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Abstract

We propose to detect abnormal events via a sparse reconstruction over the
normal bases. Given a collection of normal training examples, e.g., an image
sequence or a collection of local spatio-temporal patches, we propose the sparse
reconstruction cost (SRC) over the normal dictionary to measure the normalness
of the testing sample. By introducing the prior weight of each basis during s-
parse reconstruction, the proposed SRC is more robust compared to other outlier
detection criteria. To condense the over-completed normal bases into a compact
dictionary, a novel dictionary selection method with group sparsity constraint is
designed, which can be solved by standard convex optimization. Observing that
the group sparsity also implies a low rank structure, we reformulate the problem
using matrix decomposition, which can handle large scale training samples by
reducing the memory requirement at each iteration from O(k2) to O(k) where k
is the number of samples. We use the column wise coordinate descent to solve
the matrix decomposition represented formulation, which empirically leads to a
similar solution to the group sparsity formulation. By designing different types
of spatio-temporal basis, our method can detect both local and global abnormal
events. Meanwhile, as it does not rely on object detection and tracking, it can be
applied to crowded video scenes. By updating the dictionary incrementally, our
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method can be easily extended to online event detection. Experiments on three
benchmark datasets and the comparison to the state-of-the-art methods validate
the advantages of our method.
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1. Introduction

Anomaly detection, also named as outlier detection, refers to detecting pat-
terns in a given data set that do not conform to an established normal behavior,
which is applicable in a variety of applications, such as intrusion detection, fraud
detection, fault detection, system health monitoring, event detection in sensor net-
works, and detecting eco-system disturbances. The Oxford English Dictionary
defines abnormal as:

deviating from the ordinary type, especially in a way that is undesirable
or prejudicial; contrary to the normal rule or system; unusual, irregular,
aberrant

We focus on the the detection of abnormal events in crowded scenes. Ac-
cording to the definition above, the abnormal events can be identified as irregular
events from normal ones. Depending on the scale of interests, previous work in
abnormal video event detection, such as [39, 3, 1, 23, 27, 4, 7], can be categorized
into two classes, as shown in Fig.1 (each ellipse stands for a moving pedestrian):

i. Local abnormal event (LAE): the behavior of an individual is different from
its neighbors. As shown in Fig.1(a), the motion pattern of the red one is
different from its neighbors, thus is a spatial abnormal event.

ii. Global abnormal event (GAE): the group behavior of the global scene is ab-
normal. Fig.1(b) shows an abnormal scene, where the pedestrians suddenly
scattered due to an abnormal event, e.g. an explosion.

Since the intention of each specific application is different, there is no unified
definition for both local abnormal events and global abnormal event detection.
Let us clarify the abnormal event detection firstly. Given the training set D =
{x1,x2, . . . ,xN}, where N is the number of training samples; xi ∈ Rd is a training
data (d is the feature dimension), it stands for a general object which can be a
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(a) Local Abnormal Event (LAE) (b) Global Abnormal Event (GAE)

Figure 1: The illustration of local and global abnormal events: each ellipse stands for a moving
pedestrian. (a) Local Abnormal Event (LAE): the behavior of the red pedestrian is different from
its neighbors. (b) Global Abnormal Event (GAE): the group behavior is abnormal.

pixel, an image patch, mixture dynamic texture, motion context in our paper, etc.
Suppose we have a test sample y ∈ Rd , abnormal event detection is to design a
measurement/function to determine whether y is normal or not. That is

f : y 7→ {normal,abnormal}. (1)

To achieve this, two key issues need to be properly addressed, event representation
and anomaly measurement.

For abnormal event representation, binary features based on background
model are adopted in [39, 3]. Some other methods consider the spatial-temporal
information, such as Histogram of Optical Flow (HOF) [1], spatial-temporal gra-
dient [17], social force model [27], chaotic invariant [34], mixtures of dynamic
textures [23]. There are also saliency feature [14] and graph-based non-linear di-
mensionality reduction method [30]. Moreover, the co-occurrence matrix is often
used to describe the spatial relationship.

For anomaly measurement, to address this one-class learning problem, most
conventional algorithms [1, 17, 16, 27] intend to detect testing sample with low-
er probability as anomaly by fitting a probability model over the training data.
There are several statistics models, such as Gaussian model, Gaussian Mixture
Model (GMM) or Mixture Principle Component Analysis (MPPCA) [16], Hidden
Markov Model (HMM) [17], Markov Random Field (MRF) [3] or spatio-temporal
MRF [16], Latent Dirichlet Allocation (LDA) [34]. Normalization Cut is used in
[39] to discriminate the abnormal clusters from normal clusters. The procedure
is to first fit some of stochastic probability model as mentioned above using the
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training data set D, and then calculate the posterior probability of y given the
model:

f =
{

normal p(y|D)≥ θ

abnormal p(y|D)< θ ,
(2)

where θ is the threshold.

1.1. Motivation and Contribution
High-dimensional feature is usually preferred to better represent the event.

However, to fit a good probability model, the required number of training data
increases exponentially approximate O(d2) with the feature dimension d, it is un-
realistic to collect enough training data for density estimation in practice. Thus,
for most state-of-the-art methods, there is an unsolved problem between event rep-
resentation using high-dimensional feature and model complexity. For example,
for our global abnormal detection, there are only 400 training samples with the
dimension of 320. With such a limited number of training samples, it is difficult
to even fit a Gaussian model robustly.

We notice that, sparse representation is suitable to represent high-dimensional
samples using less training data. This motivates us to detect abnormal events via
a sparse reconstruction from normal ones. Given an input test sample y ∈ Rm, we
reconstruct it by a sparse linear combination of an over-complete normal (positive)
bases set Φ = Rm×D, where m < D, as in Eq.(3):

x∗ = argmin
x

1
2
‖y−Φx‖2

2 + λ‖x‖1, (3)

where x∗ is the reconstruction coefficients. As shown in Fig.2(a), a normal event
(the up one) is likely to generate sparse reconstruction coefficients x∗, while an
abnormal event (the bottom one) is dissimilar to any of the normal bases, thus
generates a dense representation. To quantify the normalness, we propose a novel
sparse reconstruction cost (SRC) based on the L1 minimization, as

SRC =
1
2
‖y−Φx∗‖2

2 + λ‖x∗‖1. (4)

As shown in Fig.2(b), for the frame-level abnormal event detection, the normal
frame has a small reconstruction cost, while the abnormal frame usually generates
a large reconstruction cost. Therefore, the SRC can be adopted as an anomaly
measurement for such a one-class classification problem.

