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Abstract—Scientific computing is becoming more data-
intensive; however I/O throughput is not growing at the same
rate. MPI-IO and parallel file systems are expected to help
bridge the gap by increasing data access parallelism. Compared
to traditional I/O systems, some factors are more important in
parallel I/O system in order to achieve better performance, such
as the number of requests and contiguousness of accesses. The
variation of these factors can lead to significant differences in
performance. Programmers usually arrange data in a logical
fashion for ease of programming and data manipulation;
however, this may not be ideal for parallel I/O systems. Without
taking into account the organization of file and behavior of the
I/O system, the performance may be badly degraded. In this
paper, a novel method of reorganizing files in I/O middleware
level is proposed, which takes into account the access patterns.
By placing data in a way favoring the parallel I/O system,
gains of up to two orders of magnitudes in reading and up to
one order of magnitude in writing were observed with spinning
disks and solid-state disks.
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I. INTRODUCTION

In the past decades, growth in computing capabilities
has enabled scientists and engineers to process larger and
more complex problems. At the same time, the scientific
computing tends to be overwhelmed with data captured by
instruments and generated by simulations. The increasing
gap between computing power and I/O speed has become
an imminent problem for the community. Numerous efforts
have been made to bridge the gap. MPI-IO provides a
uniform interface to developers for accessing data in a
parallel environment without dealing with the underlying
file systems. In addition, parallel file systems like PVFS,
GPFS, Lustre, and PanFS have enabled parallel access to
file systems, thereby increasing the throughput of file reads
and writes.

The contiguousness of the I/O requests have an important
impact on the performance of parallel file systems. Many
HPC applications involve non-contiguous small requests [1]
[2] [3]. Large numbers of these small requests leads to
network congestion which then degrades the I/O perfor-
mance significantly. Additionally, non-contiguous accesses
lead to more disk seeks than contiguous ones and hurt
performance of HDD-based parallel file systems, because

the IOPS (I/O Operations Per Second) of HDDs can easily
become the bottleneck of a file system. Moreover, these non-
contiguous accesses break data locality, since two successive
accesses may be very far from each other. In that case, many
optimizations taking advantage of data locality may not take
effect. In short, contiguous I/O accesses have much higher
throughput in parallel file systems due to less overhead in
the network, file servers and better data locality. Figure 1
shows a typical parallel file system.

Figure 1. A typical parallel file system architecture. I/O clients send data
requests over the network. Then the I/O servers access the local disks and
respond to the requests. The data is striped over multiple servers to enhance
the parallelism.

In this paper, we introduce a pattern-aware file reorgani-
zation approach, which significantly increases the contigu-
ousness by remapping files in MPI-IO layer. The proposed
approach makes a better integration of access patterns and
underlying parallel file systems. It can be applied to applica-
tions in which noncontiguous access patterns are repeated.
For example, the I/O access pattern of application start-up
is usually fixed [4]. Checkpointing [1] also involves lots of
these patterns. It can also be used at data analysis in which
files with same format but different contents are read. Our
approach works no matter whether the pattern is regular, i.e.
n-d strided, or not. But it cannot improve performance of
applications without any repeat patterns, since no applicable
patterns can be found.

The main contributions of this paper are as follows.
1) We propose a novel method of bridging the mismatch

between logical data and physical data for better I/O



performance.
2) We propose a novel I/O-signature-based remapping

table, which has fewer entries than a traditional one-
to-one remapping table and thus has smaller size and
shorter lookup time.

3) Extensive experiments have been carried out to eval-
uate the potential of the proposed strategy. The ex-
perimental results show that our method improves the
performance by up to two orders of magnitudes in
reading and up to one order of magnitude in writing.

The rest of this paper is organized as follows. In Section
II, the design of the pattern-aware system is introduced
in detail. Section III evaluates the performance of data
accesses after file reorganization. Section IV briefly reviews
I/O optimizations related to MPI-IO, parallel file systems,
and file organizations. Section V concludes the paper.

