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Abstract

We propose to detect abnormal events via a sparse recon-

struction over the normal bases. Given an over-complete

normal basis set (e.g., an image sequence or a collection of

local spatio-temporal patches), we introduce the sparse re-

construction cost (SRC) over the normal dictionary to mea-

sure the normalness of the testing sample. To condense the

size of the dictionary, a novel dictionary selection method

is designed with sparsity consistency constraint. By intro-

ducing the prior weight of each basis during sparse re-

construction, the proposed SRC is more robust compared

to other outlier detection criteria. Our method provides a

unified solution to detect both local abnormal events (LAE)

and global abnormal events (GAE). We further extend it to

support online abnormal event detection by updating the

dictionary incrementally. Experiments on three benchmark

datasets and the comparison to the state-of-the-art methods

validate the advantages of our algorithm.

1. Introduction

The Oxford English Dictionary defines abnormal as:

deviating from the ordinary type, especially in a way

that is undesirable or prejudicial; contrary to the nor-

mal rule or system; unusual, irregular, aberrant.

According to the definition, the abnormal events can be

identified as irregular events from normal ones. Thus,

the task is to identify abnormal (negative) events given

the normal (positive) training samples. To address this

one-class learning problem, most conventional algorithms

[2, 15, 14, 20] intend to detect testing sample with lower

probability as anomaly by fitting a probability model over

the training data. As a high-dimensional feature is essen-

tial to better represent the event and the required number

of training data increases exponentially with the feature di-

mension, it is unrealistic to collect enough data for density

estimation in practice. For example, for our global abnor-

mal detection, there are only 400 training samples with di-

(a) Reconstruction Coefficients of Normal & Abnormal samples.

(b) Frame-level SRC (Sw).

Figure 1. (a) Top left: the normal sample; top right: the sparse re-

construction coefficients; bottom left: the abnormal sample; bot-

tom right: the dense reconstruction coefficients. (b) Frame-level

Sparsity Reconstruction Cost (SRC): the red/green color corre-

sponds to abnormal/normal frame, respectively. It shows that the

SRC (Sw) of abnormal frame is greater than normal ones, and we

can identify abnormal events accordingly.

mension of 320. With such a limited training samples, it is

difficult to even fit a Gaussian model. Sparse representation

is suitable to represent high-dimensional samples, we thus

propose to detect abnormal events via a sparse reconstruc-

tion from normal ones. Given an input test sample y ∈ R
m,

we reconstruct it by a sparse linear combination of an over-

complete normal (positive) basis set Φ = R
m×D, where

m < D. To quantify the normalness, we propose a novel

sparse reconstruction cost (SRC) based on the weighted l1
minimization. As shown in Fig.1, a normal event is likely to

generate sparse reconstruction coefficients with a small re-

construction cost, while abnormal event is dissimilar to any

of the normal basis, thus generates a dense representation

with a large reconstruction cost.

Depending on the applications, we classify the abnor-

mal events into two categories: the local abnormal event

(LAE), where the local behavior is different from its spatio-
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temporal neighborhoods; or the global abnormal event

(GAE), where the whole scene is abnormal, even though

any individual local behavior can be normal. To handle both

cases, the definition of training basis y can be quite flexible,

such as image patch or spatio-temporal subvolume. It thus

provides a general way of representing different types of

abnormal events. Moreover, we propose a new dictionary

selection method to reduce the size of the basis set Φ for

an efficient reconstruction of y. The weight of each basis is

also learned to indicate its individual normalness, i.e., the

occurrence frequency. These weights form a weight matrix

W which serves as a prior term in the l1 minimization.

We evaluate our method in three datasets and the com-

parison with the state-of-the-art methods validate the fol-

lowing advantages of our proposed methods:

• We take into account the prior of each basis as the

weight for l1 minimization and propose a criterion

(SRC) to detect abnormal event, which outperforms

the existing criterion, e.g., Sparsity Concentration In-

dex in [25].

• Benefitting from our new dictionary selection model

using sparsity consistency, our algorithm can generate

a basis set of minimal size and discard redundant and

noisy training samples, thus increases computational

efficiency accordingly.

• By using different types of basis, we provide a uni-

fied solution to detect both local and global abnormal

events in crowded scenes. Our method can also be

extended to online event detection via an incremental

self-update mechanism.

