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Abstract

In this paper we propose an algorithm to estimate miss-
ing values in tensors of visual data. The values can be miss-
ing due to problems in the acquisition process, or because
the user manually identified unwanted outliers. Our algo-
rithm works even with a small amount of samples and it
can propagate structure to fill larger missing regions. Our
methodology is built on recent studies about matrix com-
pletion using the matrix trace norm. The contribution of
our paper is to extend the matrix case to the tensor case
by laying out the theoretical foundations and then by build-
ing a working algorithm. First, we propose a definition for
the tensor trace norm, that generalizes the established def-
inition of the matrix trace norm. Second, similar to matrix
completion, the tensor completion is formulated as a con-
vex optimization problem. Unfortunately, the straightfor-
ward problem extension is significantly harder to solve than
the matrix case because of the dependency among multiple
constraints. To tackle this problem, we employ a relaxation
technique to separate the dependant relationships and use
the block coordinate descent (BCD) method to achieve a
globally optimal solution. Our experiments show potential
applications of our algorithm and the quantitative evalua-
tion indicates that our method is more accurate and robust
than heuristic approaches.

1. Introduction
In computer vision and graphics, many problems can be

formulated as the missing value estimation problem, e.g.
image in-painting [4, 12, 11], video decoding, video in-
painting, scan completion, and appearance acquisition com-
pletion. The core problem of the missing value estimation
lies on how to build up the relationship between the known
elements and the unknown ones. Some energy methods
broadly used in image in-painting, e.g. PDEs [4] and be-
lief propagation [11] mainly focus on the local relationship.
The basic (implicit) assumption is that the missing entries
mainly depend on their neighbors. The further apart two

points are, the smaller their dependance is. However, some-
times the value of the missing entry depends on the entries
which are far away. Thus, it is necessary to develop a tool
to directly capture the global information in the data.

In the two-dimensional case, i.e. the matrix case, the
“rank” is a powerful tool to capture the global information.
In Fig. 1, we show a texture with 80% of its elements re-
moved randomly on the left and its reconstruction using a
low rank constraint on the right. This example illustrates
the power of low rank approximation for missing data es-
timation. However, “rank(·)” is unfortunately not a convex
function. Some heuristic algorithms were proposed to esti-
mate the missing values iteratively [9, 13]. However, they
are not guaranteed to find a globally optimal solution due to
the non-convexity of the rank constraint.

Figure 1: The left figure contains 80% missing entries
shown as white pixels and the right figure shows its recon-
struction using the low rank approximation.

Recently, the trace norm of matrices was used to approx-
imate the rank of matrices [14, 5, 16], which leads to a con-
vex optimization problem. The trace norm has been shown
to be the tightest convex approximation for the rank of ma-
trices [16], and efficient algorithms for the matrix comple-
tion problem using the trace norm constraint were proposed
in [14, 5]. Recently, Candés and Recht [6, 16] showed that
if a certain restricted isometry property holds for the linear
transformation defining the constraints, the minimum rank
solution can be recovered by solving a convex optimization
problem, namely the minimization of the trace norm over



the given affine space. Their work theoretically justified the
validity of the trace norm to approximate the rank.

Although the low rank approximation problem has been
well studied for matrices, there is not much work on tensors,
which are a higher-dimensional extension of matrices. One
major challenge lies in an appropriate definition of the trace
norm for tensors. To the best of our knowledge, this has
been not addressed in the literature. In this paper, we make
two main contributions: 1) We lay the theoretical founda-
tion of low rank tensor completion and propose the first def-
inition of the trace norm for tensors. 2) We are the first to
propose a solution for the low rank completion of tensors.

The challenge of the second part is to build a high quality
algorithm. Similar to matrix completion, the tensor comple-
tion is formulated as a convex optimization problem. Un-
fortunately, the straightforward problem extension is sig-
nificantly harder to solve than the matrix case because of
the dependency among multiple constraints. To tackle this
problem, we employ a relaxation technique to separate the
dependant relationships and use the block coordinate de-
scent (BCD) method to achieve a globally optimal solution.
In addition, we present several heuristic algorithms, which
involve non-convex optimization problems. Our experi-
ments show our method is more accurate and robust than
these heuristic approaches. We also give some potential
applications in image in-painting, video compression and
BRDF data estimation, using the tensor completion tech-
nique.