To handle both LAE and GAE, the definition of training basis y can be quite
flexible, e.g., an image patch, a spatio-temporal video subvolume, or a normal
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(a) Normal & Abnormal Reconstruction Coefficients

(b) SRC Sw in frame level

Figure 2: (a) Top left: the normal sample; top right: the sparse reconstruction coefficients; bottom
left: the abnormal sample; bottom right: the dense reconstruction coefficients. (b) Frame-level
Sparsity Reconstruction Cost (SRC): the red/green color corresponds to abnormal/normal frame,
respectively. It shows that the Sw of abnormal frame is greater than normal ones, and we can
identify abnormal events accordingly.

image frame. It thus provides a general way of representing different types of
abnormal events. Moreover, we propose a new dictionary selection method to
reduce the size of the basis of Φ for an efficient reconstruction of y. The weight
of each new training sample is also learned to indicate its normalness, i.e., the
occurrence frequency. These weights form a weight matrix W which serves as a
prior term in the L1 minimization.

We evaluate our method in three different abnormal event detection datasets,
including the UMN dataset[31], the UCSD dataset[23], and the subway dataset[1].
The main contributions are as below:

i. For anomaly measurement, we propose a novel criterion, Sparse Recon-
struction Cost (SRC), to detect abnormal event, which outperforms the ex-
isting criterion, e.g., Sparsity Concentration Index in [33]. The Weighted
Orthogonal Matching Pursuit (WOMP) is also adopted to solve the weight-
ed L1 minimization in a more efficient way.
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ii. To increase computational efficiency, a novel dictionary selection model
based on group sparsity has been designed to generate a minimal size of
bases set and prune noise training samples. Moreover, the lower rank con-
straint is considered to handle the large scale problem caused by large scale
training samples.

iii. By using different types of bases, we provide a unified solution to detect
both local and global abnormal events in crowded scene. Our method can
also be extended to online event detection by an incremental self-update
mechanism.

The rest of this paper is organized as follows: Section 2 gives the related work.
Section 3 provides an overview of our algorithm. Section 4 presents the imple-
mentation details of our algorithm, including basis definition, dictionary selection,
weighted L1 minimization and self-update procedure. For dictionary selection, we
compare the large scale version with the traditional one [7] in section 5. Then,
section 6 reports our experimental results and comparisons with state-of-the-art
methods to justify the performance of our algorithm. Finally, Section 7 concludes
the paper.

2. Related Work

Much progresses in video surveillance have been achieved in recent years for
some key areas, such as background model [29], object tracking [2], pedestrian
detection [8], action recognition [36], crowd counting [6] and traffic monitoring
[32]. Abnormal event detection, as a key application in video surveillance, has
also provoked great interests. Depending on the specific scene, the abnormal event
detection can be classified into those in crowded scenes and uncrowded scenes.

For uncrowded scenario, as the foreground objects can be extracted easily
from the background, binary features based on background model are usually
adopted, such as Normalized Cut clustering by Zhong et al.[39] and 3D spatio-
temporal foreground mask feature fused using Markov Random Field by Benezeth
et al.[3]. Due to the object template can be initialized in the uncrowded scene,
there are also some trajectory-based approaches by tracking the objects, such as
[32], [12], [32], [28] and [15]. They use frame-difference for object localization
and then generate the object trajectories by tracking. These methods can obtain
satisfied results on traffic monitoring, however, may fail in the crowded scene,
since they cannot get a good object trajectories.
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For crowded scenes, as there are so many objects or events occurring simulta-
neously in the clutter background, e.g. the subway station, it is difficult to separate
each of objects or events and represent the overall object or event in global view.
Therefore, most of the state-of-the-art methods use the local features for abnormal
event representation, by considering the spatio-temporal information and extract-
ing motion or gray-level sift-like features from local 2D patches or local 3D bricks,
such as Histogram of optical flow, 3D gradient. Next the co-occurrence matrices
are often chosen to describe the context information. For example, Adam et al.[1]
use histograms to measure the probability of optical flow in local patch. Kratz et
al. [17] extract spatio-temporal gradient to fit Gaussian model of each 3D brick,
and then use HMM to detect abnormal events in densely crowded subway. An-
drade et al. [10] use unsupervised feature extraction to encode normal crowd
behaviour. The saliency features are extracted and associated using a Bayesian
model to detect surprising (abnormal) events in video [14]. Kim et al.[16] mod-
el local optical flow with MPPCA and enforce consistency by Markov Random
Field. In [30], a graph-based non-linear dimensionality reduction method using
motion cues is applied for abnormality detection. Mahadevan et al.[23] model
the normal crowd behavior by mixtures of dynamic textures. Mehran et al.[27]
present a new way to formulate the abnormal crowd behavior by adopting the
social force model [9, 35]. They first extract particle advection based on optical
flow, then compute the social force and combine with a Latent Dirichlet Alloca-
tion (LDA) model for anomaly detection; however, their algorithm can just detect
the global behavior in full image scale and cannot localize the sub-part abnormal
region. In [34], they define a chaotic invariant to describe the event. Another
interesting work is about irregularities detection by Boiman and Irani [4, 5], in
which they extract 3D bricks as the descriptor and use dynamic programming as
inference algorithm to detect the anomaly. Since this method searches the current
feature from all the features in the past, it is time-consuming.

On the other hand, researchers have revealed that many neurons are selective
for a variety of specific stimuli, e.g. color, texture, primitive, and this phenomenon
broadly exists in both low-level and mid-level human vision [26, 25]. Therefore,
sparse representation [26, 25, 18] is generated accordingly, which calls for model-
ing data vectors as a linear combination of a few elements from an overcomplete
dictionary. Depending on the sparse reconstruction coefficients, sparse represen-
tation has also been used for many matching and classification applications in
computer vision domain, such as object tracking [24], object or face recognition
[22], image inpainting [20]. In comparison with conventional sparse representa-
tion, where the bases in dictionary are selected manually or generated by a dic-
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Figure 3: The illustration of our algorithm. Each point stands for a high dimensional feature
point. The green or red point indicates the normal or abnormal testing sample, respectively. As
most events are normal, the green points are dense and red points are sparse. For initialization
the dictionary, some redundant light blue points are given as training features; after dictionary
selection, an optimal subset of representatives (dark blue point) are selected as basis to constitute
the normal dictionary, where its size indicates the weight: the larger, the more normal. Then, the
abnormal event detection is to measure the sparsity reconstruction cost (SRC) of a testing sample
(green and red points) over the normal dictionary (dark blue points).

tionary learning model, we propose a large scale dictionary selection model using
low rank constraint, which can retain the original property of the data. Next, we
propose a unified solution for abnormal event detection using sparse reconstruc-
tion cost (SRC) [7]. A similar work in [38] also applies sparse representation for
abnormal event detection. However, it does not address the large-scale dictionary
selection problem, and can not handle both LAE and GAE simultaneously as well.

