functions. We say that A1, A2 are bisimular if and only if there exists a relation C ⊆ Q×Q,
called a bisimulation between A1 and A2, such that:

• if (q, q′) ∈ C, then `(q) = `(q′)

• if (q, q′) ∈ C and `(q) =→, then (δ(q, 0), δ(q′, 0)) ∈ C and (δ(q, 1), δ(q′, 1)) ∈ C

• if (q, q′) ∈ C and `(q) =
∏n, then there exists a bijection b : {0..n − 1} → {0..n − 1}

such that ∀i ∈ {0..n − 1}: (δ(q, i), δ(q′, b(i))) ∈ C.

Notice that the bisimulations between A1 and A2 are closed under union, therefore, there
exists a largest bisimulation between A1 and A2. It is straightforward to show that the
identity relation on Q is a bisimulation, and that any reflexive bisimulation is an equivalence
relation. Hence, the largest bisimulation is an equivalence relation.

5

Lemma 1. For types τ1, τ2 that are represented by the term automata A1, A2, respectively,

we have (τ1, τ2) ∈ R if and only if there is a reflexive bisimulation C between A1 and A2

such that (q01, q02) ∈ C.

Proof. Suppose (τ1, τ2) ∈ R. Define:

C = { (q, q′) ∈ Q × Q | (λα.`(δ̂(q, α)), λα.`(δ̂(q′, α))) ∈ R }.

It is straightforward to show that C is a bisimulation between A1 and A2, and that (q01, q02) ∈
C, we omit the details.

Conversely, let C be a reflexive bisimulation between A1 and A2 such that (q01, q02) ∈ C.
Define:

R = { (σ1, σ2) | (q, q′) ∈ C ∧ σ1 = λα.`(δ̂(q, α)) ∧ σ2 = λα.`(δ̂(q′, α)) }

From (q01, q02) ∈ C, we have (τ1, τ2) ∈ R. It is straightforward to prove that R is a bisimu-
lation, we omit the details. From (τ1, τ2) ∈ R and R being a bisimulation, we conclude that
(τ1, τ2) ∈ R.

A partitioned graph is a 3-tuple (U, E, P), where U is a set of nodes, E ⊆ U × U is an
edge relation, and P is a partition of U . A partition P of U is a set of pairwise disjoint
subsets of U whose union is all of U . The elements of P are called its blocks. If P and S are
partitions of U , then S is a refinement of P if and only if every block of S is contained in a
block of P .

A partition S of a set U can be characterized by an equivalence relation K on U such
that each block of S is an equivalence class of K. If U is a set and K is an equivalence
relation on U , then we use U/K to denote the partition of U into equivalence classes for K.

A partition S is size-stable if and only if for all blocks B1, B2 ∈ S, and for all x, y ∈ B1,
we have |E(x) ∩ B2| = |E(y) ∩ B2|, where E(x) is the following set

{y|(x, y) ∈ E} .

We will repeatedly use the following characterization of size-stable partitions.

Lemma 2. For an equivalence relation K, we have that U/K is size-stable if and only if

for all (u, u′) ∈ K, there exists a bijection π : E(u) → E(u′) such that for all u1 ∈ E(u), we

have (u1, π(u1)) ∈ K.

Proof. Suppose that U/K is size-stable. Let (u, u′) ∈ K. Let B1 be the block of U/K which
contains u and u′. For each block B2 of U/K, we have that |E(u) ∩ B2| = |E(u′) ∩ B2|. So,
for each block B2 of U/K, we can construct a bijection from E(u) ∩ B2 to E(u′) ∩ B2, such
that for all u1 ∈ E(u) ∩ B2, we have (u1, π(u1)) ∈ K. These bijections can then be merged
to single bijection π : E(u) → E(u′) with the desired property.

