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Abstract 

Data mining on large data warehouses is becoming increas- 
ingly important. In support of this trend, we consider a 
spectrum of architectural alternatives for coupling mining 
with database systems. These alternatives include: loose- 
coupling through a SQL cursor interface; encapsulation of a 
mining algorithm in a stored procedure; caching the data to 
a file system on-the-fly and mining; tight-coupling using pri- 
marily user-defined functions; and SQL implementations for 
processing in the DBMS. We comprehensively study the op- 
tion of expressing the mining algorithm in the form of SQL 
queries using Association rule mining as a case in point. 
We consider four options in SQL-92 and six options in SQL 
enhanced with object-relational extensions (SQL-OR). Our 
evaluation of the different architectural alternatives shows 
that from a performance perspective, the Cache-Mine option 
is superior, although the performance of the SQL-OR option 
is within a factor of two. Both the Cache-Mine and the 
SQL-OR approaches incur a higher storage penalty than the 
loose-coupling approach which performance-wise is a factor 
of 3 to 4 worse than Cache-Mine. The SQL-92 implemen- 
tations were too slow to qualify as a competitive option. 
We also compare these alternatives on the basis of qualita- 
tive factors like automatic parallelization, development ease, 
portability and inter-operability. 

1 Introduction 

An ever increasing number of organizations are installing 
large data warehouses using relational database technology. 
There is a huge demand for mining nuggets of knowledge 
from these data warehouses. 

The initial research on data mining was concentrated on 
defining new mining operations and developing algorithms 
for them. Most early mining systems were developed largely 
on file systems and specialized data structures and buffer 
management strategies were devised for each algorithm. Cou- 
pling with database systems was at best loose, and access 
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to data in a DBMS was provided through an ODBC or SQL 
cursor interface (e.g. [14, 1, 9, 121). 

Researchers of late have started to focus on issues related 
to integrating mining with databases. There have been lan- 
guage proposals to extend SQL to support mining operators. 
For instance, the query language DMQL [9] extends SQL 
with a collection of operators for mining characteristic rules, 
discriminant rules, classification rules, association rules, etc. 
The M-SQL language [13] extends SQL with a special unified 
operator Mine to generate and query a whole set of proposi- 
tional rules. Another example is the mine rule [17] operator 
for a generalized version of the association rule discovery 
problem. Query flocks for association rule mining using a 
generate-and-test model has been proposed in [25]. 

The issue of tightly coupling a mining algorithm with a 
relational database system from the systems point of view 
was addressed in [5]. This proposal makes use of user-defined 
functions (UDFs) in SQL statements to selectively push 
parts of the computation into the database system. The 
objective was to avoid one-at-a-time record retrieval from 
the database, saving both the copying and process context 
switching costs. The SETM algorithm [lo] for finding as- 
sociation rules was expressed in the form of SQL queries. 
However, as shown in [3], SETM is not efficient and there 
are no results reported on running it against a relational 
DBMS. Recently, the problem of expressing the association 
rules algorithm in SQL has been explored in [20]. We discuss 
this work later in the paper. 

1.1 Goal 

This paper is an attempt to understand implications of vari- 
ous architectural akematives for coupling data mining with 
relational database systems. In particular, we are interested 
in studying how competitive can a mining computation ex- 
pressed in SQL be compared to a specialized implementation 
of the same mining operation. 

There are several potential advantages of a SQL imple- 
mentation. One can make use of the database indexing 
and query processing capabilities thereby leveraging on more 
than a decade of effort spent in making these systems robust, 
portable, scalable, and concurrent. One can also exploit the 
underlying SQL parallelization, particularly in an SMP en- 
vironment . The DBMS support for checkpointing and space 
management can be valuable for long-running mining algo- 
rithms 

The architecture we have in mind is schematically shown 
in Figure 1. We visualize that the desired mining operation 
will be expressed in some extension of SQL or a graphi- 
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Figure 1: SQL architecture for mining in a DBMS 

cal language. A preprocessor will generate appropriate SQL 
translation for this operation. We consider translations that 
can be executed on a SQL-92 [16] relational engine, as well as 
translations that require some of the newer object-relational 
capabilities being designed for SQL [15]. Specifically, we as- 
sume availability of blobs, user-defined functions, and table 
functions [19]. 

We compare the performance of the above SQL archi- 
tecture with the following alternatives: 

Read directly from DBMS: Data is read tuple by tuple 
from the DBMS to the mining kernel using a cursor inter- 
face. Data is never copied to a file system. We consider 
two variations of this approach. One is the loose-coupling 
approach where the DBMS runs in a different address space 
from the mining process. This is the approach followed by 
most existing mining systems. A potential problem with 
this approach is the high context switching cost between 
the DBMS and the mining process [5]. In spite of the block- 
read optimization present in many systems (e.g. Oracle [18], 
DB2 [7]) where a block of tuples is read at a time, the perfor- 
mance could suffer. The second is the stored-procedure 
approach where the mining algorithm is encapsulated as a 
stored procedure [7] that runs in the same address space as 
the DBMS. The main advantage of both these approaches is 
greater programming flexibility and no extra storage require- 
ment. The mined results are stored back into the DBMS. 

Cache-mine: This option is a variation of the Stored- 
procedure approach where after reading the entire data once 
from the DBMS, the mining algorithm temporarily caches 
the relevant data in a lookaside buffer on a local disk. The 
cached data could be transformed to a format that enables 
efficient future accesses. The cached data is discarded when 
the execution completes. This method has all the advan- 
tages of the stored procedure approach plus it promises to 
have better performance. The disadvantage is that it re- 
quires additional disk space for caching. Note that the per- 
manent data continues to be managed by the DBMS. 

User-defined function (UDF): The mining algorithm is 
expressed as a collection of user-defined functions (UDFs) [7] 
that are appropriately placed in SQL data scan queries. 
Most of the processing happens in the UDF and the DBMS 
is used primarily to provide tuples to the UDFs. Little use is 
made of the query processing capability of the DBMS. The 
UDFs are run in the unfenced mode (same address space as 
the database). Such an implementation was presented in [5]. 
The main attraction of this method over Stored-procedure is 
performance since passing tuples to a stored procedure is 
slower than passing it to a UDF. Otherwise, the processing 
happens in almost the same manner as in the stored proce- 
dure case. The main disadvantage is the development cost 
since the entire mining algorithm has to be written as UDFs 
involving significant code rewrites [5]. This option can be 
viewed as an extreme case of the SQL-OR approach where 
UDFs do alI the processing. 