3. Overview of Our Method

To detect both LAE and GAE, we propose a general solution using sparse
representation, as illustrated in Fig.3. The flowchart of our algorithm is shown in
Fig.4.

For training, only normal videos are required. To detect abnormal events from
normal training samples, we collect the feature from training video frames to gen-
erate the normal feature pool B, where each sample in B is normal feature. Differ-
ent features are designed for LAE or GAE (Sec.4.1). As the normal feature pool B
is redundant and contains noisy features, an optimal subset B′ with minimal size,
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Figure 4: The flowchart of our proposed algorithm.

is selected from B as training dictionary (we call each feature of the selected dic-
tionary as basis), and the weight of each basis of the dictionary is also initialized
(Sec.4.2).

For testing, we also extract the same feature as in training, then each testing
sample y can be a sparse linear combination of the training dictionary by weighted
L1 minimization, and whether y is to normal or not (e.g. the green/red point in
Fig.3) is determined by the linear reconstruction cost (SRC) (Sec.4.3), i.e., normal
feature can be efficiently spare represented by training dictionary with lower cost,
on the contrary, the abnormal bases will be constructed with greater cost or even
cannot be constructed, as shown in Fig.2. Moreover, our system can also self-
update incrementally, which will be explained in Sec.4.4. The Algorithm is shown
in Alg.2.

4. Implementation of Our Method

4.1. Multi-scale HOF and Basis Definition
We propose a new feature descriptor called Multi-scale histogram of optical

flow (MHOF), and for event representation, all the types of bases, are concate-
nated by MHOF with various spatial or temporal structures. After estimating the
motion field by optical flow [19], we partition the image into a few basic units, i.e.
2D image patches or spatio-temporal 3D bricks, then extract MHOF from each
unit. For each pixel (x,y) of the unit, we quantize it into the MHOF as Eq.(5).
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Y

Type B
Temporal Basis

Type C
Spatial-Temporal 

Basis

Type A
Spatial Basis

X

MHOF

t
 

Unit

Various BasisB

A

Figure 5: (A) The Multi-scale HOF is extracted from a basic unit (2D image patch or 3D brick)
with 16 bins. (B) The selection of flexible spatio-temporal basis for sparse representation, such as
type A, B and C, described by a concatenation of MHOF from the basic units. For GAE, we can
use type A; for LAE, we can use type B or C.
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In our implementation, the MHOF has K = 16 bins as shown in Fig.5: the first
p = 8 bins denote 8 directions with motion energy r < τ in the inner layer; the
next p = 8 bins correspond to r ≥ τ (τ = 1 in this paper) in the outer layer.

h(x,y) =

{
round(pθ(x,y)

2π
) mod p r(x,y)< τ

round(pθ(x,y)
2π

) mod p+p r(x,y)≥ τ
(5)

where r(x,y) and θ(x,y) are the motion energy and motion direction of motion
vector at (x,y) respectively. Therefore, our MHOF not only describes the motion
information as traditional HOF, but also preserves the spatial contextual informa-
tion. Actually depending on the specific applications, we can define much more
scales MHOF, but for us, two scales are enough.

To handle different abnormal events, LAE or GAE, we propose several type
of bases with different spatio-temporal structures, whose representations by the
normalized MHOF is illustrated in Fig.5. For GAE, we select the spatial bases
that can cover the whole frame. For LAE, we extract temporal or spatio-temporal
bases that contain spatio-temporal contextual information, like the 3D Markov
random field [16], and spatial topology structure can replace co-occurrance ma-
trix. In general, our design of the local and global features is very flexible and
other alternatives are certainly possible. Moreover, several features can be con-
catenated to build a more advanced description.

4.2. Large Scale Dictionary Selection using Sparsity Consistency
In this section, we address the problem of how to select the dictionary giv-

en an initial candidate feature pool as B = [b1,b2, · · · ,bk] ∈ Rm×k, where each
column vector bi ∈ Rm denotes a normal feature. Our goal is to find an optimal
subset to form the dictionary B′ = [bi1 ,bi2, · · · ,bin] ∈ Rm×n where i1, i2, · · · , in ∈
{1,2, · · · ,k}, such that the set B can be well reconstructed by B′ and the size of
B′ is as small as possible. A simple idea is to pick up candidates randomly or
uniformly to build the dictionary. Apparently, this cannot make full use of al-
l candidates in B. Also it is risky to miss important candidates or include the
noisy ones, which will greatly affect the reconstruction. To solve this problem,
we present a principled method to select the dictionary. Our idea is that we should
select an optimal subset of B as the dictionary, such that the rest of the candidates
can be well reconstructed using it. More formally, we formulate the problem as
follows:

min
X

:
1
2
‖B−BX‖2

F +λ‖X‖1, (6)
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where X ∈ Rk×k; the Frobenius norm ‖X‖F is defined as ‖X‖F := (∑i, j X2
i j)

1
2 ;

and the L1 norm is defined as ‖X‖1 := ∑i, j |Xi j|. However, this tends to generate
a solution of X close to an identity matrix I, which leads the first term of Eq.(6)
to zero and is also very sparse. Thus, we need to require the consistency of the
sparsity on the solution, i.e., the solution needs to contain some “0” rows, which
means that the corresponding features in B are not selected to reconstruct any data
samples.

Thus, in [7], we change the L1 norm constraint in Eq.(6) into the L2,1 norm,
and propose the followed optimization problem to select the dictionary:

min
X

:
1
2
‖B−BX‖2

F +λ‖X‖2,1, (7)

where ‖X‖2,1 := ∑
k
i=1 ‖Xi.‖2, and Xi. denotes the ith row of X. The regularization

term enforces the group sparsity on the variable X and the optimal solution usually
contains zero rows, i.e. the dictionary B′ is constituted by selecting bases with
‖Xi.‖2 6= 0. The larger the value of λ is, the more zero rows X has. One can
select the bases from the optimal X∗ to build dictionary, i.e., the nonzero rows
correspond to the selected basis. The L2,1 norm is indeed a general version of
the L1 norm since if X is a vector, then ‖X‖2,1 = ‖X‖1. In addition, ‖X‖2,1 is
equivalent to ‖x‖1 by constructing a new vector x ∈ Rk with xi = ‖Xi.‖2. From
this angle, it is not hard to understand that Eq.(6) leads to a sparse solution for X,
i.e., X is sparse in terms of rows.