1.1. Notation

We use upper case letters for matrices, e.g. X, and lower
case letters for the entries, e.g. xij . Σ(X) is a vector,
consisting of the singular values of X in descending or-
der and σi(X) denotes the ith largest singular value. The
Frobenius norm of the matrix X is defined as: ‖X‖F :=
(
∑

i,j |xij |2) 1
2 . The spectral norm is denoted as ‖X‖2 :=

σ1(X) and the trace norm as ‖X‖tr :=
∑

i σi(X). Let
X = UΣV > be the singular value decomposition for X .
The “shrinkage” operator Dτ (X) is defined as [5]:

Dτ (X) = UΣτV >, (1)

where Στ = diag(max(σi − τ, 0)). Let Ω be an index set,
then XΩ denotes the vector consisting of elements in the
set Ω only. Define ‖X‖Ω = (

∑
(i,j)∈Ω x2

ij)
1
2 . A similar

definition can be extended to the tensor case.
An n-mode tensor is defined as X ∈ RI1×I2×...×In .

Its elements are denoted as xi1...ik...in
, where 1 ≤ ik ≤

Ik, 1 ≤ k ≤ n. For example, a vector is a 1-mode tensor
and a matrix is a 2-mode tensor. It is sometimes conve-
nient to unfold a tensor into a matrix. The “unfold” op-
eration along the k-th mode on a tensor X is defined as
unfoldk(X ) := X(k) ∈ RIk×(I1...Ik−1Ik+1...In). The oppo-

site operation “fold” is defined as foldk(X(k)) := X . De-
note ‖X‖F := (

∑
i1,i2,...in

|ai1,i2,...in
|2) 1

2 as the Frobenius
norm of a tensor. It is clear that ‖X‖F = ‖X(k)‖F for any
1 ≤ k ≤ n.

1.2. Organization

We review related work in Section 2, present the pro-
posed tensor trace minimization in Section 3 and three
heuristic algorithms in Section 4, report empirical results
in Section 5, and conclude this paper in Section 6.

2. Related Work

The low rank or approximately low rank problem
broadly occurs in science and engineering, e.g. computer
vision [20], machine learning [1, 2], and bioinformatics
[21]. Fazel et al. [9, 8] introduced a low rank minimiza-
tion problem in control system analysis and design. They
heuristically used the trace norm to approximate the rank of
the matrix. They showed that the trace norm minimization
problem can be reformulated as a semidefinite program-
ming (SDP) problem via its dual norm (spectral norm). Sre-
bro et al. [17] employed second-order cone programming
(SCOP) to formulate a trace norm related problem in matrix
factorization. However, many existing optimization meth-
ods such as SDPT3 [19] and SeDuMi [18] cannot solve a
SDP or SOCP problem when the size of the matrix is much
larger than 100 × 100 [14, 16]. This limitation prevented
the usage of the matrix completion technique in computer
vision and image processing. Recently, to solve the rank
minimization problem for large scale matrices, Ma et al.
[14] applied the fixed point and Bregman iterative method
and Cai et al. [5] proposed a singular value thresholding al-
gorithm. In both algorithms, one key building block is the
existence of a closed form solution for the following opti-
mization problem:

min
X∈Rp×q

:
1
2
‖X −M‖2F + τ‖X‖tr, (2)

where M ∈ Rp×q, and τ is a constant. Candés and Recht
[6, 16] theoretically justified the validity of the trace norm
to approximate the rank of matrices.

3. Algorithm

We first introduce the matrix completion problem in Sec-
tion 3.1 and then we extend to the tensor case in Section 3.2.
As we will see, the straightforward extension leads to a very
complex optimization problem. In Section 3.3, we relax the
original problem into a simple convex structure which can
be solved by block coordinate descent. Section 3.4 presents
the details of the proposed algorithm.