Conversely, suppose that for all (u, u′) ∈ K, there exists a bijection π : E(u) → E(u′)
such that for all u1 ∈ E(u), we have (u1, π(u1)) ∈ K. Let B1, B2 ∈ U/K, and let x, y ∈ B1.
We have that (x, y) ∈ K, so there exists a bijection π : E(x) → E(y) such that for all
u1 ∈ E(x), we have (u1, π(u1)) ∈ K. Each element of E(x) ∩ B2 is mapped by π to an
element of E(y)∩B2. Moreover, each element of E(y)∩B2 must be the image under π of an
element of E(x)∩B2. We conclude that π restricted to E(x)∩B2 is a bijection to E(y)∩B2,
so |E(x) ∩ B2| = |E(y) ∩ B2|.

6

Given two term automata A1, A2, we define a partitioned graph (U, E, P):

U = Q ∪ { 〈q, i〉 | q ∈ Q ∧ δ(q, i) is defined }

E = { (q, 〈q, i〉) | δ(q, i) is defined }

∪ { (〈q, i〉, δ(q, i)) | δ(q, i) is defined }

L = { (q, q′) ∈ Q × Q | `(q) = `(q′) }

∪ { (〈q, i〉, 〈q′, i′〉) | `(q) = `(q′) and if `(q) =→, then i = i′ }

P = U/L.

The graph contains one node for each state and transition in A1, A2. Each transition in
A1, A2 is mapped to two edges in the graph. This construction ensures that if a node in the
graph corresponds to a state labeled

∏n, then that node will have n distinct successors in
the graph. This is convenient when establishing a bijection between the successors of two
nodes labeled

∏n.
The equivalence relation L creates a distinction between the two successors of a node

that corresponds to a state labeled →. This is done by ensuring that if (〈q, i〉, 〈q, i′〉) ∈ L
and `(q) =→, then i = i′. This is convenient when establishing a bijection between the
successors of two nodes labeled →.

Lemma 3. There exists a reflexive bisimulation C between A1 and A2 such that (q01, q02) ∈
C if and only if there exists a size-stable refinement S of P such that q01 and q02 belong to

the same block of S.

Proof. Let C ⊆ Q×Q be a reflexive bisimulation between A1 and A2 such that (q01, q02) ∈ C.
Define an equivalence relation K ⊆ U × U such that:

K = C

∪ { (〈q, i〉, 〈q′, i〉) | (q, q′) ∈ C ∧ `(q) = `(q′) =→ }

∪ { (〈q, i〉, 〈q′, i′〉) | (q, q′) ∈ C ∧ (δ(q, i), δ(q′, i′)) ∈ C

∧ `(q) = `(q′) ∧ `(q) 6=→ }

S = U/K.

From (q01, q02) ∈ C, we have (q01, q02) ∈ K, so q01 and q02 belong to the same block of S.
We will now show that S is a size-stable refinement of P .

Let (u, u′) ∈ K. From Lemma 2 we have that it is sufficient to show that there exists a
bijection π : E(u) → E(u′), such that for all u1 ∈ E(u), we have (u1, π(u1)) ∈ K. There are
three cases.

First, suppose (u, u′) ∈ C. We have

E(u) = { 〈u, i〉 | δ(u, i) is defined }

E(u′) = { 〈u′, i′〉 | δ(u′, i′) is defined }.

Let us consider each of the possible cases of u and u′. If `(u) = `(u′) ∈ Γ, then E(u) =
E(u′) = ∅, and the desired bijection trivially exists. Next, if `(u) = `(u′) =→, then

E(u) = { 〈u, 0〉, 〈u, 1〉 }

E(u′) = { 〈u′, 0〉, 〈u′, 1〉 },

7

so the desired bijection is π : E(u) → E(u′), where π(〈u, 0〉) = 〈u′, 0〉 and π(〈u, 1〉) = 〈u′, 1〉,
because (〈u, 0〉, 〈u′, 0〉) ∈ K and (〈u, 1〉, 〈u′, 1〉) ∈ K. Finally, if `(u) = `(u′) =

∏n, then

E(u) = { 〈u, i〉 | δ(u, i) is defined }

E(u′) = { 〈u′, i′〉 | δ(u′, i′) is defined }.