4.2.1. Improvement
This model in Eq.(7) looks pretty nice, but may lead to a memory problem

when the number of samples is huge, since X requires k2 units to save. When
the value of k increases for the large scale problem, X cannot be loaded into the
memory at one time, then Eq.(7) would be inefficient. In order to handle the
large scale problem in practical applications, we decompose X as X = αβ T where
α ∈ Rk×r and β ∈ Rk×r (r can be much smaller than k). Since the expected
solution of X∗ should contain many zero rows, which implies that it is also a low
rank matrix, this decomposition X = αβ T does not lose the generality. Typically,
r can be given a number less than k, i.e. r� k. Thus, the memory cost in this
decomposition is much less than k2.

As we still desire a solution with multiple zero rows, the group sparsity con-
straint can be enforced on α . Apparently, the zero rows of X can be indicated by
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those of α . Now we can reformulate Eq.(7) into a large scale version as follows:

min
α,β

:
1
2
‖Bαβ

T −B‖2
F +λ‖α‖2,1. (8)

However, it is not enough because the optimal α∗ would be infinitely close to 0
and the optimal β ∗ would be unbounded. To fix this problem, we only need one
constraint on β such that β is bounded. Here, we can simply use the constraint
‖β‖∞ ≤ 1 and formulate the completed version as follows:

min
α,β

:
1
2
‖Bαβ

T −B‖2
F +λ‖α‖2,1 s.t. : ‖β‖∞,∞ ≤ 1, (9)

where ‖β‖∞,∞ := maxi, j |βi j|. Note this problem is a nonconvex optimization
problem, which can only guarantee a solution in the stationary point. The fol-
lowed paragraph introduces the algorithm to solve this problem. Since there are
two variables, we use the coordinate descent method to optimize α and β , itera-
tively, i.e., fixing α to optimize β and fixing β to optimize α , alternatively.

• Optimize α: While fixing β , we aim to solve the following subproblem:

min
α

: F(α) =
1
2
‖Bαβ

T −B‖2
F +λ‖α‖2,1. (10)

This is a convex but nonsmooth optimization problem, as in our previous
work [7]. Denote f0(α) as the smooth part 1

2‖Bαβ T −B‖2
F . We employ the

proximal method to solve it by the following updating procedure:

αk+1 =argmin
α

: pαk,L(α) := f0(αk)+ 〈O f0(αk),α−αk〉

+
L
2
‖α−αk‖2 +λ‖α‖2,1,

(11)

where L is the Lipschitz constant (or a larger number) and O f0(αk) can
be computed by BT B(αkβ T − I)β T . The closed form of αk+1 is given by
D λ

L
(αk−O f0(αk)/L) due to the following theorem:

Theorem 1:
argmin

X
pZ,L(X) = D λ

L
(Z− 1

L
∇ f0(Z)), (12)

where Dτ(.) : M ∈ Rk×k 7→ N ∈ Rk×k

Ni. =

{
0, ‖Mi.‖ ≤ τ;
(1− τ/‖Mi.‖)Mi., otherwise. (13)
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Appendix.Appendix A gives the derivation to this theorem. Note that one
can fix β and optimize α for multiple times, but the practical experiments
indicate that one time is optimal.

• Optimize β : While fixing α to solve β , this subproblem is

min
β

:
1
2
‖Bαβ

T −B‖2
F s.t. : ‖β‖∞ ≤ 1. (14)

To optimize β we employ the idea “columnwise coordinate descent” in
[21]: each column of β can be optimized simultaneously while fixing other
columns:

min
β.i

:
1
2
‖Bαβ

T −B‖2
F ≡

1
2
‖(Bα).iβ

T
.i − (B−∑

j 6=i
(Bα). jβ

T
. j )‖2

F

s.t. : ‖β.i‖∞ ≤ 1.
(15)

The optimal β ∗i. can be computed by

β
∗
.i = sgn(Z)�min(Z,1), (16)

where Z = (B−∑ j 6=i(Bα). jβ
T
. j )

T (Bα).i/‖(Bα).i‖2. The operator “�” is
defined by (a�b)i = aibi. Although we can update each column of β mul-
tiple times when optimize β , the practical results indicate that updating only
once is usually enough.

We summarize the algorithm in Alg.1.

4.3. Anomaly measurement: weighted L1 minimization and abnormal Detection
This section details how to determine a testing sample y to be normal or not.

As we mentioned in the previous subsection, the features of a normal frame can
be linearly constructed by only a few bases in the dictionary B′ while an abnormal
frame cannot. A natural idea is to pursue a sparse representation and then use the
reconstruction cost to judge the testing sample. In order to advance the accuracy
of prediction, two more factors are considered here:

• In practice, the deformation or any un-predicted situation may happen to
the video. Motivated by [33], we extend the dictionary from B′ to Φ =
[B′, Im×m] ∈ Rm×D, and D = n+m.
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Algorithm 1 Large Scale Dictionary Selection (LSDS)
Input: α0 ∈ Rn×r, β0 ∈ Rn×r, λ > 0, K, L, r
Output: αK ∈ Rn×r, βK ∈ Rn×r

1: for k = 0,1,2, ...,K−1 do
2: Update αk+1 = D λ

L
(αk−∇ f0(αk)/L)

3: for i = 0,1,2, ...,n do
4: Update (βk+1).i = sgn(Z)�min(Z,1)

Z = B−
i−1

∑
j=1

(Bαk+1). j(βk+1)
T
. j−

n

∑
j=i+1

(αk+1). j(βk)
T
. j

5: end for
6: end for

• If a basis in the dictionary appears frequently in the training dataset, then
the cost to use it in the reconstruction should be lower, since it is a normal
basis with high probability. Therefore, we design a weight matrix W =
diag[w1,w2, ...,wn,1, ...,1] ∈ RD×D to capture this prior information. Each
wi ∈ [0,1] corresponds to the cost of the ith feature. For the artificial feature
set Im×m in our new dictionary Φ, the cost for each feature is set to 1. The
way to dynamically update W will be introduced in the following section.