1.2 Methodology 

We do both quantitative and qualitative comparisons of the 
architectures stated above with respect to the problem of 
discovering Association rules [2] against IBM DB2 Universal 
Server [ll]. 

For the loose-coupling and Stored-procedure architec- 
tures, we use the implementation of the Apriori algorithm [3] 
for finding association rules provided with the IBM data 
mining product, Intelligent Miner [14]. For the Cache-Mine 
architecture, we used the “space” option provided in Intelli- 
gent Miner that caches the data in a binary format after the 
first pass. For the UDF architecture, we use the UDF im- 
plementation of the Apriori algorithm described in [5]. For 
the SQL-architecture, we consider two classes of implemen- 
tations: one uses only the features supported in SQL-92 and 
the other uses object-relational extensions to SQL (hence- 
forth referred to as SQL-OR). We consider four different im- 
plementations in the fnst case and six in the second. These 
implementations differ in the way they exploit different fea- 
tures of SQL. We compare the performance of these different 
approaches using four real-life datasets. We also use syn- 
thetic datasets at various points to better understand the 
behavior of different algorithms. 

1.3 Paper Layout 

The rest of the paper is organized as follows. In Section 
2, we cover background material. In Section 3, we present 
the overview of the SQL implementations. In Sections 4 
and 5, we elaborate on different ways of doing the support 
counting phase of Associations in SQL - Section 4 presents 
SQL-92 implementations and Section 5 gives implementa- 
tions in SQL-OR. In Section 6 we present a qualitative and 
quantitative comparison of the different architectural alter- 
natives. We present conclusions in Section 7. This paper is 
an abbreviated version of the full paper that appears in [21]. 

2 Background 

2.1 Association Rules 

Given a set of transactions, where each transaction is a set of 
items, an association rule [2] is an expression X+Y, where 
X and Y are sets of items. The intuitive meaning of such a 
rule is that the transactions that contain the items in X tend 
to also contain the items in Y. An example of such a rule 
might be that “30% of transactions that contain beer also 
contain diapers; 2% of all transactions contain both these 
items”. Here 30% is called the confidenceof the rule, and 2% 
the ~vpport of the rule. The problem of mining association 
rules is to iind all rules that satisfy a user-specified minimum 
support and minimum confidence. 

The association rule mining problem can be decomposed 
into two subproblems [2]: 

l Find all combinations of items, called frequent item- 
sets, whose support is greater than minimum support. 

l Use the frequent itemsets to generate the desired rules. 
The idea is that if, say, ABCD and AB are frequent, 
then the rule AB-GD holds if the ratio of support(ABCD) 
to support is at least as large as the minimum 
confidence. Note that the rule wilI have minimum sup- 
port because ABCD is frequent. 

The first part on generation of frequent itemsets is the 
most time-consuming part and we concentrate on this part 
in the paper. In [21] we also discuss rule generation. 
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2.2 Apriori Algorithm 

we use the Apriori algorithm [3] as the basis for our presen- 
tation. There are recent proposals for improving the Apri- 
ori algorithm by reducing the number of data passes [24, 61. 
They all have the same basic dataflow structure as the Apri- 
ori algorithm. Our goal in this work is to understand how 
best to integrate this basic structure within a database sys- 
tem. In [21], we discuss how our conclusions extrapolate to 
these algorithms. 

The Apriori algorithm for finding frequent itemsets makes 
multiple passes over the data. In the kth pass it fmds all 
itemsets having k items called the k-itemsets. Each pass 
consists of two phases. Let Fk represent the set of frequent 
k-itemsets, and Ck the set of candidate k-itemsets (poten- 
tially frequent itemsets). First, is the candidate gener- 
ation phase where the set of all frequent (k - 1)-itemsets, 
Fk-1, found in the (k - 1)th pass, is used to generate the 
candidate itemsets Ck The candidate generation procedure 
ensures that Ck is a superset of the set of all frequent k- 
itemsets. A specialized in-memory hash-tree data structure 
is used to store Ck. Then, data is scanned in the support 
counting phase. For each transaction, the candidates in Ck 
contained in the transaction are determined using the hash- 
tree data structure and their support count is incremented. 
At the end of the pass, Ck is examined to determine which 
of the candidates are frequent, yielding Fk. The algorithm 
terminates when Fk or Ck+i becomes empty. 

2.3 Input format 

The transaction table T has two column attributes: transac- 
tion identifier (tid) and item identifier (item). The number 
of items per tid is variable and unknown during table cre- 
ation time. Thus, alternatives such as [20], where all items 
of a tid appear as different columns of a single tuple, may 
not be practical. Often the number of items per transaction 
can be more than the maximum number of columns that 
the DBMS supports. For instance, for one of our real-life 
datasets the maximum number of items per transaction is 
872 and for another it is 700. In contrast, the corresponding 
average number of items per transaction is only 9.6 and 4.4 
respectively. 

3 Associations in SQL 

In Section 3.1 we present the candidate generation procedure 
in SQL and in Section 3.2 we present the support counting 
procedure. 

3.1 Candidate generation in SQL 

Each pass k of the Apriori algorithm first generates a can- 
didate itemset set Ck from frequent itemsets Fk-1 of the 
previous pass. 

In the join step, a superset of the candidate itemsets Ck 
is generated by joining Fk-i with itself: 

insert into ck select 11 .&ml, . . , 11 .&m&l, Iz.itemk-1 
from Fk--l Il,Fk--l 12 

where II.iteml = Iz.iteml and 

I~.itemk-2 = I2.itemk-2 and 
I1 .itemk-1 < 12 .itemk-1 

For example, let Fs be ((1 2 3}, (1 2 41, (13 4}, (1 3 5}, (2 
3 4)). After the join step, Ca will be ((1 2 3 41, (1 3 4 5)). 

Next, in the prunestep, all itemsets c E Ck, where some (k- 
1)-subset of c is not in Fk-1, are deleted. Continuing with 
the example above, the prune step will delete the itemset (1 
3 4 5) because the subset (1 4 5) is not in Fs. We will then 
be left with only (1 2 3 4) in C4. 

We can perform the prune step in the same SQL state- 
ment as the join step by writing it as a k-way join as shown 
in Figure 2. A k-way join is used since for any k-itemset 
there are k subsets of length (k - 1) for which Fk-i needs to 
be checked for membership. The join predicates on 11 and 12 
remain the same. After the join between Ii and 12 we get a k 
itemset COnSiSting Of(Il.iteml,...,Il.itemk-1,Iz.itemk-1). 