2. Related Work

Research in video surveillance has made great pro-

gresses in recent years, such as background model [22], ob-

ject tracking [3], pedestrian detection [8], action recognition

[27] and crowd counting [7]. Abnormal event detection, as

a key application in video surveillance, has also provoked

great interests. Depending on the specific application, the

abnormal event detection can be classified into those in the

crowded scenes and those in the un-crowded scenes. For the

un-crowded scenario, binary features based on background

model have been adopted, such as Normalization Cut clus-

tering by Hua et al. [29] and 3D spatio-temporal foreground

mask feature fusing Markov Random Field by Benezeth et

al. [4]. There are also some trajectory-based approaches to

locate objects by tracking or frame-difference, such as [10],

[24], [21] and [13].

For the crowded scenes, according to the scale, the prob-

lem can be classified into LAE and GAE. Most of the state-

of-the-art methods consider the spatio-temporal informa-

tion. For LAE, most work extract motion or appearance

features from local 2D patches or local 3D bricks, like his-

togram of optical flow, 3D gradient, etc; the co-occurrence

matrices are often chosen to describe the context informa-

tion. For example, Adam et al. [2] use histograms to mea-

sure the probability of optical flow in a local patch. Kratz

et al. [15] extract spatio-temporal gradient to fit Gaus-

sian model, and then use HMM to detect abnormal events.

The saliency features are extracted and associated by graph

model in [12]. Kim et al. [14] model local optical flow with

MPPCA and enforce the consistency by Markov Random

Field. In [23], a graph-based non-linear dimensionality re-

duction method is used for abnormality detection. Mahade-

van et al.[18] model the normal crowd behavior by mixtures

of dynamic textures.

For the GAE, Mehran et al. [20] present a new way to

formulate the abnormal crowd behavior by adopting the so-

cial force model [9], and then use Latent Dirichlet Allo-

cation (LDA) to detect abnormality. In [26], they define a

chaotic invariant to describe the event. Another interesting

work is about irregularities detection by Boiman and Irani

[5, 6], in which they extract 3D bricks as the descriptor and

use dynamic programming as inference algorithm to detect

the anomaly. Since they search the current feature from all

the features in the past, this approach is time-consuming.

3. Our Method

3.1. Overview

In this paper, we propose a general abnormal event de-

tection framework using sparse representation for both LAE

and GAE. The key part of our algorithm is the sparsity pur-

suit, which has been a hot topic in machine learning recently

and includes cardinality sparsity [11], group sparsity [28],

matrix or tensor rank sparsity [17]. Assisted by Fig.1-2, we

will show the basic idea of our algorithm. In Fig.2(C), each

point is a feature point in a high dimensional space; vari-

ous features are chosen for LAE or GAE depending on the

circumstances, which is concatenated by Multi-scale His-

togram of Optical Flow (MHOF), as in Fig.2(B). Usually at

the beginning, only several normal frames are given for ini-

tialization and features are extracted to generate the whole

feature pool B (the light blue points), which contains redun-

dant noisy points. Using sparsity consistency in Sec.3.5, an

optimal subset B′ with a small size is selected from B as

training dictionary, e.g. dark blue points in Fig.2(C), where

the radius of each blue point relates to its importance, i.e.

its weight.

In Sec.3.4, we introduce how to test the new sample y.

Each testing sample y could be a sparse linear combina-

tion of the training dictionary by a weighted l1 minimiza-

tion. Whether y is normal or not is determined by the linear

reconstruction cost Sw, as shown in Fig.1. Moreover, our

system can also online self-update, as will be discussed in
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Figure 2. (A) The Multi-scale HOF is extracted from a basic unit (2D image patch or 3D brick) with 16 bins. (B) The flexible spatio-

temporal basis for sparse representation, such as type A, B and C, concatenated by MHOF from basic units. (C) The illustration of our

algorithm. The green or red point indicates the normal or abnormal testing sample, respectively. An optimal subset of representatives (dark

blue point) are selected from redundant training features (light blue points) as basis to constitute the normal dictionary, where its radius

indicates the weight. The larger the size, the more normal the representative. Then, the abnormal event detection is to measure the sparsity

reconstruction cost (SRC) of a testing sample (green or red points) over the normal dictionary (dark blue points).

Sec.3.5. The Algorithm is shown in Alg.2.