Now, we are ready to formulate this sparse reforestation problem:

x∗ = argmin
x

1
2
‖y−Φx‖2

2 + λ1‖Wx‖1, (17)

where x = [x0,e0]
T , x0 ∈ Rn, and e0 ∈ Rm. Given a testing sample y, we design

a Sparsity Reconstruction Cost (SRC) using the minimal objective function value
of Eq.(17) to detect its abnormality:

Sw =
1
2
‖y−Φx∗‖2

2 + λ1‖Wx∗‖1. (18)

A high SRC value implies a high reconstruction cost and a high probability of
being an abnormal sample. In fact, the SRC function also can be equivalently
mapped to the framework of Bayesian decision like in [13]. From a Bayesian
view, the normal sample is the point with a higher probability, on the contrary the
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Algorithm 2 Abnormal Event Detection Framework
Input: Training dictionary Φ, basis weight matrix W0, sequential input testing

sample Y ∈ [y1,y2, · · · ,yT ]
Output: W

1: for t = 1, · · · ,T do
2: Pursuit the coefficient x∗ by L1 minimization:
3: x∗ = argmin

x
1
2‖y

t−Φx‖2
2 +‖Wt−1x‖1

4: Calculate SRC function St
w by Eq.(18)

5: if y is normal then
6: Select top K bases coefficients of x∗

7: Update Wt ←−Wt−1

8: end if
9: end for

abnormal (outlier) sample is the point with a lower probability. We can estimate
the normal sample by maximizing the posteriori as follows:

x? = argmax
x

p(x|y,Φ,W)

= argmax
x

p(y|x,Φ,W)p(x|Φ,W)

= argmax
x

p(y|x,Φ)p(x|W)

= argmin
x
− [log p(y|x,Φ)+ log p(x|W)]

= argmin
x
(
1
2
‖y−Φx‖2

2 +λ1‖Wx‖1),

(19)

where the first term is the likelihood p(y|x,Φ) ∝ exp(−1
2‖y−Φx‖2

2), and the sec-
ond term p(x;W) ∝ exp(−λ1‖Wx‖1) is the prior distribution. This is consistent
with our SRC function, as the abnormal samples correspond to smaller p(y|x,Φ),
which results in greater SRC values.

4.3.1. Optimization
In our previous work [7], Eq.(17) can be solved by quadratic programming

using the interior-point method, which uses conjugate gradients algorithm to com-
pute the optimized direction. However, as solving Eq.(17) is time consuming for
abnormal event detection, we need to a more efficient algorithm. To achieve this,
the greedy algorithm for least squares regression in [37], called orthogonal match-
ing pursuit (OMP) in signal processing community, is a good choice. Motivated
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Algorithm 3 Weighted Orthogonal Matching Pursuit (WOMP)
Input: Φ ∈ Rm×D, y ∈ Rm, W ∈ RD×D, and ε > 0
Output: x?, k, F

1: Normalize b̃ j = b j/‖b j‖2
2: K = 0, F = /0 and x = 0
3: while (‖Φx− y‖2/‖y‖2 > ε) do
4: k = k+1
5: i = argmaxi wii‖x̃T

i (Φx− y)‖
6: Let F = {i}∪F
7: Let x = (ΦT

FΦF)
−1ΦT

Fy
8: end while
9: x? = x

by OMP [37], we design a Weighted Orthogonal Matching Pursuit (WOMP) mod-
el in our case. The improvement is that we change the second term of Eq.(17) by
adding a weighted factor. The algorithm is shown in Alg.3.

Typically, we set ε = 0.05, which measures the reconstruction accuracy; F
returns the support set; and x? is the pursuited parameter vector. Thus, we can
use either weighted L1 minimization in [7] or the improved version of WOMP in
Alg.3 to solve Eq.(17).

4.4. Update Weight and Dictionary
For the normal sample y, we selectively update weight W and dictionary Φ

by choosing the top K bases with largest positive coefficient of x∗0 ∈ Rn, and we
define the top k set as Sk = [s1, · · · ,sk].

As we have mentioned above, the contribution of each basis to the L1 mini-
mization reconstruction is not identical. In order to measure such a contribution,
we use W to assign each basis a weight, that is the basis with higher weight,
should be used frequently and of course more similarity to normal event and vice
verse. Define W = [w1,w2, · · · ,wK]. We initialize W from matrix X of dictionary
selection, that is

β
0
i = ‖Xi.‖2, w0

i = 1−
β 0

i
‖β 0‖1

. (20)

where βi denotes the accumulate coefficients of each basis, and wi ∈ [0,1] (the
smaller the value of wi, the more like a normal sample it is). The top k basis in W
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Figure 6: The comparison of different dictionary selection models. The dimension of each basis is
m = 100, n1 = 50 and n = 250. The first n1 = 50 samples are the basis as ground truth, the other
n2 = 200 samples are testing samples. (a) is the result of traditional model [7] and (b) is the result
of our large scale dictionary model. We can see that most basis are selected from testing samples
successfully for both (a) and (b).

m n1 n Convex Model [7] LSDS
1 50 20 220 0.80 0.90
2 75 30 230 0.94 0.92
3 100 50 250 0.85 0.90

Table 1: The comparison of our proposed method with traditional model [7] for dictionary selec-
tion using synthesized data set.

can be updated as follows:

β
t+1
i = β

t
i +x∗i , {i ∈ Sk}, wt+1

i = 1−
β

t+1
i

‖β t+1‖1
. (21)

where Sk is the index set of the top k features in W.

5. Comparison Dictionary Selection model: LSDL Vs. Convex Model [7]

Based on the same dictionary selection model in Eq.(7), we have two opti-
mization schemes, namely the large scale version in Eq.(9) and the traditional one
in Eq.(7) [7]. The main difference between them is the memory cost, i.e. X = αβ

relates to 2(k× r),r� n and B relates to k×n, which is crucial especially when
n is large. If they have similar performance, i.e. they can select similar dictionary
from the same testing samples, the traditional version can be replaced by the large
scale version directly. Therefore, we compare our new large scale version with
our previous work in [7] using synthesized data.

The experiment is setup in the following. Suppose the dimension of each sam-
ple as m, we first randomly generate n1 basis, which can be considered as ground
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truth; then we randomly linearly combine them to generate new n2 samples; fi-
nally, we normalize them and have total of n = n1 + n2 samples. The accuracy
is the number of bases selected in the proportion of n1 ground truth. If the result
of our large scale version is similar to [7], we can consider they have competitive
performance. Moreover, in comparison with [7], the large scale version needs less
memory cost and can also work well when n increases.

The simulation results are as shown in Fig.6 and some statistic results are
provided in Tab.1. Thus, without considering the size of B, we can conclude that
both of Eq.(7) and Eq.(9) have nearly the same performance.