For this itemset, two of its (k - 1)-length subsets are al- 
ready known to be frequent since it was generated from 
two itemsets in Fk-1. We check the remaining k - 2 sub- 
sets using additional joins. The predicates for these joins 
are enumerated by skipping one item at a time from the 
k-itemset as follows: We first skip item1 and check if sub- 
set (Ii .itemz, . . , Il.itemk-1, Iz.itemk-1) belongs to Fk-1 
as shown by the join with 13 in the figure. In general, for 
a join with I,, we skip item r - 2. We construct a primary 
index on (itemI, , item&l) of Fk-1 to efficiently process 
these k-way joins using index probes. 

Ck need not always be materialized before the counting 
phase. Instead, the candidate generation can be pipelined 
with the subsequent SQL queries used for support counting. 

Figure 2: Candidate generation for any k 

3.2 Counting support to find frequent itemsetr 

This is the most time-consuming part of the association rules 
algorithm. We use the candidate itemsets ck and the data 
table T to count the support of the itemsets in Ck. We 
consider two different categories of SQL implementations: 

(A) The first one is based purely on SQL-92. We discuss 
four approaches in this category in Section 4. 

(B) The second utilizes object-relational extensions like 
UDFs, BLOBS (Binary large objects) and table func- 
tions. Table functions [19] are virtual tables associated 
with a user defined function which generate tuples on 
the fly. They have pre-defined schemas like any other 
table. The function associated with a table function 
can be implemented as a UDF. Thus, table functions 
can be viewed as UDFs that return a collection of tu- 
ples instead of scalar values. 

We discuss six approaches in this category in Section 5. 
UDFs in this approach are light weight and do not re- 
quire extensive memory allocations and coding unlike 
the UDF architectural option (Section 1.1). 
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4 Support counting using SQL-92 

We studied four approaches in this category - we present 
the two better ones here. The other two are discussed in 
PII. 

4.1 K-way joins 

In each pass k, we join the candidate itemsets ck with k 
transaction tables T and follow it up with a group by on 
the itemsets as shown in Figure 3. The figure 3 also shows a 
tree diagram of the query. These tree diagrams are not to be 
confused with the plan trees that could look quite different. 

insert into Fk select iteml, . . . itemk, count(*) 
from ck, T tl, . ..T tk 
where tl item = Ck.iteml and 

&item = Ck.itemk and 
tl .tid = tz.tid and 

tk-1 .tid = tk.tid 
group by item1 ,itemz itemk 
having count( *) > :minsup 

Figure 3: Support Counting by K-way join 

This SQL computation, when merged with the candidate 
generation step, is similar to the one proposed in [25] as a 
possible mechanism to implement query flocks. 

For pass-2 we use a special optimization where instead 
of materializing CZ, we replace it with the Z-way joins be- 
tween the Fls as shown in the candidate generation phase 
in section 3.1. This saves the cost of materializing Cz and 
also provides early filtering of the Ts based on FI instead 
of the larger Cz which is almost a Cartesian product of the 
Fls. In contrast, for other passes corresponding to k > 2, 
Ck could be smaller than Fk-1 because of the prune step. 

4.2 Subquery-based 

This approach makes use of common prefixes between the 
itemsets in ck to reduce the amount of work done during 
support counting. The support counting phase is split into a 
cascade of k subqueries. The I-th subquery QI (see Figure 4) 
finds all tids that match the distinct itemsets formed by 
the first 1 columns of Ck (call it dr). The output of QI is 
joined with T and &+I (the distinct itemsets formed by the 
first 1 + 1 columns of Ck) to get QI+~. The &al output is 
obtained by a group-by on the k items to count support as 

Datasets 
# Records # Trans- # Items Avg. 

in actions in in #items 
millions millions thousands 

(I) 
Dataset- 1 

1 (R/T) 
85 I 4.4 

Dataset-B 7.5 2.5 15.8 2.62 
D&as&-C 6.6 0.21 15.8 31 
Dataset-D 14 1.44 480 9.62 

Table 1: Description of different real-life datasets. 

above. Note that the final “select distinct” operation on the 
ck when 1 = k is not necessary. 

For pass-2 the special optimization of the KwayJoin ap- 
proach is used. 

insert into Fk select itemI,. . , itemk, count(*) 
from (Subquery Qk) t 
group by item1 ,&em2 . . . demk 
having count(*) > :minsup 

Subquery Qr (for any 1 between 1 and k): 
select %‘teml, . . . itemr, tid 
from T tl, (Subquery Q-1) as rl-1, 

(Select distinct item1 . iteml from Ck) as dr 
where rl--1 .iteml = &.iteml and . . . and 

~-1 .item[-1 = d[.item[-land 
PI-I .tid = t~.tid and 
tr.item = dr.itemr 

Subquery Qo: No subquery Qo. 

Sub 

f 

ety Q-l 

itoml,....iteml. tid 

tl.item = dl.iteml T 
tlitem = dl.iteml 

r-l-1 .item I = dl.iteml 

r-l-1 .item-I-I = dl.item-I- I 
c;;31”\ 

r?/ kihnct Tt’ 

Subquery Q-l- I 
iteml.. ..iteml 

f 
Ck 

Tree diagram for Subquery &l 

Figure 4: Support counting using subqueries 

4.3 Performance comparison of SQL-92 approaches 

We now briefly compare the different SQL-92 approaches; 
detailed results are available in [21]. 

Our experiments were performed on Version 5 of IBM 
DB2 Universal Server installed on a RS/SOOO Model 140 
with a 200 MHz CPU, 256 MB main memory and a 9 GB 
disk with a measured transfer rate of 8 MB/set. 

We selected four real-life datasets obtained from mail- 
order companies and retail stores for the experiments. These 
datasets differ in the values of parameters like the number 
of (tid,item) pairs, number of transactions (tids), number 
of items and the average number of items per transaction. 
Table 1 summarizes characteristics of these datasets. 

346 



We found that the best SQL-92 approach was the Sub- 
query approach, which was often more than 8n order of 
magnitude better than the other three approaches. How- 
ever, this approach was comparable to the Loose-coupling 
approach only in some cases whereas for several others it 
did not complete even after taking ten times more time than 
the Loose-coupling approach. 

The important conclusion we drew from this study, there- 
fore is that implementations based on pure SQL-92 are too 
slow to be considered an alternative to the existing Loose- 
coupling approach. 