3.2. Multi-scale HOF and Basis Definition

To construct the basis for sparse representation, we pro-

pose a new feature descriptor called Multi-scale Histogram

of Optical Flow (MHOF). As shown in Fig.2(A), the MHOF

has K=16 bins including two scales. The smaller scale uses

the first 8 bins to denote 8 directions with motion magnitude

r < Tr; the bigger scale uses the next 8 bins corresponding

to r ≥ Tr (Tr is the magnitude threshold). Therefore, our

MHOF not only describes the motion direction information

as traditional HOF, but also preserves the more precise mo-

tion energy information. After estimating the motion field

by optical flow [16], we partition the image into a few basic

units, i.e. 2D image patches or spatio-temporal 3D bricks,

then extract MHOF from each unit.

To handle different local abnormal events (LAE) and

global abnormal events (GAE), we propose several bases

with various spatio-temporal structures, whose representa-

tion by a normalized MHOF is illustrated in Fig.2(B). For

GAE, we select the spatial basis covering the whole frame.

For LAE, we extract the temporal or spatio-temporal basis

that contains spatio-temporal contextual information, such

as the 3D Markov Random Field [14]. And the spatial

topology structure can take place the co-occurrance matrix.

In general, our definition of the basis is very flexible and

other alternatives are also acceptable.

3.3. Dictionary Selection

In this section, we address the problem of how to select

the dictionary given an initial candidate feature pool as B =
[b1,b2, · · · ,bk] ∈ R

m×k, where each column vector bi ∈ R
m

denotes a normal feature. Our goal is to find an optimal

subset to form the dictionary B′ = [bi1 ,bi2 , · · · ,bin ] ∈ R
m×n

where i1, i2, · · · , in ∈ {1,2, · · · ,k}, such that the set B can be

well reconstructed by B′ and the size of B′ is as small as

possible. A simple idea is to pick up candidates randomly

or uniformly to build the dictionary. Apparently, this can-

not make full use of all candidates in B. Also it is risky to

miss important candidates or include the noisy ones, which

will affect the reconstruction. To avoid this, we present a

principled method to select the dictionary. Our idea is that

we should select an optimal subset of B as the dictionary,

such that the rest of the candidates can be well reconstructed

from it. More formally, we formulate the problem as fol-

lows:

min
X

:
1

2
‖B−BX‖2

F +λ‖X‖1, (1)

where X ∈ R
k×k; the Frobenius norm ‖X‖F is defined as

‖X‖F := (∑i, j X2
i j)

1
2 ; and the l1 norm is defined as ‖X‖1 :=

∑i, j |Xi j|. However, this tends to generate a solution of X

close to I, which leads the first term of Eq. 1 to zero and is

also very sparse. Thus, we need to require the consistency

of the sparsity on the solution, i.e., the solution needs to

contain some “0” rows, which means that the correspond-

ing features in B are not selected to reconstruct any data

samples. We thus change the l1 norm constraint in Eq. 1

into the l2,1 norm, defined as ‖X‖2,1 := ∑
k
i=1 ‖Xi.‖2, where

Xi. denotes the ith row of X. The problem is now formulated

as:

min
X

:
1

2
‖B−BX‖2

F +λ‖X‖2,1. (2)

The dictionary B′ is constituted by selecting basis with

‖Xi.‖2 6= 0. The l2,1 norm is indeed a general version of the

l1 norm since if X is a vector, then ‖X‖2,1 = ‖X‖1. In ad-

dition, ‖X‖2,1 is equivalent to ‖x‖1 by constructing a new

vector x ∈ R
k with xi = ‖Xi.‖2. From this angle, it is not
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hard to understand that Eq. 1 leads to a sparse solution for

X, i.e., X is sparse in terms of rows.

Next we show how to solve this optimization problem

in Eq. 2, which is a convex but nonsmooth optimization

problem. Since ‖X‖2,1 is nonsmooth, although the general

optimization algorithm (the subgradient descent algorithm)

can solve it, the convergence rate is quite slow. Recently,

Nesterov [19] proposed an algorithm to efficiently solve a

type of convex (but nonsmooth) optimization problem and

guarantee a convergence rate of O(1/K2) (K is the iteration

number), which is much faster than the subgradient decent

algorithm of O(1/
√

K). We thus follow the fundamental

framework of Nesterov’s method in [19] to solve this prob-

lem in Eq. 2. Consider an objective function f0(x)+ g(x)
where f0(x) is convex and smooth and g(x) is convex but

nonsmooth. The key technique of Nesterov’s method is to

use pZ,L(x) := f0(Z)+ 〈∇ f0(Z),x−Z〉+ L
2
‖x−Z‖2

F +g(Z)
to approximate the original function f (x) at the point Z. At

each iteration, we need to solve argmin
x

: pZ,L(x).