II. PATTERN-AWARE FILE REORGANIZATION

A. System Overview
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Table

Application

I/O Client
I/O Traces

MPI-IO

I/O Trace
Analyzer

Remapping Layer

Figure 2. System overview

Figure 2 illustrates the architecture of the pattern-aware
file reorganization system. Our system takes as input the I/O
traces collected from the previous runs of the application.
The analyzer then analyzes the I/O traces of the application
to find any non-contiguous access patterns to which file
reorganizing can be applied. After that, a remapping table is
built based on the analysis results. It is used by MPI-IO for
future file accesses, to translate old offsets to new offsets in
the reorganized files.

B. Trace Collecting

File reorganizing is based on the information extracted
from previous runs of the application. In order to predict the
future access patterns and reorganize the file, it is required
to collect the data access history of the application. For this
purpose, we implemented an I/O tracing tool which wraps
MPI-IO calls and records all the high-level information
needed. After running the applications with the trace collect-
ing enabled, we get process ID, MPI rank, file descriptor,
type of operation (open, close, seek, read or write), offset,
length, data type, time stamp, and file view information.

C. Pattern Classification

Access patterns can be classified in terms of five factors as
shown in Figure 3 [5]. The most important factor is spatial
pattern. In contiguous patterns, two successive accesses have
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non-contiguous patterns

Repetition
Single occurrence
Repeating

Fixed
Variable

Temporal Intervals
Fixed

Random

Small

Medium
Large

Request Size

I/O Operation
Read only
Write only
Read/write

Figure 3. Classification of access patterns

Table I
REMAPPING TABLE

OLD: File path, MPI READ, offset0, 1,
([(hole size, 1), LEN, 1]), 4

NEW: Offset0’

no hole between them. If it is strided, disk head has to be
moved over a hole to perform the next access.

D. I/O Trace Analyzer

The analyzer is used to identify I/O patterns as shown in
Figure 3. It is an offline process that takes the I/O traces as
input. First, the analyzer separates the trace entries by MPI
rank. Then, it goes through the I/O traces chronologically
and attempts to recognize the patterns described in Figure 3.

By using the five factors in Figure 3, we can describe an
access pattern in a notation as follows, which is termed as
I/O signature.

{I/O operation, initial position, dimension, ([{offset
pattern}, {request size pattern}, {pattern of number of
repetitions}, {temporal pattern}], [...]), # of repetitions}

For example, notation {MPI READ, 4194304, 1,
([(2097152, 1), 1048576, 1]), 98} means an application
reads data starting from offset 4194304 in a fixed-strided
(1-d) manner. It reads 1048576 bytes of data for 98 times
and there is a 2097152 × 1 − 1048576 byte hole between
two successive reads.

E. Remapping Table

LEN LEN LEN LEN

Offset 0 Offset 1 Offset 3Offset 2

Figure 4. Remapping of 1-d strided accesses. After remapping, there is
no hole between any two successive accesses.



If non-contiguous accesses are found, they are reorga-
nized to be contiguous. For example, given a fixed strided
pattern as shown in Figure 4, the data is reorganized by
the remapping table as shown in Table 1. I/O signature
notation is used in the remapping table instead of one-to-
one offset remapping. The advantage of this approach is
that it has only one entry per pattern. Comparatively in a
one-to-one remapping, the number of entries is determined
by the number of accesses. Our approach turns out to be
very efficient and has negligible overhead.

In data processing applications, it is common that the
data accessed by one process resides in multiple files. This
kind of data is non-contiguous; however, by reorganizing,
the data can be put together in the sequence of accesses.
Thereby, requests can be merged and the spatial locality can
be improved.

When one or more chunks of data is accessed by different
patterns, they are assigned to one pattern that has accesses
to most of the chunks. So we can get at least one contiguous
access, while the other accesses are kept as contiguous as
possible.

F. MPI-IO Remapping Layer

The application is executed with its remapping table
loaded to memory. When the application issues an I/O
request, the remapping layer captures it and finds the cor-
responding entry in the remapping table. Assuming that the
application issues a read of m bytes data at offset f , we can
use the formulas below to check whether this access falls in
a 1-d strided with starting offset off , request size rsz , hole
size hsz , and number of accesses of this pattern n.