5 Support counting using SQL with object-relational ex- 
tensions 

In this section, we study 8ppro8CheS that use object-relational 
features in SQL to improve performance. We first consider 
an approach we cd GatherJoin and its three variants in Sec- 
tion 5.1. Next we present a very different 8pprO8Ch called 
Vertical in Section 5.2. We do not discuss the sixth ap- 
proach called SBF based on SQL-bodied functions because 
of its inferior performance (see [21]). For each approach, we 
also outline a cost-based analysis of the execution time to 
choose between these different approaches. In Section 5.3 
we present performance comparisons. 

5.1 GatherJoin 

The GatherJoin approach (see Figure 5) generates 8ll possi- 
ble k-item combinations of items contained in a trsnsection, 
joins them with the candidate table Ck, and counts the sup- 
port of the itemsets by grouping the join result. It uses 
two table functions Gather and Comb-K. The data table T 
is scanned in the (tid, iten) order and passed to the table 
function Gather, which collects 811 the items of a transac- 
tion in memory and outputs a record for each transaction. 
Each record consists of two attributes: the tid 8nd item-list 
which is a collection of 8ll items in a field of type VARCHAR 
or BLOB. The output of Gather is passed to another ts- 
ble function Comb-K which returns 8ll k-item combinations 
formed out of the items of a transaction. A record output 
by Comb-K has k attributes Titml,. . . ,T-itmk, which can 
be used to probe into the ck table. An index is constructed 
on all the items of Ck to make the probe efficient. 

This approach is analogous to the KwayJoin approach ex- 
cept that we have replaced the k-way self join of T with the 
table functions Gather and Comb-K. These table functions 
are easy to code and do not require 8 large amount of mem- 
ory. It is also possible to merge them into a single table 
function GatherComb-K, which is what we did in our imple- 
mentation. Note that the Gather function is not required 
when the data is already in a horizontal format where each 
tid is followed by a collection of 8ll its items. 

Special pass 2 optimization: For k = 2, the a-candidate 
set C’s is simply a join of FI with itself. Therefore, we can 
optimize the pess 2 by replacing the join with Cz by a join 
with FI before the table function (see Figure 6). The table 
function now gets only frequent items and generates signifi- 
cantly fewer 2-item combinations. We apply this optimiza- 
tion to other passes too. However, unlike pass 2 we still have 
to do the final join with Ck and therefore the benefit is not 
8s significant. 

insert into Fk select iteml,. . . , itemk, count(*) 
from ck, 

(select tz.T.itmr , . . . , t2.Titmk from T, 
table (Gather(T.tid, T.item)) as tl, 
table (Comb-K(tl .tid, tl .item-list)) as tz) 

where tz.T-itml = Ck.iteml and 

tz.Titmk = Ck.itemk 

group by Ck.&eml, , Ck.itemk 

having count,(*) > :minsuP 

having 
count(*) z- :minsup 

c 
Groim bv 

iteml....:,it&k 

t2.Tpitm1 F Ck.itoml 
da t2.Tpitmk i Ck.ix 1 

Ta$$m%FEtion Ck 

A 
Tab&%t&zrcti on 

P 
Order by 
tid. item 

4 
T 

Figure 5: Support Counting by GatherJoin 

G&p by 
ft*.T_iUn 1, ttZ.T-itm2 

f tt2 
Table function 
<iatherComb-K 

t 
T.itern = F*.iteml 

/-\ 
T F1 

Figure 6: Support Counting by GatherJoin in the second 
Pa= 

5.1.1 Variations of GatherJoin approach 

GatherCount: One variation of the GatherJoin approach 
for pass two is the GatherCount approach where we per- 
form the group-by inside the table function GatherComb-2. 
We will refer to this extended table function as Gather-tit. 
The candidate 2-itemset C2 is represented as a two dimen- 
sional array (as suggested in [3]) inside function Gather-Cd. 
Instead of outputting the a-item combinations, the function 
uses the combinations to directly update support counts in 
memory and outputs only the frequent 2-itemsets, Fz and 
their support after the last transaction. 

The attraction of this otion is the absence of the outer 
grouping. The UDF code is small since it only needs to 
maintain a 2D array. We could apply the same trick for sub- 
sequent passes but the coding becomes considerably more 
complicated because of the need to maintain hash-tables to 
index the CkS. The disadvantage of this approach is that it 
can require a large amount of memory to store Cz . If enough 
memory is not available, Cz needs to be partitioned and the 
process has to be repeated for each partition. Another prob- 
lem with this approach is that it cannot be automatically 
parallelized. 
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GatherPrune: A problem with the GatherJoin approach 
is the high cost of joining the large number of item combina- 
tions with Ck. We can push the join with Ck inside the table 
function and thus reduce the number of such combinations. 
Ck is converted to a BLOB 8nd passed as 8x-1 argument to 
the table function. 

The cost of passing the BLOB for every tuple of R can 
be high. In general, we can reduce the parameter passing 
cost by using a smaller Blob that only approximates the real 
Ck. The trade-off is increased cost for other parts notably 
grouping because not as many combinations are filtered. A 
problem with this approach is the increased coding complex- 
ity of the table function. 

Horizontal: This is another variation of GatherJoin that 
first uses the Gather function to transform the data to the 
horizontal format but is otherwise similar to the Gather- 
Join approach. R8j8m8ni et 81. [20] propose finding associa- 
tions using 8 similar approach augmented with some pruning 
based on a variation of the GatherPrune approach. Their re- 
sults assume that the data is already in 8 horizontal format 
which is often not true in practice. They report that their 
SQL implementation is two to six times slower than a UDF 
implementation. 

R number of records in the input transaction 
table 

T number of transactions 
N avg. number of items per transaction = $ 

$7) 
number of frequent items 
sum of support of each itemset in set C 

Rf number of records out of R involving 
frequent items = S(Fl) 

Nf average number of frequent items per 
Ei tiansaction = r 

%N, k) 
number of candidate k-itemsets 
number of combinations of size k possible 
out of 8 set of size n: = & 

Sk cost of generating a k item combination 
using table function Comb-k 

~oup(n, m) cost of grouping n records out of which m 
are distinct 

join(n, m, r) cost of joining two relations of size n and m 
to get 8 result of size r 

blob(n) cost of passing a BLOB of size n integers as 
an argument 

Table 2: Notations used for cost analysis of different ap- 
proaches 

5.1.2 Cost analysis of GatherJoin and its variants 

The relative performance of these variants depends on a 
number of data characteristics like the number of items, to- 
td number of transactions, average length of a transaction 
etc. We express the costs in each pass in terms of perame- 
ters that are known or can be estimated after the candidate 
generation step of each pass. The purpose of this analysis 
is to help us choose between the different options. There- 
fore, instead of including all I/O and CPU costs, we include 
only those terms that help us distinguish between different 
options. We use the notations of Table 2 in the cost analysis. 