In our case, we define f0(X) = 1
2
‖B−BX‖2

F , g(X) =
λ‖X‖2,1. So we have

pZ,L(X)= f0(Z)+〈∇ f0(Z),X−Z〉+ L

2
‖X−Z‖2

F +λ‖X‖2,1

(3)

Then we can get the closed form solution of Eq.3 according

to the following theorem:

Theorem 1:

argmin
X

pZ,L(X) = D λ
L
(Z− 1

L
∇ f0(Z)), (4)

where Dτ(.) : M ∈ R
k×k 7→ N ∈ R

k×k

Ni. =

{

0, ‖Mi.‖ ≤ τ;

(1− τ/‖Mi.‖)Mi., otherwise.
(5)

We will derive it in the Appendix, and the whole algorithm

is presented in Alg. 1.

3.4. Sparse Reconstruction Cost using Weighted l1
Minimization

This section details how to determine a testing sample

y to be normal or not. As we mentioned in the previous

subsection, the features of a normal frame can be linearly

constructed by only a few bases in the dictionary B′ while

an abnormal frame cannot. A natural idea is to pursue a

sparse representation and then use the reconstruction cost to

judge the testing sample. In order to advance the accuracy

of prediction, two more factors are considered here:

• In practice, the deformation or any un-predicated sit-

uation may happen to the video. Motivated by [25],

we extend the dictionary from B′ to Φ = [B′,Im×m] ∈
R

m×D, and D = n+m.

Algorithm 1 Dictionary Selection

Input: B, λ > 0, K, X0, c

Output: X

1: Initialize Z0 = X0, a0 = 1.

2: for k = 0,1,2, ...,K do

3: Xk+1 = argmin
X

: pZk,L(X) = D λ
L
(Zk− 1

L
∇ f0(Zk))

4: while f (Xk+1)> pZk,L(Xk+1) do

5: L = L/c

6: Xk+1 = argmin
X

: pZk,L(X) =D λ
L
(Zk− 1

L
∇ f0(Zk))

7: end while

8: ak+1 = (1+
√

1+4a2
k)/2

9: Zk+1 =
(

ak+1+ak−1

ak+1

)

Xk+1−
(

ak−1
ak+1

)

Xk

10: end for

• If a basis in the dictionary appears frequently in the

training dataset, then the cost to use it in the recon-

struction should be lower, since it is a normal basis

with high probability. Therefore, we design a weight

matrix W = diag[w1,w2, ...,wn,1, ...,1] ∈ R
D×D to

capture this prior information. Each wi ∈ [0,1] cor-

responds to the cost of the ith feature. For the artificial

feature set Im×m in our new dictionary Φ, the cost for

each feature is set to 1. The way to dynamically update

W will be introduced in the following section.

Now, we are ready to formulate this sparse reforestation

problem:

x∗ = argmin
x

1

2
‖y−Φx‖2

2 + λ1‖Wx‖1, (6)

where x = [x0,e0]
T , x0 ∈ R

n, and e0 ∈ R
m. This can

be solved by linear programming using the interior-point

method, which uses conjugate gradients algorithm to com-

pute the optimized direction. Given a testing sample y, we

design a Sparsity Reconstruction Cost (SRC) using the min-

imal objective function value of Eq.6 to detect its abnormal-

ity:

Sw =
1

2
‖y−Φx∗‖2

2 + λ1‖Wx∗‖1. (7)

A high SRC value implies a high reconstruction cost and a

high probability of being an abnormal sample. In fact, the

SRC function also can be equivalently mapped to the frame-

work of Bayesian decision like in [11]. From a Bayesian

view, the normal sample is the point with a higher proba-

bility, on the contrary the abnormal (outlier) sample is the

point with a lower probability. We can estimate the normal
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Algorithm 2 Abnormal Event Detection Framework

Input: Training dictionary Φ, basis weight matrix W0, se-

quential input testing sample Y ∈ [y1,y2, · · · ,yT ]
Output: W

1: for t = 1, · · · ,T do

2: Pursuit the coefficient x∗ by l1 minimization:

3: x∗ = argmin
x

1
2
‖yt −Φx‖2

2 +‖Wt−1x‖1

4: Calculate SRC function St
w by Eq.7

5: if y is normal then

6: Select top K basis coefficients of x∗

7: Update Wt ←−Wt−1

8: end if

9: end for

sample by maximizing the posteriori as follows:

x⋆ = argmax
x

p(x|y,Φ,W) = argmax
x

p(y|x,Φ,W)p(x|Φ,W)

= argmax
x

p(y|x,Φ)p(x|W)

= argmin
x
− [log p(y|x,Φ)+ log p(x|W)]

= argmin
x
(

1

2
‖y−Φx‖2

2 +λ1‖Wx‖1),

(8)

where the first term is the likelihood p(y|x,Φ) ∝

exp(− 1
2
‖y − Φx‖2

2), and the second term p(x;W) ∝

exp(−λ1‖Wx‖1) is the prior distribution. This is consistent

with our SRC function, as the abnormal samples correspond

to smaller p(y|x,Φ), which results in greater SRC values.

3.5. Self-Updating

For a normal sample y, we selectively update weight ma-

trix W and dictionary Φ by choosing the top K bases with

the highest positive coefficients of x∗0 ∈ R
n, and we denote

the top K set as Sk = [s1, · · · ,sk].
As we have mentioned above, the contribution of each

basis to the l1 minimization reconstruction is not equal. In

order to measure such a contribution, we use W to assign

each basis a weight. The bases with higher weight, should

be used more frequently and are more similarity to normal

event and vice verse. We initialize W from matrix X of

dictionary selection in Alg.1, i.e.,

β 0
i = ‖Xi.‖2, w0

i = 1−
β 0

i

‖β 0‖1

, (9)

where β = [β1, . . . ,βn] ∈ R
n denotes the accumulate coeffi-

cients of each basis, and wi ∈ [0,1] (the smaller the value of

wi, the more likely a normal sample it is). The top K bases

in W can be updated as follows:

β t+1
i = β t

i +x∗i , {i ∈Sk}, wt+1
i = 1−

β t+1
i

‖β t+1‖1

, (10)

where Sk is the index set of the top K features in W.

4. Experiments and Comparisons

To test the effectiveness of our proposed algorithm, we

systematically apply it to several published datasets. The

UMN dataset [1] is used to test the GAE; and the UCSD

dataset [18] and the Subway dataset [2] are used to detect

LAE. Moreover, we re-annotate the groundtruth of the Sub-

way dataset using bounding boxes, where each box con-

tains one abnormal event. Three different levels of mea-

surements are applied for evaluation, which are Pixel-level,

Frame-level and Event-level measurements.

4.1. Global Abnormal Event Detection

The UMN dataset consists of 3 different scenes of

crowded escape events, and the total frame number is 7740

(1450, 4415 and 2145 for scenes 1−3, respectively) with a

320× 240 resolution. We initialize the training dictionary

from the first 400 frames of each scene, and leave the others

for testing. The type A basis in Fig.2(B), i.e., spatial basis,

is used here. We split each image into 4×5 sub-regions, and

extract the MHOF from each sub-region. We then concate-

nate them to build a basis with a dimension m = 320. Be-

cause the abnormal events cannot occur only in one frame,

a temporal smooth is applied.

The results are shown in Fig.3, the normal/abnormal re-

sults are annotated as red/green color in the indicated bars

respectively. In Fig.4, the ROC curves by frame-level mea-

surement are shown to compare our SRC to three other mea-

surements, which are

i. SRC with W as an identity matrix in Eq.7, S = 1
2
‖y−

Φx∗‖2
2 +λ1‖x

∗‖1.

ii. by formulating the sparse coefficient as a probability

distribution, the entropy is used as a metric: SE =
−∑i pi log pi, where p(i)= |x(i)|/‖x‖1, thus sparse co-

efficients will lead to a small entropy value.

iii. concentration function similar to [25], SS =
Tk(x)/‖x‖1, where Tk(x) is the sum of the k largest

positive coefficients of x (the greater the Ss the more

likely a normal testing sample).