3.1. Matrix Completion

Our derivation starts with the well-known optimization
problem [13] for matrix completion:

min
X

:
1
2
‖X −M‖2Ω

s.t. rank(X) ≤ r,
(3)

where X, M ∈ Rp×q, and the elements of M in the set Ω
are given while the remaining elements are missing. We
aim to use a low rank matrix X to approximate the missing
elements. An equivalent reformulation of Eq. (3) is given
by

min
X,Y

:
1
2
‖X − Y ‖2F

s.t. rank(X) ≤ r

YΩ = MΩ.

(4)

The optimization problems in Eq. (3) and Eq. (4) are not
convex since the constraint rank(X) ≤ r is not convex. One
common approach is to use the trace norm ‖.‖tr to approxi-
mate the rank of matrices. The advantage of the trace norm
is that ‖.‖tr is the tightest convex envelop for the rank of
matrices. This leads to the following convex optimization
problem for matrix completion [3, 5, 14]:

min
X,Y

:
1
2
‖X − Y ‖2F

s.t. ‖X‖tr ≤ c

YΩ = MΩ.

(5)

3.2. Tensor Completion

The tensor is the generalization of the matrix concept.
We generalize the completion algorithm for the matrix (i.e.
2nd-order tensor) case to higher-order tensors by solving
the following optimization problem:

min
X ,Y

:
1
2
‖X − Y‖2F

s.t. ‖X‖tr ≤ c

YΩ = TΩ,

(6)

where X ,Y, T are n-mode tensors with identical size in
each mode. The first issue is the definition of the trace norm
for the general tensor case. We propose the following defi-
nition for the tensor trace norm:

‖X‖tr :=
1
n

n∑

i=1

‖X(i)‖tr. (7)

In essence, the trace norm of a tensor is the average of the
trace norms of all matrices unfolded along each mode. Note
that when the mode number n is equal to 2 (i.e. the matrix

case), the definition of the trace norm of a tensor is consis-
tent with the matrix case, because the trace norm of a matrix
is equal to the trace norm of its transpose. Under this defi-
nition, the optimization in Eq. (6) can be written as:

min
X ,Y

:
1
2
‖X − Y‖2F ≡ 1

2n

n∑

i=1

‖X(i) − Y(i)‖2F

s.t.
1
n

n∑

i=1

‖X(i)‖tr ≤ c

YΩ = TΩ.

(8)

3.3. Simplified Formulation

The problem in Eq. (8) is difficult to solve due to the
interdependent trace norm constraints. To simplify the for-
mulation, we introduce additional matrices M1, ..., Mn and
obtain the following equivalent formulation:

min
X ,Y,Mi

:
1
2n

n∑

i=1

‖Mi − Y(i)‖2F

s.t.
1
n

n∑

i=1

‖Mi‖tr ≤ c

Mi = X(i), for i = 1, 2, ..., n

YΩ = TΩ,

(9)

In this formulation, the trace norm constraints are still not
independent because of the equality constraint Mi = X(i)

which enforces all Mi’s to be identical. Thus, we relax the
equality constraints Mi = X(i) by ‖Mi −X(i)‖2F ≤ di as
Eq. (10), so that we can independently solve each subprob-
lem later on.

min
X ,Y,Mi

:
1
2n

n∑

i=1

‖Mi − Y(i)‖2F

s.t.
1
n

n∑

i=1

‖Mi‖tr ≤ c

‖Mi −X(i)‖2F ≤ di, for i = 1, 2, ..., n

YΩ = TΩ.
(10)

The above formula can be converted to its dual formulation
for certain values of αi’s and γ:

min
X ,Y,Mi

:
1
2n

n∑

i=1

αi‖Mi −X(i)‖2F

+
1
2n

n∑

i=1

‖Mi − Y(i)‖2F

+
γ

n

n∑

i=1

‖Mi‖tr

s.t. YΩ = TΩ.