The cost of GatherJoin includes the cost of generating k- 
item combinations, joining with Ck and grouping to count 

the support. The number of k-item combinations generated, 
Tk is C( N, k) *T. Join with ck filters out the non-candidate 
item combinations. The size of the join result is the sum of 
the support of 8ll the candidates denoted by s(Ck). The 
8CtUd value of the support of a c8ndidate itemset will be 
known only after the support counting phase. However, we 
approximate it to the minimum of the support of all its 
(k - I)-subsets in Fk-1. The total cost of the GatherJoin 
approach is: 

Tk * Sk + jOin(Tk, ck, s(ck)) + @-OUP(s(ck), Ck)r 

where Tk = C( N, k) * T 

The above cost formula needs to be modified to reflect 
the special optimization of joining with FI to consider only 
frequent items. We need a new term join(R, 4, Rf) and 
need to change the formula for Tk to include only frequent 
items Nf instead of N. 

For the second pass, we do not need the outer join with 
&. The total cost of GatherJoin in the second pass is: 

join(R, FI, Rf) + TZ * 92 + group(T2, C2), 

N;*T 
where Tz = C( Nf ,2) * T z 2 

Cost of GatherCount in the second pass is similar to that 
for basic GatherJoin except for the fhml grouping cost: 

join(R, FI, Rf) + groupinternal(Tz, Cz) + F2 * 92 

In this formula, “groupinternal” denotes the cost of doing 
the support counting inside the table function. 

Cost formulas for the GatherPrune and Horizontal ap- 
proaches can be derived similarly and appear in [21]. 

5.2 Vertical 

We first transform the data table into 8 vertical format by 
creating for each item a BLOB containing all tids that con- 
tain that item (Tid-list creation phase) and then count the 
support of itemsets by merging together these tid-lists (sup- 
port counting phase). This approach is similar to the ap 
proaches in [26]. For creating the Tid-lists we use a table 
function Gather. This is the same as the Gather function 
in GatherJoin except that we create the tid-list for each 
frequent item. The data table T is scanned in the (item,tid) 
order and passed to the function Gather. The function col- 
lects the tids of all tuples of T with the same item in memory 
and outputs a (item, tid-list) tuple for items that meet the 
minimum support criterion. The tid-lists are represented as 
BLOBS and stored in a new TidTable with attributes (item, 
tid-list). 

In the support counting phase, for each itemset in Ck we 
went to collect the tid-lists of 8ll k items and use a UDF to 
count the number of tids in the intersection of these k lists. 
The tids 8re in the same sorted order in 8ll the tid-lists and 
therefore the intersection can be done efficiently by a single 
pass of the k lists. This step can be improved by decompos- 
ing the intersect operation to share these operations across 
itemsets having common prefixes 8s follows. 

We first select distinct (itemI, itemz) pairs from Ck. For 
each distinct pair we first perform the intersect operation to 
get 8 new result-tidlist, then End distinct triples (itemi, items, 
items) from Ck with the same first two items, intersect 
result-tidhst with tid-list for items for each triple 8nd con- 
tinue with item4 and so on until all k tid-lists per itemset 
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are intersected. This approach is analogous to the Subquery 
approach presented for SQL-92. 

The above sequence of operations can be written as a 
single SQL query for any k as shown in Figure 7. The final 
intersect operation can be merged with the count operation 
to return a count instead of the tid-list - we do not show 
this optimization in the query of Figure 7 for simplicity. 

insert into Fk select itemi,. . . ,&en&k, count(tid-list) as cnt 
from (Subquery Qk) t where cnt > :minsup 

Subquery Ql (for any 1 between 2 and k): 
select itemi, . . . iteml, 

Intersect(rr-i .tid-list,tr .tid-list) as tid-list 
from TidTable tr, (Subquery Qr-1) as ~1-1, 

(select distinct item1 . . . itemt from ck) as dr 
where rr-1 .iteml = &.iteml and . . . and 

rr--1 .&ml-l = dr.itemr-land 
tr.item = dl.iteml 

Subquery Qi : (select * from TidTable) 

Sub cry Q-1 

7 
iteml,...,iteml, tid 

t 
tl.item = dl.iteml 
tl.item = dl.iteml 

d-l&ml = dl.iteml /w\ 
rJl.iteml-1 = dl.itemJ-I m 

/ \I 
T tl 

select distinct 

Subquery Q-l-1 
iteml,. .,iteml 

t 
Ck 

Tree diagram for Subquery Ql 

Figure 7: Support counting using UDF 

Special pass 2 optimization: For pass 2 we need not 
generate Cs and join the TidTables with CZ. Instead, we 
perform a self-join on the TidTable using predicate tl .item < 
tz.item. 

insert into Fk SekCt tl .&?m, tz.&3?%, Cnt 

from (select iteml, itemz, 
CountIntersect(ti .tid-list, ts.tid-list) as cnt 

from TidTable tl, TidTable t2 

where tl.item < t2.item) as t 
where cnt > :minsup 

5.2.1 Cost analysis 

The cost of the Vertical approach during support counting is 
dominated by the cost of invoking the UDFs and intersecting 
the tid-lists. The UDF is first called for each distinct item 
pair in Ck, then for each distinct item triple and so on. Let 
d,” be the number of distinct j item tuples in ck Then the 
number of UDF invocations is c:=, d:. In each invocation 
two BLOBS of tid-list are passed as arguments. The UDF 
intersects the tid-lists by a merge pass and hence the cost is 
proportional to 2 * average length of a tid-list. The average 
length of a tid-list can be approximated to 2. Note that 
with each intersect the tid-list keeps shrinking. However, we 
ignore such effects for simplicity. 

The total cost of the Vertical approach is: 

(2 d:) * (2 * BZob( $) + Intersect(F)) 
3=2 

In the above formula Intersect(n) denotes the cost of 
intersecting two tid-lists with a combined size of n. We 
are not including the join costs in this analysis because it 
accounted for only a small fraction of the total cost. 