Moreover, Table 1 provides the quantitative comparisons to

the state-of-the-art methods. The AUC of our method is

from 0.964 to 0.995, which outperforms [20] and is compa-

rable to [26]. However, our method is a more general solu-

tion, because it covers both LAE and GAE. Moreover, Near-

est Neighbor (NN) method can also be used in high dimen-

sional space by comparing the distances between the testing

sample and each training samples. The AUC of NN is 0.93,

which is lower than ours. This demonstrates the robustness

of our sparse representation method over NN method.
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Figure 3. The qualitative results of the global abnormal event detection for three sample videos from UMN dataset. The top row represents

snapshots of the result for a video in the dataset. At the bottom, the ground truth bar and the detection result bar show the labels of each

frame for that video, where green color denotes the normal frames and red corresponds to abnormal frames.

Figure 5. Examples of local abnormal event detections for UCSD Ped1 datasets. The objects, such as biker, skater and vehicle are all well

detected.

Method Area under ROC

Chaotic Invariants [26] 0.99

Social Force[20] 0.96

Optical flow [20] 0.84

NN 0.93

Ours Scene1 0.995

Ours Scene2 0.975

Ours Scene3 0.964
Table 1. The comparison of our proposed method with the state-

of-the-art methods for GAE detection in the UMN dataset.

Figure 4. The ROCs for frame-level GAE detection in the UMN

dataset. We compare different evaluation measurements, including

SRC, SRC with W = I, concentration function SS and entropy SE .

Our proposed SRC outperforms other measurements.

4.2. Local Abnormal Event Detection

4.2.1 UCSD Ped1 Dataset

The UCSD Ped1 dataset contains pixel-level groundtruth.

The training set contains 34 short clips for learning of nor-

mal patterns, and there is a subset of 10 clips in testing

set provided with pixel-level binary masks, which identify

the regions containing abnormal events. Each clip has 200

frames, with a 158× 238 resolution. We split each frame

into 7× 7 local patches with 4-pixel overlapping. Type C

basis in Fig.2(B), spatio-temporal basis, is selected to in-

corporate both local spatial and temporal information, with

a dimension m = 7×16 = 102. From each spatial location,

we estimate a dictionary and use it to determine whether a

testing sample is normal or not. A spatio-temporal smooth

is adopted here to eliminate noise, which can be seen as

a simplified version of spatio-temporal Markov Random

Field [14].

Some image results are shown in Fig.5. Our algorithm

can detect bikers, skaters, small cars, etc. In Fig.6, we com-

pare our method with MDT, Social force and MPPCA, etc.

Both pixel-level and frame-level measurements are defined

in [18]. It is easy to find that our ROC curve outperforms

others. In Fig.6(c), some evaluation results are presented:

the Equal Error Rate (EER) (ours 19% < 25%[18]), Rate

of Detection (RD) (ours 46% > 45%[18]) and Area Under

Curve (AUC) (ours 46.1% > 44.1%[18]), we can conclude

that the performance of our algorithm outperforms the state-

of-the-art methods.

4.2.2 Subway Dataset

The subway dataset is provided by Adam et al.[2], includ-

ing two videos: “entrance gate” (1 hour 36 minutes long

with 144249 frames) and “exit gate” (43 minutes long with

64900 frames). In our experiments, we resized the frames
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EER RD AUC

SF [18] 31% 21% 17,9%

MPPCA [18] 40% 18% 20.5%

SF-MPPCA [18] 32% 18% 21.3%

MDT [18] 25% 45% 44.1%

Adam[2] 38% 24% 13.3%

Sparse 19% 46% 46.1%

(c)

Figure 6. The detection results of UCSD Ped1 dataset. (a) Frame-level ROCs for Ped1 Dataset, (b) Pixel-level ROCs for Ped1 Dataset, (c)

Quantitative comparison of our method with [18][2]: EER is equal error rate; RD is rate of detection; and AUC is the area under ROC.

Wrong

Direction

No-Pay Total False

Alarm

Ground truth 21/9 10/- 31/9 -/-

Adam[2] 17/9 -/- 17/9 4/2

Ours 21/9 6/- 27/9 4/0
Table 2. Comparisons of accuracy for subway videos. The first

number in the slash (/) denotes the entrance gate result; the second

is for the exit gate result.

from 512× 384 to 320× 240 and divided the new frames

into 15× 15 local patches with 6-pixel overlapping. The

type B basis in Fig.2(B), temporal basis, is used with a di-

mension of m = 16× 5 = 80. The first 10 minutes are col-

lected to estimate an optimal dictionary. The patch-level

ROC curves for both data sets are presented in Fig. 8, where

the positive detection and false positive correspond to each

individual patch, and the AUCs are about 80% and 83%,

respectively.