(f − off )/(rsz + hsz ) < n (1)
(f − off )%(rsz + hsz ) = 0 (2)

m = rsz (3)

If a request satisfies (1), (2) and (3), this access is in the 1-
d strided pattern. If we know, off , the offset of the first read
of this sequence of 1-d strided accesses, then the correspond-
ing new offset of f is off + rsz ∗ (f − off )/(rsz + hsz ).

These formulas can be extended to handle other non-
contiguous patterns. If not all the data of one access can
be found in one entry of the remapping table, it can be split
and fulfilled by different entries.

III. EVALUATION

We conducted our experiments on a 64-node clus-
ter. These nodes are Sun Fire X2200 servers with dual
2.3GHz Opteron quad-core processors, 8G memory, 250GB
7200RPM SATA hard drive and 100GB PCI-E OCZ Revo-
drive X2 SSD (read: up to 740 MB/s, write: up to 690 MB/s).
The nodes are connected by both Ethernet and Infiniband.

Table II
1-D STRIDED REMAPPING TABLE PERFORMANCE (1,000,000 ACCESSES)

Table Type Size (bytes) Building Time
(sec)

Time of
1,000,000
Lookups (sec)

1-to-1 64000000 0.780287 0.489902
I/O Signature 28 0.000000269 0.024771

The operating system is Ubuntu 9.04 (Linux kernel 2.6.28-
11-server). We use MPICH2 1.3.1 and PVFS2 2.8.1 in our
experiments. The stripe size of PVFS2 is 64KB.

A. Remapping

We compared our I/O-signature remapping table with the
traditional one-to-one table and found that our remapping
approach takes less time and much less memory space. The
overhead introduced by our remapping table is negligible.

The experimental results are presented in Table II. The
I/O signature table occupies much less space than the 1-to-1
design since it has only the pattern abstracts. In terms of
lookup time, the 1-to-1 remapping table was implemented
as hash table. The complexities of looking up an entry for
both tables are close to O(1). But the I/O signature table
takes even less time.

B. Pattern Variations

We evaluate some variations of the access patterns to
demonstrate how the variations may impact performance.
Figure 5 and Figure 6 show the 1-d strided performance
with variations of request sizes and start offsets, running on
one I/O client and four I/O servers. In Figure 5, we can
observe that for reading the performance goes down very
slowly in most cases, and for writing the performance drops
when holes appear and then stays stable. In Figure 6, we
can observe that the variation of start offset does not degrade
the performance.
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Figure 5. Impact of Request Size Variation



Difference (%)
(x% means the distances between the actual and assumed starting offsets 

are x% of the whole offset range.)
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Figure 6. Impact of Start Offset Variation

C. IOR Performance

IOR [6] is a benchmark that can be configured to test
various patterns including non-contiguous accesses. We ran
IOR with non-contiguous patterns and then re-ran it with
reorganization. There were 4 I/O clients and 4 I/O servers
of PVFS2.
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Figure 7. IOR read/write bandwidth of 64 processes, with HDD and
Infiniband.

From Figure 7, great bandwidth improvement in read-
ing and writing can be observed after reorganizing. The
improvement is mainly resulted from that the disk seek
times of contiguous accesses were shorter than those of non-
contiguous accesses. In addition, after reorganizing, many
other optimizations for contiguous accesses can take effect
to further improve the performance.

D. MPI-TILE-IO Performance

Mpi-tile-io [7] is a widely used benchmark designed
to test the performance of MPI-IO with non-contiguous
accesses. It simulates the very common data accesses of
matrix. In mpi-tile-io, the data set is divided into 2-D tiles by
MPI Type create subarray(). Each of the tiles is accessed
by one process. In our experiment, the number of elements

in a tile is fixed at 1024×1024. PVFS2 was also configured
to have 4 I/O clients and 4 I/O servers.
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Figure 8. MPI-TILE-IO read/write bandwidth of 64 processes, with HDD
and Infiniband.

From Figure 8, great improvement of reorganizing over
original non-contiguous accesses can be observed, especially
when the sizes of subarrays are small. The improvement
is due to the number of requests being lower and sizes
of requests are larger after reorganizing the data. Before
reorganizing, small non-contiguous reads lead to longer
network communication times and more I/O operations on
the disks.
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Figure 9. MPI-TILE-IO read/write bandwidth of 64 processes, with SSD
and Infiniband.