5.3 Performance comparison of SQL-OR approaches 

We studied the performance of six SQL-OR approaches us- 
ing the datasets summarized in Table 1. Figure 8 shows the 
results for only four approaches: GatherJoin, GatherCount, 
GatherPrune and Vertical. For the other two approaches 
(Horizontal and SBF) the running times were so large that 
we had to abort the runs in many cases. The reason why the 
Horizontal approach was sigrriflcantly worse than the Gath- 
erJoin approach was the time to transform the data to the 
horizontal format. 

We first concentrate on the overall comparison between 
the different approaches. Then we will compare the ap 
proaches based on how they perform in each pass of the 
algorithm. 

The Vertical approach has the best overall performance 
and it is sometimes more than an order of magnitude better 
than the other three approaches. 

The majority of the time of the Vertical approach is spent 
in transforming the data to the Vertical format in most cases 
(shown as “prep” in figure 8). The vertical representation is 
like an index on the item attribute. If we think of this time 
as a one-time activity like index building then performance 
looks even better. The time to transform the data to the 
Vertical format was much smaller than the time for the hori- 
zontal format although both formats write almost the same 
amount of data. The reason is the difference in the number 
of records written. The number of frequent items is often 
two to three orders of magnitude smaller than the number 
of transactions. 

Between GatherJoin and GatherPrune, neither strictly dom- 
inates the other. The special pass-2 optimization in Gather- 
Join had a big impact on performance. With this optimiza 
tion, for Dataset-B with support O.l%, the running time for 
pass 2 was reduced from 5.2 hours to 10 minutes. 

When we compare these approaches based on time spent 
in each pass no single approach emerges as “the best” for all 
passes of the with datasets. 

For pass three onwards, Vertical is often two or more or- 
ders of magnitude better than the other approaches. For 
higher passes, the performance degrades dramatically for 
GatherJoin, because the table function Gather-Comb-K gen- 
erates a large number of combinations. GatherPrune is bet- 
ter than GatherJoin for third and later passes. For pass 2 
GatherPrune is worse because the overhead of passing a large 
object as an argument dominates cost. 

The Vertical approach sometimes spends too much time 
in the second pass. In some of these cases the GatherJoin 
approach was better in the second pass (for instance for low 
support values of Dataset-B) whereas in other cases (for 
instance, Dataset-C with minimum support 0.25%) Gather- 
Count was the only good option. In the latter case, both 
GatherPrune and GatherJoin did not complete after more 
than six hours for pass 2. Further, they caused a storage 
overflow error because of the large size of the intermediate 
results to be sorted. We had to divide the dataset into four 
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Figure 8: Comparison of four SQL-OR approaches: Vertical, GatherPrune, GatherJoin and GatherCount on four datasets for 
different support values. The time taken is broken down by each pass and an initial “prep” stage where any one-time data 
transformation cost is included. 

equal parts and ran the second pass independently on each 
partition to avoid this problem. 

700 
1 

Figure 9: Effect of increasing transaction length 

Two factors that affect the choice amongst the Vertical, 
GatherJoin and GatherCount approaches in different passes 
and pass 2 in particular are: number of frequent items (A) 
and the average number of frequent items per transaction 
(Nf). From Figure 8 we notice that as the value of the sup- 
port is decreased for each dataset causing the size of Fl to 
increase, the performance of pass 2 of the Vertical approach 
degrades rapidly. This trend is also clear from our cost for- 
mulae. The cost of the Vertical approach increases quadrat- 
ically with FI. GatherJoin depends more critically on the 
number of frequent items per transaction. For Dataset-B 
even when the size of FI increases by a factor of 10, the value 
of Nf remains close to 2, therefore the time taken by Gath- 

erJoin does not increase as much. However, for Datasat-C 
the size of Nf increases from 3.2 to 10 as the support is de- 
creased from 2.0% to 0.25% causing GatherJoin to deterio- 
rate rapidly. From the cost formula for GatherJoin we notice 
that the total time for pass 2 increases almost quadratically 
with Nf 

We validated this observation further by running exper- 
iments on synthetic datasets for varying values of the num- 
ber of frequent items per transaction. We used the synthetic 
dataset generator described in [3] for this purpose. We var- 
ied the transaction length, the number of transactions and 
the support values while keeping the total number of records 
and the number of frequent items fixed. In Figure 9 we show 
the total time spent in pass 2 of the Vertical and GatherJoin 
approaches. As the number of items per transaction (trans- 
action length) increases, the cost of Vertical remains almost 
unchanged whereas the cost of GatherJoin increases. 

5.4 Final hybrid approach 

The previous performance section helps us draw the follow- 
ing conclusions: Overall, the Vertical approach is the best 
option especially for higher passes. When the size of the 
candidate itemsets is too large, the performance of the Ver- 
tical approach could suffer. In such cases, GatherJoin is a 
good option as long as the number of frequent items per 
transaction (Nf) is not too large. When Nf is large Gather- 
Count may be the only good option even though it may not 
easily parallelize . 

The hybrid scheme chooses the best of the three ap- 
proaches GatherJoin, GatherCount and Vertical for each pass 
based on the cost estimates outlined in Sections 5.1.2 and 

350 



Figure 10: Comparison of four architectures: Cache-Mine, Stor 
coupling is similar to Stored-procedure. For each dataset thr 
down by the time spent in each pass. 

5.2.1. The parameter values used for the estimation are 
available at the end of the previous pass. In Section 6 we 
plot the final running time for the different datasets based 
on this hybrid approach. 

6 Architecture comparisons 

In this section our goal is to compare the five alternatives: 
Loose-coupling, Stored-procedure, Cache-Mine, UDF, and the 
best SQL implementation. 

The Loose-coupling, Stored-procedure and Cache-Mineim- 
plementations are derived from IBM’s Intelligent Miner [14] 
code 8s discussed in Section 1.2. The only difference between 
Loose-coupling and Stored-procedure approaches is that the 
former in run in a seperate address space whereas the latter 
is run in the same address space as the database server. This 
difference did not impact performance much on DB2, there- 
fore we will often be basing our comparisons on the Stored- 
procedure approach. For the UDF-architecture, we use the 
UDF implementation of the Apriori algorithm described in 
[5]. In this implementation, first a UDF is used to initial- 
ize state and allocate memory for candidate itemsets. Next, 
for eech pass a collection of UDFs are used for generating 
candid&es, counting support, and checking for terminetion. 
These UDFs 8ccess the initially allocated memory, address 
of which is passed around in BLOBS. Candidete generation 
creates the in-memory hash-trees of candidates. This hep- 
pens entirely in the UDF without any involvement of the 
DBMS. During support counting, the data table is scanned 
sequentially and for each tuple a UDF is used for updating 
the counts on the memory resident hashtree. 