From (u, u′) ∈ C, we have a bijection b : {0..n − 1} → {0..n− 1} such that ∀i ∈ {0..n − 1} :
(δ(u, i), δ(u′, b(i))) ∈ C. From that, the desired bijection can be constructed.

Second, suppose u = 〈q, i〉 and u′ = 〈q′, i〉, where (q, q′) ∈ C, and `(q) = `(q′) =→. We
have

E(u) = { δ(q, i) }

E(u′) = { δ(q′, i) },

and from (q, q′) ∈ C we have (δ(q, i), δ(q′, i)) ∈ C ⊆ K, so the desired bijection exists.
Third, suppose u = 〈q, i〉 and u′ = 〈q′, i′〉, where (q, q′) ∈ C, (δ(q, i), δ(q′, i′)) ∈ C,

`(q) = `(q′), and `(q) 6=→. We have

E(u) = { δ(q, i) }

E(u′) = { δ(q′, i′) },

and (δ(q, i), δ(q′, i′)) ∈ C ⊆ K, so the desired bijection exists.
Conversely, let S be a size-stable refinement of P such that q01 and q02 belong to the

same block of S. Define:

K = { (u, u′) ∈ U × U | u, u′ belong to the same block of S }

C = K ∩ (Q × Q).

Notice that (q01, q02) ∈ C and that C is reflexive. We will now show that C is a bisimulation
between A and A′.

First, suppose (q, q′) ∈ C. From S being a refinement of P we have (q, q′) ∈ L, so
`(q) = `(q′).

Second, suppose (q, q′) ∈ C and `(q) =→. From the definition of E we have

E(q) = { 〈q, 0〉, 〈q, 1〉 }

E(q′) = { 〈q′, 0〉, 〈q′, 1〉 }.

From S being size-stable, (q, q′) ∈ C ⊆ K, and Lemma 2 we have that there exists a bijection
π : E(q) → E(q′) such that for all u ∈ E(q) we have that (u, π(u)) ∈ K. From K ⊆ L and
`(q) =→ we have that there is only one possible bijection π:

π(〈q, 0〉) = 〈q′, 0〉

π(〈q, 1〉) = 〈q′, 1〉,

so (〈q, 0〉, 〈q′, 0〉) ∈ K and (〈q, 1〉, 〈q′, 1〉) ∈ K. From the definition of E we have, for
i ∈ {0, 1},

E(〈q, i〉) = δ(q, i)

E(〈q′, i〉) = δ(q′, i),

8

and since S is size-stable, we have, for i ∈ {0, 1}, (δ(q, i), δ(q ′, i)) ∈ K. Moreover, for
i ∈ {0, 1}, (δ(q, i), δ(q′, i)) ∈ Q × Q, so we conclude, (δ(q, i), δ(q′, i)) ∈ C.

Third, suppose (q, q′) ∈ C and `(q) =
∏n. From the definition of E we have

E(q) = { 〈q, i〉 | δ(q, i) is defined }

E(q′) = { 〈q′, i〉 | δ(q′, i) is defined }.

Notice that |E(q)| = |E(q′)| = n. From S being size-stable, (q, q′) ∈ C ⊆ K, and Lemma 2,
we have that there exists a bijection π : E(q) → E(q ′) such that for all u ∈ E(q) we have
that (u, π(u)) ∈ K. From π we can derive a bijection b : {0..n − 1} → {0..n − 1} such that
∀i ∈ {0..n − 1}: (〈q, i〉, 〈q′, b(i)〉) ∈ K. From the definitions of E and E ′ we have that for
i ∈ {0..n − 1},

E(〈q, i〉) = { δ(q, i) }

E(〈q′, i〉) = { δ(q′, i) },

and since S is size-stable, and, for all i ∈ {0..n − 1}, (〈q, i〉, 〈q ′, b(i)〉) ∈ K, we have
(δ(q, i), δ(q′, b(i))) ∈ K. Moreover, (δ(q, i), δ(q′, b(i))) ∈ Q×Q, so we conclude (δ(q, i), δ(q′, b(i))) ∈
C.