6. Experiments

In this section, we systematically apply our proposed algorithm to several pub-
lished data sets to justify the effectiveness. The UMN dataset [27] is used to
test the Global Abnormal Event (GAE) detection; and the UCSD dataset [23, 11]
and Subway datasets [1] are applied to Local Abnormal Event (LAE) detection.
Moreover, we re-annotate Subway dataset in a bounding box level ground truth,
where each box contains one abnormal event. For evaluation, three different lev-
el measurements are applied, which are Pixel-level, Frame-level and Event-level
measurements.

6.1. Dataset
UMN dataset: The UMN dataset [27] consists of 3 different scenes of crowd-

ed escape events, and the total frame number is 7740 (1450, 4415 and 2145 for
scenes 1− 3, respectively) with a 320× 240 resolution. The normal events are
pedestrians walking randomly on the square or in the mall, and the abnormal
events are human spread running at the same time. There are total of 11 abnormal
events in the whole video set.

UCSD dataset: The UCSD dataset [23, 11] includes two sub-datasets, Ped1
and Ped2. The crowd density varies from sparse to very crowded. The training sets
are all normal events and contain only pedestrians. The abnormal events in testing
set are either 1) the circulation of non pedestrian entities in the walkways, or 2)
anomalous pedestrian motion patterns. Commonly occurring anomalies include
bikes, skaters, small cars, and people walking across a walkway or in the grass that
surrounds it. Due to Ped2 sub-dataset has no pixel-level ground truth, in this paper
we mainly focus on Ped1. For Ped1, the training set includes 34 normal video
clips and the testing set contains 36 video clips in which some of the frames have
one or more anomalies presents (a subset of 10 clips in testing set are provided
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with pixel-level binary masks to identify the regions containing abnormal events).
For each clip, there are about 200 frames with the resolution 158×238, The total
number of anomalies frames(≈ 3400) is a little bit smaller than that of normal
frames (≈ 5000).

Subway dataset: The subway dataset is provided by Adam et al. [1], including
two videos: “entrance gate” (1 hour 36 minutes long with 144249 frames) and
“exit gate” (43 minutes long with 64900 frames). In our experiments, we resized
the frames from 512× 384 to 320× 240. The abnormal events mainly include
wrong direction events and no-payment events.

6.2. Evaluation Criterion
Three criteria in different levels are applied for evaluation, which are Pixel-

level, Frame-level and Event-level.

• Pixel-level: To test localization accuracy, detections are compared to pixel-
level ground truth masks, on a subset of ten clips. The procedure is similar
to that described above. If at least 40% of the truly anomalous pixels are
detected, the frame is considered detected correctly, and counted as a false
positive otherwise.

• Frame-level: If a frame contains at least one abnormal pixel, it is considered
as a detection. These detections are compared to the frame-level ground
truth annotation of each frame. Note that this evaluation does not verify
whether the detection coincides with the actual location of the anomaly. It
is therefore possible for some portion true positive detections to be “lucky”
co-occurrences of erroneous detections and abnormal events.

• Event-level: Usually, an abnormal event will last for several consecutive
frames, if more than one frames are detected as abnormal and the position
is localized exactly, it is considered as a detection. Note that this evaluation
does not need all the abnormal frames are detected.

The Receiver Operating Characteristic (ROC) curve is used to measure the
accuracy for multiple threshold values. The ROC is consisted of true positive rate
(TPR) and false positive rate (FPR), of which TPR determines a classifier or a
diagnostic test performance on classifying positive instances correctly among all
positive samples available during the test, and FPR, on the other hand, defines
how many incorrect positive results occur among all negative samples available
during the test. These measures are given by the formulas in Eq.(22):
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Figure 7: The ROCs for the detection of abnormal frames in the UMN dataset. We compare dif-
ferent evaluation measurements for abnormal event detection, namely weighted SRC with Large
Scale Dictionary Selection model (LSDS), weighted SRC, SRC without Weight, sparse with con-
centration function and sparse with entropy measurement, and also the other two methods, social
force [27] and optical flow [27]. Our method outperforms the others.

TPR =
True positive

True positive+False negative

FPR =
False positive

False positive+True negative
,

(22)

where True positive (TP) is the correctly labeled abnormal events; False negative
(FN) is incorrectly labeled normal events; False positive (FP) is incorrectly labeled
abnormal events; and True negative (TN) is correctly labeled abnormal events. For
pixel-level and frame-level, we choice different thresholds and compute the TPR
and FPR accordingly to generate the ROC curve.

6.3. Global Abnormal Event Detection
For the UMN dataset [27], we initialize the training dictionary from the first

400 frames of each scene, and leave the others for testing. The type A basis in
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Method AUC
Chaotic Invariants [34] 0.99
Social Force[27] 0.96
Optical flow [27] 0.84
1-NN 0.93
Sparse Scene1 0.995
Sparse Scene2 0.975
Sparse Scene3 0.964
Sparse+LSDS Scene1 0.9955
Sparse+LSDS Scene2 0.971
Sparse+LSDS Scene3 0.974

Table 2: The comparison of our proposed method with the state-of-the-art methods for detection
of the abnormal events in the UMN dataset. We can see that our method with or without LSDS
get similar results, but LSDS can be also used in the case that the size of training data is bigger.

Fig.5(B), i.e., spatial basis, is used here. We split each image into 4× 5 blocks,
and extract the MHOF from each block. We then concatenate them to build a basis
with a dimension m = 320. Because the abnormal events cannot occur only in one
frame, a temporal smooth is applied.

The results are shown in Fig.8. The normal/abnormal results are annotated as
red/green color in the indicated bars respectively. In Fig.7, the ROC curves by
frame-level measurement are shown to compare our SRC to three other measure-
ments, which are

i. SRC with W as an identity matrix in Eq.(18), where S = 1
2‖y−Φx∗‖2

2 +
λ1‖x∗‖1.

ii. the entropy used as a metric by formulating the sparse coefficient as a prob-
ability distribution: SE = −∑i pi log pi, where p(i) = |x(i)|/‖x‖1. Thus s-
parse coefficients will lead to a small entropy value.

iii. concentration function similar to [33], SS = Tk(x)/‖x‖1, where Tk(x) is the
sum of the k largest positive coefficients of x (the greater the Ss, the more
likely a normal testing sample).

Moreover, Tab.2 provides the quantitative comparisons to the state-of-the-art meth-
ods. The AUC of our method without using LSDS and using LSDS are similar,
which are from 0.964 to 0.995 and from 0.971 to 0.9955, respectively; and both
of them outperform [27] and are comparable to [34]. However, our method is a
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more general solution, because it covers both LAE and GAE. Moreover, Nearest
Neighbor (NN) method can also be used in high dimensional space by comparing
the distances between the testing sample and each training samples. The AUC
of NN is 0.93, which is lower than that of our method. This demonstrates the
robustness of our sparse representation method over NN method.