(11)



We can consider a more general form of Eq. (11) by allow-
ing for different weights to control the rank in each mode of
the tensor:

min
X ,Y,Mi

:
1
2

n∑

i=1

αi‖Mi −X(i)‖2F

+
1
2

n∑

i=1

βi‖Mi − Y(i)‖2F

+
n∑

i=1

γi‖Mi‖tr

s.t. YΩ = TΩ.

(12)

This is a convex but nondifferentiable optimization prob-
lem. Note that the term

∑n
i=1 ‖Mi − X(i)‖2F is bounded

by
∑n

i=1 ‖Mi − Y(i)‖2F , because X is totally free, while Y
is constrained by YΩ = TΩ. Thus, an alternative algorithm
with faster computation time can be built by removing the
term

∑n
i=1 ‖Mi − X(i)‖2F , if we relax the restriction. In

our experiments we will compare both versions and show
that the removal of this term has only a minor effect on the
algorithm. Next, we show how to solve the optimization
problem in Eq. (12).

3.4. The Main Algorithm

We propose to employ block coordinate descent (BCD)
for the optimization. The basic idea of block coordinate de-
scent is to optimize a group of variables while fixing the
other groups. We divide the variables into n + 2 blocks:
X ,Y,M1,M2, ..., Mn. Computing the Mis is the major
challenge of the algorithm and will draw from current trace
norm optimization literature to tackle the problem.
Computing X : The optimal X with all other variables
fixed is given by solving the following subproblem:

min
X

:
1
2

n∑

i=1

αi‖Mi −X(i)‖2F (13)

It is easy to check that the solution to Eq. (13) is given by

X =
∑n

i=1 αifoldi(Mi)∑n
i=1 αi

. (14)

Computing Y: The optimal Y with all other variables
fixed is given by solving the following subproblem:

min
Y

:
1
2

n∑

i=1

βi‖Mi − Y(i)‖2F

s.t. YΩ = TΩ.

(15)

Similar to the first subproblem, the optimal Y in Eq. (15) is
given by

YΩ̄ =
(∑n

i=1 βifoldi(Mi)∑n
i=1 βi

)

Ω̄

. (16)

Computing Mi: The optimal Mi with all other variables
fixed is given by solving the following subproblem:

min
Mi

:
αi

2
‖Mi − Y(i)‖2F +

βi

2
‖Mi −X(i)‖2F

+ γi‖Mi‖tr

(17)

The objective in Eq. (17) is nondifferentiable. The deriva-
tion of the solution is fairly complex. Here we give the main
result and refer the interested reader to the appendix for the
details. We give the solution in a general form and then ex-
plain how that translates to the specific choice of variables
in Eq. (17).

Theorem 3.1. The global optimal solution to the following
optimization problem:

min
M

:
l∑

i=1

θi

2
‖M − Zi‖2F + γ‖M‖tr (18)

is given by
M∗ = Dτ (Z) (19)

where θ =
∑l

i=1 θi, τ = γ∑l
i=1 θi

, Z = 1
θ

∑l
i=1 θiZi and

the “shrinkage” operator Dτ (Z) is defined as in Eq. (1).

Based on Theorem 3.1, the solution to Eq. (17) is given
by setting

τ =
γi

αi + βi
, Zi =

αiX(i) + βiY(i)

αi + βi
(20)

We call the proposed algorithm “LRTC”, which stands
for Low Rank Tensor Completion. The pseudo-code of the
LRTC algorithm is given in Algorithm 1 below. As conver-
gence criteria we compare the difference of Y in subsequent
iterations to a threshold. Since the objective in Eq. (12)
is convex and the first two terms are differentiable and the
third term is separable, BCD is guaranteed to find the global
optimal solution [22].