From Figure 9, it can be observed that, before reorganiz-
ing, the performance is poor when the subarray size is small
(i.e. request sizes are small and number of requests is large),
although an SSD has much higher IOPS and bandwidth than
a HDD. A typical commodity 7200 RPM SATA hard drive
usually has around 90 IOPS, and 9 ms seek time, while
the SSDs used in our experiments have 100,000 IOPS, 0.1
ms seek time and excellent random access performance.
However, the performance of a parallel file system does not



only depend on disks, but also network. Before reorganizing,
large amounts of requests were sent over the network, which
significantly degraded the performance. After the file was
reorganized, the parallel file system fully took advantage of
the SSDs.

IV. RELATED WORK

Due to the importance of the parallel file system in
high performance computing, a variety of efforts have been
made to improve their performance. Many techniques have
been proposed to handle non-contiguous requests, such as
collective I/O [3], data sieving [3], list I/O [8], and datatype
I/O [9]. They are used to reduce number of request on
network and/or on disks.

Zhang et al. have identified the disk thrashing problem
in parallel file systems [10]. In [10], all file servers serve
only one process at a time. It can solve the non-contiguous
problem caused by different processes, but not the inner
access behaviors of each process.

Some optimizations are based on moving data or caching
data. Disk shuffling means moving data on disk at run-time.
Regarding caching, most frequently accessed data is put
together to a reserved part of disk [4], memory [11] or both
[12]. Moreover, [13] proposed a new way of partitioning
files on RAID. Each I/O process has its file partition. Data
chucks frequently accessed by a process are put into the
partition associated with that process.

Remapping is used to help processes access data after
reorganizing the file in our approach. PLFS [14] also uses
remapping to let processes actually access separate files as
if all processes share the same file, in order to improve
performance of checkpointing. Index files in PLFS are used
to record lengths of writes, logical offsets and pointers to
physical offsets, which is similar to the remapping table in
our approach. But the index file in PLFS is actually an one-
to-one remapping table, since it simply appends new record
to its end [1][14]. Many file systems are also using similar
table to keep track of free blocks on disk [15]. This method
suffers from longer lookup time and larger table size as we
showed in Section III-A. It is used since the systems are not
aware of the patterns as our approach. In addition, PLFS
introduces to underlying parallel file system big amount
of files, which may lead to metadata problems when it is
scaled up. Furthermore, it is designed for checkpointing,
which makes it not flexible enough when it comes to other
applications.

HDF5 [16] is a set of formats, libraries and tools, which
is used to organize and access data. To accelerate accesses,
data can be chunked. However, it requires users to manually
configure it and it is only good for regular data. In addition,
switching to HDF5 requires modifying codes.

Our work is different from all the other work above.
Firstly, I/O traces are analyzed to discover access patterns.
Then, the application-specific access patterns are exploited

by reorganizing the data using remapping at a high level in
MPI-IO. Therefore, all the layers under MPI-IO can benefit
from the better contiguousness and improved data locality
to allow better overall performance.

V. CONCLUSION

Due to the diverse access patterns of data-intensive ap-
plications, physical file organization in parallel file systems
usually does not match the logical data accesses. Small
and noncontiguous data accesses can lead to large over-
head in network transmission and storage transactions. In
this paper, a pattern-aware file reorganization approach is
proposed to take advantage of application I/O characteristics
by leveraging the file remapping layer in the existing MPI-
IO library. The proposed approach maintains a data block
remapping mechanism between user data accesses and file
servers, to turn small and noncontiguous requests into large
and contiguous ones. Experimental results demonstrate that
this approach shows improvements of up to two orders of
magnitudes in reading and up to one order of magnitude
in writing. The proposed approach provides an effective
integration of data access from I/O clients and data layout on
the underlying parallel file systems, thereby being suitable
for most data-intensive applications.

In the future, the file reorganization with more compli-
cated access patterns will be explored. Additionally, this re-
organization approach can be applied to workload balancing,
which may offload hot data to free servers or to faster storage
media such as SSDs according to access patterns.
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