Size of a term automata A = (Q, Σ, q0, δ, l) is | Q | + | δ |, i.e., the sum of the number of
states and transitions in the automata.

Theorem 4. For types τ1, τ2 that can be represented by term automata A1, A2 of size at

most n, we can decide (τ1, τ2) ∈ R in O(n log n) time.

Proof. From Lemma 1 we have that (τ1, τ2) ∈ R if and only if there is a reflexive bisimulation
C between A1 and A2 such that (q01, q02) ∈ C. From Lemma 3 we have that there exists
a reflexive bisimulation C between A1 and A2 such that (q01, q02) ∈ C if and only if there
exists a size-stable refinement S of P such that q01 and q02 belong to the same block of S.

Paige and Tarjan [13] give an O(m log p) algorithm to find the coarsest size-stable refine-
ment of P , where m is the size of E and p is the size of the universe U .

Our algorithm first constructs (U, E, P) from A1 and A2, then runs the Paige-Tarjan
algorithm to find the coarsest size-stable refinement S of P , and finally checks whether q01

and q02 belong to the same block of S.
If A1 and A2 are of size at most n, then the size of E is at most 2n, and the size of U is

at most 2n, so the total running time of our algorithm is O(2n log(2n)) = O(n logn).

4 Applications and Implementation

It is straightforward to map a Java type to a type of the form considered in this paper. A
collection of method signatures can be mapped to a product type, a single method signature
can be mapped to a function type, and in case a method has more than one argument,
the list of arguments can be mapped to a product type. Recursion, direct or indirect, is
expressed with the µ operator. This section provides an example of of Java interfaces and
provides an illustration of our algorithm.

9

interface I1 {
float m1(I1 a);
int m2(I2 a);

}

interface I2 {
I1 m3(float a);
I2 m4(float a);

}

Figure 1: Interfaces I1 and I2

interface J1 {
J1 n1(float a);
J2 n2(float a);

}

interface J2 {
int n3(J1 a);

float n4(J2 a);
}

Figure 2: Interfaces J1 and J2

Suppose we are given the two sets of Java interfaces shown in Figures 1 and 2. We would
like to find out whether interface I1 is “structurally equal” to or “matches” with interface J2.
We want a notion of equality for which interface names and method names do not matter,
and for which the order of the methods in an interface and the order of the arguments of a
method do not matter.

Notice that interface I1 is recursively defined. The method m1 takes an argument of type
I1 and returns a floating point number. In the following, we use names of interfaces and
methods to stand for their type structures. The type of method m1 can be expressed as
I1 → float . The symbol → stands for the function type constructor. Similarly, the type of
m2 is I2 → int . We can then capture the structure of I1 with conventional µ-notation for
recursive types:

I1 = µα.(α → float) × (I2 → int)

The symbol α is the type variable bound to the type I1 by the symbol µ. The interface
type I1 is a product type with the symbol × as the type constructor. Since we think of the
methods of interface I1 as unordered, we could also write the structure of I1 as

I1 = µα.(I2 → int) × (α → float) ,

I2 = µδ.(float → I1) × (float → δ) .

In the same way, the structures of the interfaces J1, J2 are:

J1 = µβ.(float → β) × (float → J2)

J2 = µη.(J1 → int) × (η → float).

Trees corresponding to the two types are shown in Figures 3 and 4. The interface types
I1, J2 are equivalent iff there exists a one-to-one mapping or a bijection from the methods
in I1 to the methods in J2 such that each pair of methods in the bijection relation have the
same type. The types of two methods are equal iff the types of the arguments and the return
types are equal.