4. Three Heuristic Algorithms
We introduce several heuristic algorithms, which, unlike

the one in the last section, involve non-convex optimization
problems. A goal of introducing the heuristic algorithms is
to establish some basic methods that can be used for com-
parison.
Tucker: One natural approach to extend the SVD to the
tensor case is to use the Higher Order SVD (HOSVD) [7,
pages 96-100]. Similar to the matrix case, we solve the fol-
lowing optimization:

min
X ,C,U1,U2,...,Un

:
1
2
‖X − C ×1 U1 ×2 U2 ×3 ...×n Un‖2F

s.t. XΩ = TΩ

rank(Ui) ≤ ri for i = 1, 2, ..., n
(21)



Algorithm 1 LRTC: Low Rank Tensor Completion
Input: TΩ

Output: X ,Y,Mi, from 1 to n
1: Set YΩ = TΩ,YΩ̄ = 0,X = Y,Mi = Y(i);
2: while no convergence do
3: for i = 1 to n do
4:

Mi = D γi
αi+βi

(
αiX(i) + βiY(i)

αi + βi
)

5: end for
6:

X =
∑n

i=1 αifoldi(Mi)∑n
i=1 αi

7:

YΩ̄ =
(∑n

i=1 βifoldi(Mi)∑n
i=1 βi

)

Ω̄

8: end while

where C ×1 U1 ×2 U2 ×3 ... ×n Un is the HOSVD and
T ,X are n mode tensors. Note that HOSVD implements
the tensor decomposition based on the well-known Tucker
model.
Parafac: Another natural approach is to use the parallel
factor analysis (Parafac) model [10], resulting in the fol-
lowing optimization problem:

min
X ,U1,U2,...,Un

:
1
2
‖X − U1 ◦ U2 ◦ ... ◦ Un‖2F

s.t. XΩ = TΩ

rank(Ui) ≤ r

(22)

where ◦ denotes the outer product and U1 ◦ U2 ◦ ... ◦ Un is
the Parafac model based decomposition.
SVD: The third alternative is to consider the tensor as mul-
tiple matrices and force the unfolding matrix along each
mode of the tensor to be low rank as follows:

min
X ,M1,M2,...,Mn

:
1
2

n∑

k=1

‖X(k) −Mk‖2F

s.t. XΩ = TΩ

rank(Mi) ≤ ri for i = 1, 2, ..., n.

(23)

To compute the approximate solution, we apply SVD on
each unfolded matrix and estimate the missing values based
on the average value of SVD results, and we repeat the same
procedure until convergence.

5. Results

In this section, we compare the algorithms on synthetic
and real-world data and show several applications.

5.1. Performance Comparison

We compare the proposed LRTC algorithm based on the
tensor trace norm minimization in Section 3 with the three
heuristic algorithms in Section 4 on both synthetic and real-
world data. The synthetic data T is of size 40× 40× 40×
40. The ranks of the tensor along all four modes are set to
[20, 20, 20, 20]. The brain MRI data is of size 181× 217×
181.

We choose the percentage of sample elements as 3%,
20% and 80% respectively. For a fair comparison, all al-
gorithms are evaluated using the same ranks given by the
result of our algorithm using the setting α = 0 The relative
square error (RSE) comparison is presented in Table 1 and
Table 2, where RSE = ‖Y − T ‖F /‖T ‖F .

Results from these two tables show that the proposed
convex formulation outperforms the three heuristic algo-
rithms. The performance of the three heuristic algorithms is
poor for high rank problems. We can also observe that the
proposed convex formulation is able to recover the miss-
ing information using a small number of samples. Next
we evaluate our algorithm using different parameters. We
observe that the larger the α value, the more the solution
approximates the original problem in Eq. (4). While the
alpha setting makes some difference, the error is very small
overall for all setting. An example slice of the MRI data is
shown in Fig. 2.

Figure 2: The left image (one slice of the MRI) is the orig-
inal; we randomly select pixels for removal shown in white
in the middle image; the right image is the result of the pro-
posed completion algorithm.

5.2. Applications

In this section, we outline three potential application ex-
amples with three different types of data: Images, Videos,
and reflectance data.

Images: Our algorithm can be used to estimate miss-
ing data in images and textures. For example, in Fig. 3 we
show how missing pixels can be filled in a facade image.
Note how our algorithm can propagate global structure even
though a significant amount of information is missing.