6.4. Local Abnormal Event Detection
6.4.1. UCSD Ped1 Dataset

For the UCSD Ped1 dataset, we split each image into local patches of size 7×7
with 4 pixel overlaps. For event representation, we select type C basis in Fig.5
for incorporating both local spatial and temporal information, with the dimension
m = 7×16 = 102. From each localization, we estimate a dictionary and use it to
determine whether a testing sample is normal or not. A spatio-temporal smooth is
adopted here for eliminating noise, which can be seen as a simplified version of
spatio-temporal Markov Random Filed [16].

Some testing results are shown in Fig.9, where both our approach with and
without LSDS get satisfied results and outperform the state-of-the-art. Our ap-
proach can detect abnormal events such as bikers, skaters, small cars, etc. In
Fig.10, we compare our method with MDT, Social force and MPPCA in [23] by
using pixel-level and frame-level measurements defined in [23]. It shows that our
ROC curve is better than others, and our approach with or without LSDS get sim-
ilar results. In Tab.3, the performance is evaluated using different criteria: for the
Equal Error Rate (EER), our method using LSDS is 20%, which is higher than
our method without using LSDS but lower than other methods 25%[23]; for Rate
of Detection (RD), ours using LSDS is the same as our previous version 46%
and higher than the state-of-the-art methods 45% [23]; and for Area Under Curve
(AUC), ours make a bit improvement from 46.1% to 48.7%, and both of them
outperforms other methods, e.g 44.1%[23]. Therefore, it demonstrates that our
algorithm outperforms the state-of-the-art methods.

6.4.2. Subway Dataset
For the subway dataset [1], we resized the frames from 512×384 to 320×240

and divided the new frames into 15×15 local patches with 6 pixel overlaps. For
event representation, the type B basis in Fig.5 is adopted with the dimension of
m = 16×5 = 80. The first 10 minute video is collected for estimating an optimal
dictionary. The patch-level ROC curves of both two data sets are presented in
Fig.13, where the positive detection and false positive correspond to each individ-
ual patch, and the AUCs are about 80% and 83%.
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Figure 8: The qualitative results of the global abnormal event detection using our method with
LSDS for three sample videos from UMN dataset, which is similar to Fig.3 in [7]. The top row
represents the result for a video in the dataset. The ground truth bar and the detection result bar
represent the labels of each frame for that video, and green color denotes the normal frames and
red corresponds to abnormal frames.

24



(a) (b) (c) (d)

i

ii

iii

iV

Figure 9: Examples of abnormal detections using (i) the MDT approach [23], (ii) the SF-MPPCA
approach [23], (iii) our approach without Large Scale Dictionary Selection (LSDS) and (iv) our
approach with LSDS, where our approach with or without LSDS get similar results. For MDT,
its results are not accurate, which contain many background regions; and for SF-MPPCA, it com-
pletely misses the skater in (b), the person running in (c) and the biker in (d); moreover, both MDT
and SF-MPPCA miss the person walking on the grass in (c). In contrast, our approach using sparse
representation can outperform the state-of-the-art methods and obtain satisfactory results,

The detected results are shown in Fig.11. In additional to wrong direction
events, the no-payment events are also detected, which are very similar to the nor-
mal ”checking in” action. The event-level evaluation is shown in Tab.4, which are
divided into two parts depending on different groundtruth definitions. Only our
method can detect all the wrong direction events accurately. Moreover, in con-
trast to [1], our approach can also keep a higher accuracy for no-payment events,
because the designed temporal basis contains the temporal causality context. For
the measurement of false alarm, our method is also the lowest one.

For these three dataset of GAE and LAE, we find that our improved version
using LSDS gets similar result as our previous one [7], this is because both of
them select the most efficient bases to construct the dictionary and use them for
sparse reconstruction. However, our LSDS can handle large scale training data,
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EER RD AUC
SF [23] 31% 21% 17.9%
MPPCA [23] 40% 18% 20.5%
SF-MPPCA [23] 32% 18% 21.3%
MDT [23] 25% 45% 44.1%
Adam[1] 38% 24% 13.3%
Sparse 19% 46% 46.1%
Sparse+LSDS 20% 46% 48.7%

Table 3: The statistical result of UCSD Ped1 dataset. Quantitative comparison of our method with
[23]: EEE is equal error rate, RD is rate of detection, and AUC is the area under ROC.

Wrong Direction No-Pay Total False Alarm
Ground truth [1] 21/9 10/- 31/9 -/-

Adam[1] 17/9 -/- 17/9 4/2
Ours 21/9 6/- 27/9 4/0

Ground truth [16] 26/9 13/3 39/12 -/-
Kim [16] 24/9 8/3 32/12 6/3
Zhao [38] 25/9 9/3 34/12 5/2

Table 4: Comparison of accuracy for both subway videos. The first number in the slash (/) denotes
the entrance gate result; the second is for the exit gate result. Due to different groundtruth annota-
tions [1, 16], the table is classified into two parts. Nevertheless, our method is more accurate and
has low false alarms rate than the state-of-the-art methods.
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Figure 10: The result of UCSD Ped1 dataset. (a) Frame-level ROC for Ped1 Dataset, (b) Pixel-
level ROC for Ped1 Dataset.

which is crucial in practical applications. All experiments are run on the computer
with 2GB RAM and 2.6GHz CPU. The average computation time is 0.8 s/frames
for GAE, 3.8 s/frame for UCSD dataset, and 4.6 s/frame for the Subway dataset.