The equality of the interface types I1 and J2 can be determined by trying out all possible
orderings of the methods in each interface and comparing the two types in the form of finite

10

I1
×

�
�

→
@
float

�
I1

@
@
→

�
I2

@
int

I2
×

�
�

→
@
I1

�
float

@
@
→

�
float

@
I2

Figure 3: Trees for interfaces I1 and I2

J1
×

�
�

→
@
J1

�
float

@
@
→

�
float

@
J2

J2
×

�
�

→
@
int

�
J1

@
@
→

�
J2

@
float

Figure 4: Trees for interfaces J1 and J2

automata. In this case, there are only few possible orderings. However, if the number of
methods is large and/or some methods take many arguments, the above approach becomes
time consuming because the number of possible orderings grows exponentially.

Next, we illustrate how our algorithm determines that equivalence between the types.
Details of the algorithm can be found in [13]. Consider two types I1 and J1 defined earlier.
The set of types corresponding to the two interfaces are:

{I1, I2, m1, m2, m3, m4, int,float}
{J1, J2, n1, n2, n3, n4, int,float}

Figure 5 shows various steps of our algorithm. The blocks in the first row are based on labels,
e.g., states labeled with × are in the same block. In the next step, the block containing the
methods are split based on the type of the result of the method, e.g.. methods m1 and n4

both return float, so they are in the same block. In the next step (corresponding to the third
row) the block {I1, I2, J1, J2} are split. The final partition, where block {m3, m4, n1, n2} is
split, is shown in the fourth row.

I1 I2 J1 J2 m 1 m 2 m 3 m 4 n 1 n 2 n 3 n 4 float int

I I J J1 2 1 2 m n m n m m n float int1 4 2 3 3 4 1 2

I J I J float intm n m n m m

n

n n 1 12 2 1 4 2 3 3 4 1 2

I J I J m m n m n m n int1 2 12 1 2 3 3 2 4 1 floatn 4

Figure 5: Blocks of types

11

Our algorithm can be tuned to take a specific user needs into account. This is done
simply by modifying the definition of the equivalence relation L. For example, suppose a
user cares about the order of the arguments to a method. This means that the components
of the product type that models the argument list should not be allowed to be shuffled during
type matching. We can prevent shuffling by employing the same technique that the current
definition of L uses for function types. The idea is to insist that two component types may
only be matched when they have the same component index.

Another example of the tunability of our algorithm involves the modifiers in Java. Sup-
pose a programmer is developing a product that is multi-threaded. In this case the pro-
grammer may only want to match synchronized methods with other synchronized methods.
This can be handled easily in our framework by changing L such that two method types
may only be matched when they are both synchronized. On the other hand if the user is
working on a single-threaded product, the keyword synchronized can be ignored. The same
observation applies to other modifiers such as static.

4.1 implementation

We have implemented the algorithm with Java and the current version is based on the code
written by WanJun Wang. The implementation and documentation are freely available at

http://www.cs.purdue.edu/homes/tzhao/matching/matching.htm .

The current version has a graphical user interface so that users may input type definitions
written in a file and also may specify restrictions on type isomorphism.

Suppose we are given the following file with four Java interfaces.

interface I1 {
float m1 (I1 a, int b);
int m2 (I2 a);

}

interface I2 {
J2 m3 (float a);
I1 m4 (float a);

}

interface J1 {
I1 n1 (float a);
J2 n2 (float a);

}

interface J2 {
int n3 (J1 a);

float n4 (int a, J2 b);
}

The implementation, as illustrated in the Figure 6, will read and parse the input file
and then transform the type definitions into partitions of numbers with each type definition
and dummy type assigned a unique number. The partitions will be refined by Paige-Tarjan
algorithm until it is size-stable as defined in this paper. Finally, we will be able to read the
results from the final partitions. Two types are isomorphic if the numbers assigned to them
are in the same partition.

The implementation will give the following output:

I1 = J2

I2 = J1

12

-

�

	

�

�

	

� ?

�

6

-input file
-restrictions

Transform
type sets into
partitions

Refine the

Paige-Tarjan
algorithm

partitions with

Parsers forGraphical Interface
-input file window
-restriction window
-output window
-focus window

Figure 6: Schematic diagram for the implementation

Figure 7: screen shot

I1.m1 = J2.n4

I2.m3 = I2.m4 = J1.n1 = J1.n2

I1.m2 = J2.n3 .