Videos: The proposed algorithm may be used for video
compression and video in-painting. The core idea of video
compression is to remove individual pixels and to use tensor
completion to recover the missing information. Similarly,
a user can eliminate unwanted pixels in the data and use



Table 1: The RSE comparison on the synthetic data of size
40 × 40 × 40 × 40. P: Parafac model based heuristic al-
gorithm; T: Tucker model heuristic algorithm; SVD: the
heuristic algorithm based on the SVD; α0, α10 and α50
denote the proposed LRTC algorithm with three different
values of the parameter: α = 0, α = 10 and α = 50, re-
spectively. The top, middle and bottom parts of the table
respond to the sample percentage: 3%, 20% and 80%, re-
spectively.

RSE Comparison (10−4)
Rank T P SVD α0 α10 α50

10,11,10,9 725 677 759 321 302 257
14,16,15,14 892 901 863 72.5 70.2 65.3
20,22,21,19 1665 1302 1474 50.1 46.9 36.2
24,25,25,26 2367 1987 2115 40.6 38.7 38.7
10,11,9,11 371 234 347 16.3 14.2 12.7
15,15,16,14 728 530 611 8.92 8.41 8.23
21,19,21,20 1093 982 895 8.48 8.56 8.48
24,25,26,26 1395 1202 1260 40.7 34.3 13.7
10,9,11,9 145 45 136 3.08 4.01 3.12

15,14,14,16 326 65 217 2.17 2.05 2.35
21,20,19,21 518 307 402 1.36 2.06 1.27
24,25,25,26 685 509 551 1.41 1.59 1.04

Table 2: The RSE comparison on the brain MRI data of
size 181 × 217 × 181. P: Parafac model based heuristic
algorithm; T: Tucker model heuristic algorithm; SVD: the
heuristic algorithm based on the SVD; α0, α10 and α50
denote the proposed LRTC algorithm with three different
values of the parameter: α = 0, α = 10 and α = 50, re-
spectively. The top and bottom parts respond to the sample
percentage: 20% and 80%, respectively.

RSE Comparison (10−4)
Rank T P SVD α0 α10 α50

21,24,23 311 234 274 210 193 177
38,41,37 1259 1001 1322 148 141 121
90,93,87 4982 3982 5025 61.0 53.7 42.8
21,24,23 12.3 8.64 5.48 29.4 12.8 13.5
35,42,36 179 153 99 4.41 5.32 5.69
39,48,41 279 345 199 0.72 1.05 1.26
45,55,47 606 523 513 1.22 1.35 1.06

the proposed algorithm to compute alternative values for the
removed pixels. See Fig. 4 for an example frame of a video.

Reflectance data: The BRDF is the “Bidirectional Re-
flectance Distribution Function”. The BRDF specifies the
reflectance of a target as a function of illumination direction

Figure 3: Facade in-painting. The top image is the original
image; we select the lamp and satellite dishes together with
a large set of randomly positioned squares as the missing
parts shown in white in the middle image; the bottom image
is the result of the proposed completion algorithm.

Figure 4: Video completion. The left image (one frame of
the video) is the original; we randomly select pixels for re-
moval shown in white in the middle image; the right image
is the result of the proposed LTRC algorithm.

and viewing direction and can be interpreted as a 4 mode
tensor. BRDFs of real materials can be acquired by com-
plex appearance acquisition systems that typically require



taking photographs of the same object under different light-
ing conditions. As part of the acquisition process, data can
be missing or be unreliable, such as in the MIT BRDF data
set. We use tensor completion to estimate the missing en-
tries in reflectance data. See Fig. 5 for an example. More
results are shown in the video accompanying this paper.

Figure 5: The top left image is a rendering of an original
phong BRDF; we randomly select 90% of the pixels for re-
moval shown in white in the top right image; the bottom
image is the result of the proposed LRTC algorithm.