6.5. Comparison: L2,1 Norm Vs. Frobenius Norm
Some readers may ask why we use group sparsity, and whether sparsity is

really effective or not. To answer these questions, we define a similar dictionary
selection model using Frobenius norm to compare with our dictionary selection
model using group sparsity, i.e. L2,1, as below:

Fs = argmin
X

1
2
‖B−BX‖2

F +λ2‖X‖2
F , (23)

where X ∈Rk×k and B ∈Rm×k. To pursuit X, we can get a close-form solution as
Eq.(24), which can be proved in Appendix.Appendix B:

X = (BT B+λ2I)−1BT B. (24)

Now, let us compare our dictionary selection model using group sparsity with
the Frobenius norm version in Eq.(23) using synthesized data. The original fea-
ture set B with each column as an independently feature is collected from three
gaussian models, where the mean and covariance matrix of each gaussian model is
randomly generated. Then we randomly sample each gaussian model to generate
B. In detail here, each feature dimension is m = 50, and we randomly sample 300
features from each gaussian model, so that we totally have 900 candidate features.
Then we set λ = λ2 and give them different values to compare the results. A demo

27



E
x
i
t

E
n
t
r
a
n
c
e

A B C D

G HE F

Figure 11: Example abnormal event detected by our algorithm. The top row and bottom row are
from exit and entrance video set, respectively, and red masks contained into the yellow rectangle
indicate where the abnormal is detected, including wrong direction (A-F) and no-payments(G-H).

result is shown in Fig.12 (λ = λ2 = 40), obviously, the result of group sparsity in
Fig.12(a) is sparse, we can easily select features of B with score ‖Xi.‖2

2 > 0 as dic-
tionary; however, in Fig.12(b), as we use Frobenius norm, nearly the score of all
the features are greater than zero, which makes it hard to select the dictionary. In
Fig.12(c) and Fig.12(d), we rerank the score, the result of our group sparsity mod-
el using L2,1 norm automatically select about 250 features from 900 features as
dictionary, and in contrast the result of dictionary selection model using Frobenius
norm cannot work well. Fig.12 is only one of our experiments, in other cases, the
results are also similar, thus we can conclude that our dictionary selection model
using group sparsity, L2,1, is effective.

7. Conclusion

In this paper, we propose a new criterion, sparse reconstruction cost (SRC), for
abnormal event detection in the crowded scene. Whether a testing sample is ab-
normal or not is determined by its sparse reconstruction cost, through a weighted
linear reconstruction of the over-completed normal bases. Our proposed dictio-
nary selection method supports a robust estimation of the dictionary with minimal
size; and with the help of the low rank constraint, it can not only deal with large
scale training samples, but also require less memory cost than our previous work
[7]. Thanks to the flexibility in designing the basis, our method can easily handle
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Figure 12: We compare the dictionary selection model using L2,1 norm with Frobenius norm. The
result using group sparsity, i.e. L2,1 norm, is sparse and effective.

both local abnormal events (LAE) and global abnormal events (GAE). By incre-
mentally updating the dictionary, our method also supports online event detection.
The experiments on three benchmark datasets show favorable results when com-
pared with the state-of-the-art methods. In fact, our algorithm provides a general
solution for outlier detection; and can also be applied to other applications, such
as event/action recognition.
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Figure 13: The frame-level ROC curve for both subway entrance and exit datasets

Appendix A. Appendix A

We prove Theorem 1 here, where the optimization problem min
X

: pZ,L(X) can

be equivalently written as:

min
X

: f0(Z)+ 〈∇ f0(Z),X−Z〉+ L
2
‖X−Z‖2

F +λ‖X‖2,1

⇔min
X

:
L
2
‖(X−Z)+

1
L

∇ f0(Z))‖2
F +λ‖X‖2,1

⇔min
X

:
L
2
‖X− (Z− 1

L
∇ f0(Z))‖2

F +λ‖X‖2,1

⇔min
X

:
L
2
‖X− (Z− 1

L
∇ f0(Z))‖2

F +λ

k

∑
i=1
‖Xi.‖2

(A.1)
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Since the L2 norm is self dual, the problem above can be rewritten by introducing
a dual variable Y ∈ Rk×k:

min
X

:
L
2
‖X− (Z− 1

L
∇ f0(Z))‖2

F +λ

k

∑
i=1

max
‖Yi.‖2≤1

〈Yi.,Xi.〉

⇔ max
‖Yi.‖2≤1

min
X

:
L
2
‖X− (Z− 1

L
∇ f0(Z))‖2

F +λ

k

∑
i=1
〈Y,X〉

⇔ max
‖Yi.‖2≤1

min
X

:
1
2
‖X− (Z− 1

L
∇ f0(Z)−

λ

L
Y)‖2

F

− 1
2
‖Z− 1

L
∇ f0(Z)−

λ

L
Y‖2

F

(A.2)

The second equation is obtained by swapping “max” and “min”. Since the func-
tion is convex with respect to X and concave with respect to Y, this swapping
does not change the problem by the Von Neumann minimax theorem. Letting
X = Z− 1

L∇ f0(Z)− λ

L Y, we obtain an equivalent problem from the last equation
above

max
‖Yi.‖2≤1

: − 1
2
‖Z− 1

L
∇ f0(Z)−

λ

L
Y‖2

F (A.3)

Using the same substitution as above,

Y =−L
λ
(X−Z+

1
L

∇ f0(Z)), (A.4)

we change it into a problem in terms of the original variable X as

min
‖ L

λ
(X−Z+ 1

L ∇ f0(Z))i.‖2≤1
: ‖X‖2

F ⇔
k

∑
i=1

min
‖Xi.−(Z− 1

L ∇ f0(Z))i.‖2≤ λ

L

: ‖Xi.‖2
2. (A.5)

Therefore, the optimal solution of the first problem in Eq.(A.5) is equivalent to the
last problem in Eq.(A.5). Actually, each row of X can be optimized independently
in the last problem. Considering each row of X respectively, we can get the closed
form as

argmin
X

pZ,L(X) = D λ

L
(Z− 1

L
∇ f0(Z)). (A.6)

Appendix B. Appendix B

As Frobenius norm can be considered as a kind of L2 norm, it can be rewritten
as ‖X‖2

F = tr(XT X), where tr(A) = ∑i Aii is the trace of matrix A. Thus, we can
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rewrite Eq.(23) as

Fs = argmin
B

tr((B−BX)T (B−BX))+λ2 tr(XT X), (B.1)

where B ∈ Rm×k and X ∈ Rk×k. In order to solve this equation, we derivative it,

∂Fs

∂X
= 0. (B.2)

Obviously, this is a convex optimization, and the quadratic optimization can be
used to solve it. As

∂ tr(AB)
tr(A)

=
∂ tr(BA)

tr(A)
= B (B.3)

We have

∂ tr((B−BX)T (B−BX))+λ2 tr(XT X)

∂X
= 0, (B.4)

∂ tr(BT B−BT BX−XT BT B+XT BT BX)+λ2 tr(XT X)

∂X
= 0. (B.5)

So, we can get

−2BT B+2BT BX +λ22X = 0, (B.6)

that is (BT B+λ2I)X = BT B, (B.7)

where I ∈ Rk×k is an identity matrix. Usually, λ2 > 0, so (BT B+ λ2I) is a full
rank matrix and has an inverse matrix, therefore we have a close-form solution of
X for Eq.(23) as

X = (BT B+λ2I)−1BT B. (B.8)
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