We can see that the types of interfaces I2 and J1 are isomorphic and moreover, all method
types of I2, J1 match. Suppose that we have additional information about the method types
such that only method m3 and n1 should have isomorphic types. We can restrict the type
matching by adding I2.m3 = J1.n1 to the restrictions window of the user interface. The new
matching result is illustrated by the screen shot in figure 7.

Note that we are able to focus on the matching of two interface types such as I2, J1 as in
focus windows of figure 7, where I2, J1 are matched and their methods are matched one to
one.

13

interface I1 {
I1 m(real i, boolean b);
boolean p(I1 j);

}

Figure 8: Interface I1

interface I2 {
I2 m(int i, boolean b);

}

Figure 9: Interface I2

5 Subtyping of Recursive Types

In this section we discuss subtyping and formalize it using the simulation relation. We
also discuss reasons why the algorithm given in Section 3 is not applicable to subtyping of
recursive types. Assume that an object O implements the interface I1 shown in Figure 8,
and a user is looking for an interface I2 of the form shown in Figure 9. Interfaces I1 an I2

can be mapped to the following recursive types:

τ1 = µα.((real × boolean) → α) × (α → boolean)

τ2 = µβ.(int × boolean) → β)

Assuming that int is a subtype of real (we can always coerce integers into reals) we have
τ1 is a subtype of τ2. Therefore, the user can use the interface I1. There are several points to
notice from this example. In the context of subtyping, we need two kinds of products: one
that models a collection of methods and another that models sequence of parameters. In
our example, the user only specified a type corresponding to method m. Therefore, during
the subtyping algorithm method p should be ignored. However, the parameters of method
m are also modeled using products and none of these can be ignored. Therefore, we consider
two types of product type constructors in our type systems and the subtyping rule for these
two types of products are different.

As stated before, A type is a regular term over the ranked alphabet

Σ = Γ ∪ {→} ∪ {
n∏

, n ≥ 2} ∪ {×n, n ≥ 2}

Roughly speaking,
∏n and ×n will model collection of parameters and methods respectively.

Also assume that we are given a subtyping relation on the base types Γ. If τ1 is a subtype
of τ2, we will write it as τ1 � τ2. A relation S is called a simulation on types if it satisfies
the following conditions:

• if (σ, τ) ∈ S and σ(ε) ∈ Γ, then τ(ε) ∈ Γ and σ(ε) � τ(ε).

14

• if (σ, τ) ∈ S and σ(ε) ∈ ({→} ∪ {
∏n, n ≥ 2}), then σ(ε) = τ(ε).

• if (σ1 → σ2, τ1 → τ2) ∈ S, then (τ1, σ1) ∈ S and (σ2, τ2) ∈ S.

• if (
∏n−1

i=0 σi,
∏n−1

i=0 τi) ∈ S, then there exists a bijection b : {0 · · ·n − 1} → {0 · · ·n − 1}
such that for all i ∈ {0 · · ·n − 1}, we have (σi, τb(i)) ∈ S.

• Suppose (σ, τ) ∈ S, σ(ε) = ×n, and σ = ×n−1
i=0 σi. If τ(ε) 6∈ {×m, m ≥ 2}, then there

exists a j ∈ {0 · · ·n − 1} such that (σj, τ) ∈ S. Otherwise, assume that τ(ε) = ×m,
where m ≤ n and τ = ×m−1

i=0 τi. In this case, then there exists a one-to-one function
c : {0 · · ·m−1} → {0 · · ·n−1} such that for all i ∈ {0 · · ·m−1}, we have (σc(i), τi) ∈ S.
Notice that this rule allows ignoring certain components of σ.

As is the case with bisimulations, simulations are closed under union, therefore there
exists a largest simulation (denoted by S).