,ed-procedure, UDF and SQL-OR on four real-life datasets. Loose- 
ee different support values are used. The total time is broken 

6.1 Timing comparison 

In Figure 10, we show the performance of Cache-Mine, Stored- 
procedure, UDF and the hybrid SQL-OR implementation for 
the datasets in Table 1. We do not show the times for the 
Loose-coupling option because its performance was very close 
to the Stored-procedure option. 

We can make the following observations: 

. 

. 

l 

Cache-Mine has the best or close to the best perfor- 
mance in 8ll cases. 80-90% of its total time is spent in 
the first pass where data is accessed from the DBMS 
and cached in the file system. Compered to the SQL 
approach this approach is a factor of 0.8 to 2 times 
faster. 

The Stored-procedure approach is the worst. The dif- 
ference between Cache-Mine and Stored-procedure is di- 
rectly related to the number of passes. For instance, 
for Dataset-A the number of passes increases from two 
to three when decreasing support from 0.5% to 0.35% 
causing the time taken to increase from two to three 
times. The time spent in each pass for Stored-procedure 
is the same except when the algorithm makes multiple 
passes over the data since all candid&es could not fit 
in memory together. This happens for the lowest sup- 
port values of Dataset-B,Dataset-C and Dataset-D. 
Time taken by Stored-procedure can be expressed ap- 
proximately as number of passes times time t&en by 
Cache-Mine. 

UDF is similar to Stored-procedure. The only difference 
is that the time per pass decreases by 30-50% for UDF 
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because of closer coupling with the database. 

l The SQL approach comes second in performance af- 
ter the Cache-Mine approach for low support values 
and is even somewhat better for high support values. 
The cost of converting the data to the vertical for- 
mat for SQL is typically lower than the cost of trans- 
forming data to binary format outside the DBMS for 
Cache-Mine. However, after the initial transformation 
subsequent passes take negligible time for Cache-Mine. 
For the second pass SQL takes significantly more time 
than Cache-Mine particularly when we decrease sup- 
port. For subsequent passes even the SQL approach 
does not spend too much time. Therefore, the differ- 
ence between Cache-Mine and SQL is not very sensi- 
tive to the number of passes because both approaches 
spend negligible time in higher passes. 

The SQL approach is 1.8 to 3 times better than Stored- 
procedure or Loose-coupling approach. As we decreased 
the support value so that the number of passes over the 
dataset increases, the gap widens. 

Figure 11: Scale-up with increasing number of transactions 
- GaDnO -9proc ,. SQL 

2600 7 

Figure 12: Scale-up with increasing transaction length 

6.1.1 Scale-up experiment 

Our experiments with the four real-life datasets above has 
shown the scaling property of the different approaches with 
decreasing support value and increasing number of frequent 
itemsets. We experiment with synthetic detasets to study 
other forms of scaling: increasing number of transactions 
and increasing average length of transactions. Figure 11 
shows how Stored-procedure, Cache-Mine and SQL scale with 
increasing number of transactions. UDF and Loose-coupling 

have similar scale-up behavior as Stored-procedure, therefore 
we do not show these approaches in the figure. We used a 
dataset with 10 average number of items per transaction, 
100 thousand total items and a default pattern length (de- 
fined in [3]) of 4. Thus, the size of the dataset is 10 times 
the number of transactions. As the number of transactions 
is increased from 10K to 3000K the time taken increases pro- 
portionately. The largest frequent itemset was 5 long. This 
explains the five fold difference in performance between the 
Stored-procedure and the Cache-Mine approach. Figure 12 
shows the scaling when the transaction length changes from 
3 to 50 while keeping the number of transactions fixed at 
lOOK. All three approaches scale linearly with increasing 
transaction length. 

6.2 Space overhead of different approaches 

We summarize the space required for different options. We 
assume that the tids and items are integers. The space re- 
quirements for UDF and Loose-coupling is the same as that 
for Stored-procedure which in turn is less than the space 
needed by the CachcMine and SQL approaches. The Cache- 
Mine and SQL approaches have comparable storage over- 
heads. For Stored-procedure and UDF we do not need any 
extra storage for caching. However, all three options Cache- 
Mine, Stored-procedure and UDF require data in each pass 
to be grouped on the tid. In a relational DBMS we cannot 
assume any order on the physical layout of a table, unlike in 
a file system. Therefore, we need either an index on the data 
table or need to sort the table every time to ensure a par- 
ticular order. Let R denote the total number of (tid,item) 
pairs in the data table. Either option has a space overhead 
of 2 x R integers. The Cache-Mine approach caches the data 
in an alternative binary format where each tid is followed by 
all the items it contains. Thus, the size of the cached data 
in Cache-Mine is at most: R + T integers where T is the 
number of transactions. For SQL we use the hybrid Vertical 
option. This requires creation of an initial TidTable of size 
at most I + R where I is the number of items. Note that 
this is slightly less than the cache required by the Cache- 
Mine approach. The SQL approach needs to sort data in 
pass 1 in all cases and pass 2 in some cases where we used 
the GatherJoin approach instead of the Vertical approach. 

In summary, the UDF and Stored-procedure approaches 
require the least amount of space followed by the Cache- 
Mine and the SQL approaches which require roughly as much 
extra storage as the data. When the item-ids or tids are 
character strings instead of integers, the extra space needed 
by Cache-Mine and SQL is a much smaller fraction of the 
total data size because before caching we always convert 
item-ids to their compact integer representation and store 
in binary format. Details on how to do this conversion for 
SQL is presented in [21]. 

6.3 Summary of comparison between different architec- 
tures 

We present a summary of the pros and cons of the different 
architectures on each of the following yardsticks: (a) perfor- 
mance (execution time); (b) storage overhead; (c) potential 
for automatic parallelization; (d) development and mainte- 
nance ease; (e) portability (f) inter-operability. 

In terms of performance, the Cache-Mine approach is the 
best option. The SQL approach is a close second - it is 
always within a factor of two of Cache-Mine for all of our 
experiments and is sometimes even slightly better. The UDF 
approach is better than the Stored-procedure approach by 
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30 to 50%. Between Stored-procedure and Cache-Mine, the 
performance difference is 8 function of the number of passes 
made on the data - if we make four passes of the date. the 
Stored-procedure approach is four times slower than Cache- 
Mine. ‘Some of the recent proposals [24, 61 that attempt 
to minimize the number of data passes to 2 or 3 might be 
useful in reducing the gap between the Cache-Mine 8nd the 
Stored-procedure spproach. 