The examples of detection results are shown in Fig.7. In

additional to wrong direction events, the no-payment events

are also detected, which are very similar to normal “check-

ing in” action. The event-level evaluation is shown in Table

2, our method detects all the wrong direction events, and

also has a higher accuracy for no-payment events, compar-

ing to others. This is because we use temporal basis which

contains temporal causality context.

All experiments are run on a computer with 2GB RAM

and a 2.6GHz CPU. The average computation time is

0.8s/frame for GAE, 3.8s/frame for UCSD dataset, and

4.6s/frame for the Subway dataset.

5. Conclusion

We propose a new criterion for abnormal event detec-

tion, namely the sparse reconstruction cost (SRC). Whether

a testing sample is abnormal or not is determined by its

sparse reconstruction cost, through a weighted linear recon-

struction of the over-complete normal basis set. Thanks to

the flexibility of our proposed dictionary selection model,

our method cannot only support an efficient and robust esti-

mation of SRC, but also easily handle both local abnormal

Figure 7. Examples of local abnormal events detection for Subway

dataset. The top row and bottom row are from exit and entrance

video sets, respectively, and red masks in the yellow rectangle in-

dicate where the abnormality is, including wrong directions (A-D)

and no-payments (E-F).

Figure 8. The frame-level ROC curves for both subway entrance

and exit datasets

events (LAE) and global abnormal events (GAE). By incre-

mentally updating the dictionary, our method also supports

online event detection. The experiments on three bench-

mark datasets show favorable results when compared with

the state-of-the-art methods. Our method can also apply to

other applications, such as event or action recognition.
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Appendix

We prove Theorem 1 here, where the optimization problem

min
X

: pZ,L(X) can be equivalently written as:

min
X

: f0(Z)+ 〈∇ f0(Z),X−Z〉+
L

2
‖X−Z‖2

F +λ‖X‖2,1

⇔min
X

:
L

2
‖(X−Z)+

1

L
∇ f0(Z))‖

2
F +λ‖X‖2,1

⇔min
X

:
L

2
‖X− (Z−

1

L
∇ f0(Z))‖

2
F +λ‖X‖2,1

⇔min
X

:
L

2
‖X− (Z−

1

L
∇ f0(Z))‖

2
F +λ

k

∑
i=1

‖Xi.‖2

(11)

Since the l2 norm is self dual, the problem above can be rewritten

by introducing a dual variable Y ∈ R
k×k:

min
X

:
L

2
‖X− (Z−

1

L
∇ f0(Z))‖

2
F +λ

k

∑
i=1

max
‖Yi.‖2≤1

〈Yi.,Xi.〉

⇔ max
‖Yi.‖2≤1

min
X

:
L

2
‖X− (Z−

1

L
∇ f0(Z))‖

2
F +λ

k

∑
i=1

〈Y,X〉

⇔ max
‖Yi.‖2≤1

min
X

:
1

2
‖X− (Z−

1

L
∇ f0(Z)−

λ

L
Y)‖2

F

−
1

2
‖Z−

1

L
∇ f0(Z)−

λ

L
Y‖2

F

(12)

The second equation is obtained by swapping “max” and “min”.

Since the function is convex with respect to X and concave with

respect to Y, this swapping does not change the problem by the

Von Neumann minimax theorem. Letting X = Z− 1
L ∇ f0(Z)−

λ
L Y, we obtain an equivalent problem from the last equation above

max
‖Yi.‖2≤1

: −
1

2
‖Z−

1

L
∇ f0(Z)−

λ

L
Y‖2

F (13)

Using the same substitution as above, Y = − L
λ
(X − Z +

1
L ∇ f0(Z)), we change it into a problem in terms of the original

variable X as

min
‖ L

λ
(X−Z+ 1

L
∇ f0(Z))i.‖2≤1

: ‖X‖2
F

⇔
k

∑
i=1

min
‖Xi.−(Z−

1
L

∇ f0(Z))i.‖2≤
λ
L

: ‖Xi.‖
2
2.

(14)

Therefore, the optimal solution of the first problem in Eq. 14 is

equivalent to the last problem in Eq. 14. Actually, each row of

X can be optimized independently in the last problem. Consid-

ering each row of X respectively, we can get the closed form as

argmin
X

pZ,L(X) = D λ
L

(Z− 1
L ∇ f0(Z)).
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