Let A1, A2 denote two term automata over Σ:

A1 = (Q1, Σ, q01, δ1, `1)

A2 = (Q2, Σ, q02, δ2, `2).

We assume that Q1 ∩ Q2 = ∅. Define Q = Q1 ∪ Q2. Define also δ : Q × ω → Q where
δ = δ1 ⊕ δ2, and ` : Q → Σ, where ` = `1 ⊕ `2, where ⊕ denotes disjoint union of two
functions. We say that A2 simulates A1 (denoted by A1 � A2) if and only if there exists a
relation D ⊆ Q × Q, called a simulation relation between A1 and A2, such that:

• if (q, q′) ∈ D and `(q) ∈ Γ, then `(q′) ∈ Γ and `(q) � `(q′)).

• if (q, q′) ∈ D and `(q) ∈ ({→} ∪ {
∏n, n ≥ 2}), then `(q) = `(q′).

• if (q, q′),∈ D and `(q) =→, then (δ(q, 0), δ(q′, 0)) ∈ D and (δ(q, 1), δ(q′, 1) ∈ D.

• if (q, q′),∈ D and `(q) =
∏n, then there exists a bijection b : {0 · · ·n−1} → {0 · · ·n−1}

such that for all i ∈ {0 · · ·n − 1}, we have (δ(q, i), δ(q ′i)) ∈ D.

• Suppose (q, q′) ∈ D and `(q) = ×n. If `(q′) 6∈ {×m, m ≥ 2}, then there exists a
j ∈ {0 · · ·n− 1} such that (δ(q, j), q′) ∈ D. Otherwise, assume that `(q′) = ×m, where
m ≤ n and In this case, then there exists a one-to-one function c : {0 · · ·m − 1} →
{0 · · ·n − 1} such that for all i ∈ {0 · · ·m − 1}, we have (δ(q, c(i)), δ(q ′, i)) ∈ D.

Notice that the simulations between A1 and A2 are closed under union, therefore, there
exists a largest simulation between A1 and A2. Proof of lemma 5 is similar to the proof of
lemma 1 and is omitted.

Lemma 5. Assume that types τ1 and τ2 are represented as term automata A1 and A2 re-

spectively. Then (τ1, τ2) ∈ S if and if only there exists a simulation D between A1 and A2

such that (q01, q02) ∈ D.

15

The largest simulation between the term automata A1 and A2 is given by the following
greatest fix-point

νD.sim(q, q′, D) .

where D ⊆ Q1 × Q2 and the predicate sim(q, q′, D) is the conjunction of the five conditions
which appear in the definition of the simulation relation between two automata. Let n and
m be the size of the term automata A1 and A2 respectively. Since nm is a bound on the size
of D, the number of iterations in computing the greatest fix-point is bounded by nm. In
general, the relation D (or for that matter the simulation relation) is not symmetric. On the
other hand, the bisimulation relation was an equivalence relation, and so could be represented
as a partition on the set Q1 ∪ Q2, or in other words, partitions give us a representation of
an equivalence relation that is linear in the sum of the sizes of the set of states Q1 and Q2.
The Paige-Tarjan algorithm uses the partition representation of the equivalence relation.
Since D is not symmetric (and thus not an equivalence relation), it cannot be represented
by a partition. This is the crucial reason why our previous algorithm cannot be used for
subtyping.

6 Conclusion

In this paper we addressed the problem of matching recursive types. We present an algorithm
with O(n log n) time complexity that determines whether two types are equivalent. To our
knowledge, this is the most efficient algorithm for this problem. Our results are applicable
to the problem of matching signatures of software components, a core algorithm required by
systems such as Polyspin and Mockingbird. Applications to Java were also discussed. Issues
related to subtyping of recursive types were also addressed.

There are several directions for future work. First, we would like to find applications of
our type matching algorithm. We would also like to explore whether information generated
by our algorithm can be used for efficiently generating bridge-code between components. We
would also like to investigate efficient algorithms for subtyping of recursive types.