In terms of space requirements, the Cache-Mine and the 
SQL approach loose to the UDF or the Stored-procedure ap- 
proach. The Cache-Mine and SQL approaches have similar 
storege requirements. 

The SQL implementation he8 the potential for automatic 
parallelizrrtion particularly on 8 SMP machine. Pamllelizs- 
tion could come for free for SQL-92 queries. Unfortunately, 
the SQL-92 option is too slow to be 8 candidate for par- 
allelization. The stumbling block for automatic pareueliza- 
tion using SQL-OR could be queries involving UDFs that 
use scratch pads. The only such function in our queries is 
the Gather table function. This function essentidy imple- 
ments a user defined aggregate, 8nd would have been easy 
to parallelize if the DBMS provided support for user defined 
aggregates or allowed explicit control from the application 
about how to partition the data amongst different parallel 
instances of the function. On a MPP machine, although one 
could rely on the DBMS to come up with 8 deta partition- 
ing strategy, it might be possible to better tune performance 
if the application could provide hints about the best parti- 
tioning [4]. Further experiments 8re required to assess how 
the performance of these automatic parallelizations would 
compare with algorithm-specific parallelizations (e.g [4]). 

The development time and code size using SQL could 
be shorter if one can get efficient implementations out of 
expressing the mining algorithms declaratively using a few 
SQL statements. Thus, one can avoid writing and debugging 
code for memory manegement, indexing and space man- 
agement all of which are already provided in 8 database 
system (Note that these s8me code reuse advantages can 
be obtained from a well-planned library of mining building 
blocks). However, there are some detractors to easy de- 
velopment using the SQL alternative. First, any attached 
UDF code will be herder to debug than stand-alone C++ 
code due to lack of debugging tools. Second, stand-alone 
code can be debugged and tested faster when run against 
flat file data. Running agejnst flat file8 i5 typically 8 fac- 
tor of five to ten faster compared to running against data 
stored in DBMS tables. Firmlly, some mining algorithms 
[e.g. neural-net based) might be too awkward to express in 
SQL 

The ease of porting of the SQL alternative depends on 
the kind of SQL used. Within the same DBMS, porting 
from one OS pletform to another requires porting only the 
small UDF code and hence is easy. In contrast the Stored- 
procedure and Cache-Mine alternatives require porting larger 
lines of code. Porting from one DBMS to another could 
get hard for SQL approech, if non-standard DBMS-specific 
features are used. For instance, our preferred SQL imple- 
mentation relies on the 8vail8bility of DB2’5 table functions, 
for which the interface is still not standardized across other 
major DBMS vendors. Also, if different feetures have dif- 
ferent performence characteristics on different databese sys- 
tems, considerable tuning would be required. In contrast, 
the Stored-procedure and Cache-Mine approach are not tied 
to any DBMS specific features. The UDF implementation 
has the worst of both worlds - it is large and is tied to 8 
DBMS. 

One attraction of SQL implementation is inter-operability 
and usage flexibility. The adhoc querying support provided 
by the DBMS enables flexible usage and exposes potential 
for pipelining the input and output operators of the min- 
ing process with other operators in the DBMS. However, to 
exploit this feature one needs to implement the mining op- 
erators inside the DBMS. This would require major rework 
in existing database systems. The SQL approach presented 
here is based on embedded SQL and as such cannot pro- 
vide operator pipelining and inter-opembility. Queries on 
the mined result is possible with 8ll four alternatives as long 
as the mined results are stored back in the DBMS. 

7 Conclusion and future work 

We explored v8rious architectural alternatives for integrat- 
ing mining with 8 relational database system. As an initial 
step in that direction we studied the association rules dgo- 
rithms with the twin goals of finding the trade-offs between 
architectural option5 and the extensions needed in 8 DBMS 
to efficiently support mining. We experimented with differ- 
ent ways of implementing the association rules mining algo- 
rithm in SQL to find if it is at all possible to get competitive 
performance out of SQL implementations. 

We considered two categories of SQL implementations. 
First, we experimented with four different implementations 
based purely on SQL-92. Experiments with real-life datasets 
showed thet it is not possible to get good performance out of 
pure SQL based approaches alone. We next experimented 
with a collection of approaches that made use of the new 
object-reletional extensions like UDFs, BLOBS, Table func- 
tions etc. With this extended SQL we got orders of magni- 
tude improvement over the SQL-92 based-implementations. 

We compared the SQL implementation with different ar- 
chitectural alternstives. We concluded thst based just on 
performance the Cache-Mine approach is the winner. A close 
second is the SQL-OR approach thet was sometimes slightly 
better than Cache-Mine snd was never worse than 8 fector 
of two on our datasets. Both these approaches require ad- 
ditional storage for caching, however. The Stored-procedure 
spproach does not require any extra space (except possibly 
for initially sorting the data in the DBMS) and can perhaps 
be made to be within 8 factor of two to three of Cache-Mine 
with the recent algorithms 124, 61. The UDF 8pprO8Ch is a 
factor of 0.3 to 0.5 fester then Stored-procedure but is sig- 
nificently harder to code. The SQL 8pproech offers some 
secondary advantages like easier development and mainte- 
nance 8nd potential for automatic perallelization. However, 
it might not be 8s portable as the Cache-Mine approech 
across different datsbase management systems. 

The work presented in this paper points to several direc- 
tions for future research. A natural next step is to experi- 
ment with other kinds of mining operations (e.g. clustering 
and classificetion [S]) to verify if our conclusions about 85- 
sociations hold for these other cases too. We experimented 
with generalized association rules [22] and sequential pat- 
terns 1231 problems and found similar results. In some ways 
associations is the easiest to integrate as the frequent item- 
sets can be viewed as generalized group-bys. Another useful 
direction is to explore what kind of a support is needed for 
answering short, interactive, adhoc queries involving 8 mix 
of mining and relation81 operations. How much can we lever- 
age from existing relational engines? What data model and 
language extensions are needed? Some of these questions are 
orthogonal to whether the bulky mining operations are im- 
plemented using SQL or not. Nevertheless, these are impor- 
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tant in providing analysts with a well-integrated platform 
where mining and relational operations can be inter-mixed 
in flexible ways. 
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