References

[1] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on

Programming Languages and Systems, 15(4):575–631, 1993. Also in Proceedings of POPL’91.

[2] Joshua Auerbach, Charles Barton, and Mukund Raghavachari. Type isomorphisms with re-
cursive types. Research report RC 21247, IBM Research Division, T. J. Watson Research
Center, Yorktown Heights, NY, August 1998.

[3] Joshua Auerbach and Mark C. Chu-Carroll. The Mockingbird system: A compiler-based
approach to maximally interoperable distributed programming. Research report RC 20718,
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY, February 1997.

[4] Daniel J. Barrett, Alan Kaplan, and Jack C. Wileden. Automated support for seamless inter-
operability in polylingual software systems. In ACM SIGSOFT’96, Fourth Symposium on the

Foundations of Software Engineering, San Francisco, California, October 1996.

16

[5] B. Boehm and B. Scherlis. Megaprogramming. In Proceedings of DARPA Software Technology

Conference, April 28-30, Meridien Corporation, Arlington, VA 1992.

[6] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality
and subtyping. In Proceedings of TLCA’97, 3rd International Conference on Typed Lambda

Calculus and Applications, 1997.

[7] Kim B. Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types.
Mathematical Structures in Computer Science, 2(2):231–247, 1992.

[8] Roberto Di Cosmo. Isomorphisms of Types: from λ-calculus to information retrieval and

language design. Birkhäuser, 1995.

[9] Trevor Jim and Jens Palsberg. Type inference in systems of recursive types with subtyping.
Manuscript, 1997.

[10] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive subtyping.
Mathematical Structures in Computer Science, 5(1):113–125, 1995. Preliminary version in
Proceedings of POPL’93, Twentieth Annual SIGPLAN–SIGACT Symposium on Principles of
Programming Languages, pages 419–428, Charleston, South Carolina, January 1993.

[11] Paliath Narendran, Frank Pfenning, and Richard Statman. On the unification problem for
Cartesian closed categories. In Proceedings, Eighth Annual IEEE Symposium on Logic in

Computer Science, pages 57–63. IEEE Computer Society Press, 1993.

[12] OMG. The common object request broker: Architecture and specification. Technical report,
Object Management Group, 1999. Version 2.3.1.

[13] Robert Paige and Robert Tarjan. Three partition refinement algorithms. SIAM Journal on

Computing, 16(6):973–989, December 1987.

[14] Jens Palsberg and Tian Zhao. Efficient and flexible matching of recursive types. Information

and Computation, to appear. Preliminary version in Proceedings of LICS’00, Fifteenth Annual
IEEE Symposium on Logic in Computer Science, pages 388–398, Santa Barbara, California,
June 2000.

[15] Mikael Rittri. Retrieving library identifiers via equational matching of types. In M. E. Stickel,
editor, Proceedings of the 10th International Conference on Automated Deduction, volume 449
of LNAI, pages 603–617, Kaiserslautern, FRG, July 1990. Springer Verlag.

[16] Mikael Rittri. Using types as search keys in function libraries. Journal of Functional Program-

ming, 1(1):71–89, 1991.

[17] Mikael Rittri. Retrieving library functions by unifying types modulo linear isomorphism.
RAIRO Theoretical Informatics and Applications, 27(6):523–540, 1993.

[18] Sergei V. Soloviev. The category of finite sets and cartesian closed categories. Journal of

Soviet Mathematics, 22:1387–1400, 1983.

[19] G. Wiederhold, P. Wegner, and S. Ceri. Towards Megaprogramming: A paradigm for
component-based programming. Communications of the ACM, 35(11):89–99, November 1992.

17

[20] A. M. Zaremski and J. M. Wing. Signature matching: a tool for using software libraries. ACM

Transactions on Software Engineering Methodology, 4(2):146–170, April 1995.

[21] A. M. Zaremski and J. M. Wing. Specification matching of software components. In Proceedings

of 3rd ACM SIGSOFT Symposium on the Foundation of Software Engineering, pages 6–17,
1995.

18