6. Conclusion

In this paper, we extend low rank matrix completion to
low rank tensor completion. We propose theoretical foun-
dations for tensor completion together with a strong convex
optimization algorithm, called LRTC, to tackle the problem.
Additionally, several heuristic algorithms are presented. We
introduce an original definition of the trace norm for tensors
in order to define a convex optimization for tensor comple-
tion. The experiments show that the proposed method is
more stable and accurate in most cases, especially when the
sample entries are very limited. Several application exam-
ples show the broad applicability of tensor completion in
computer vision and graphics.

The proposed tensor completion algorithm assumes that
the data is of low rank. This may not be the case in certain
applications. We are currently investigating how to auto-
matically estimate the values of the parameters in LRTC.
We also plan to extend the theoretical results of Candés and
Recht to the tensor case.
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APPENDIX

The goal of the appendix is to derive the solution presented
in Theorem 3.1. Before the actual proof, we first lay the
foundation by introducing the subdifferential in Proposition
1 and Lemma 2.

Proposition 1. Let W = UΣV > be the singular value
decomposition (SVD) of W ∈ Rm×n, where U ∈ Rm×p,
V ∈ Rn×p and Σ is a full rank matrix, then the subdiffer-
ential of ‖W‖tr is given by

∂‖W‖tr = {UV >+M | ‖M‖2 ≤ 1, U>M = 0,MV = 0}.
(24)

Lemma 2. The subdifferential of the trace norm of W ∈
Rm×n can also be written as

∂‖W‖tr = {UV > + U⊥NV >
⊥ | ‖N‖2 ≤ 1}, (25)

where U ∈ Rm×p, V ∈ Rn×p are defined as in Propo-
sition 1 and U⊥ ∈ Rm×(m−p) and V⊥ ∈ Rn×(n−p) are
orthogonal complements of U and V , respectively.

Proof. For convenience, we denote the set in Eq. (24) as S1

and the set in Eq. (25) as S2.
First, given any g = UV > + M ∈ S1, there always

exist an N = U>
⊥MV⊥ such that g = UV > + U⊥NV >

⊥
and UV > + U⊥NV >

⊥ ∈ S2. Because U⊥NV >
⊥ =

U⊥U>
⊥MV⊥V >

⊥ = M , g = UV> + U⊥NV >
⊥ holds. It

follows from ‖M‖2 ≤ 1 that ‖N‖2 = ‖U>
⊥MV⊥‖2 =

‖M‖2 ≤ 1. Thus, g ∈ S2. Hence, S1 ⊆ S2.
Second, given any g = UV > + N ∈ S2, let M =

U⊥NV >
⊥ . We have U>M = U>U⊥NV >

⊥ = 0 and
MV = U⊥NV >

⊥ V = 0. Similar to the proof above,
‖M‖2 = ‖U⊥NV >

⊥ ‖2 ≤ 1 holds. Thus, g ∈ S1. We
have S2 ⊆ S1.

Proof of Theorem 3.1

Proof. For convenience, we denote the objective in Eq. (18)
as f(M). As a convex nondifferentiable optimization prob-
lem, M∗ is its optimal solution if and only if its subdiffer-
ential at M∗ contains 0 [15, Thm. 3.1.15] . In other words,
0 ∈ ∂f(M∗). Any element g ∈ ∂f(M) can be described
as:

g =
l∑

i=1

θi(M − Zi) + ∂‖M‖tr

=
l∑

i=1

θi(M − Zi) + γ(UV T + U⊥NV >
⊥ )

=θM − θZ + γ(UV T + U⊥NV >
⊥ )

(26)

where N ∈ Rp×p, U ∈ Rm×p, V ∈ Rn×p are the factors
of the SVD for M and U⊥ ∈ Rm×(m−p), V⊥ ∈ Rn×(n−p)



are the orthogonal complements of U, V . For computing
the optimal solution, we need to find an M and N such that
g = 0.

θM − θZ + γ(UV T + U⊥NV >
⊥ ) = 0

M +
γ

θ
(UV T + U⊥NV >

⊥ ) = Z (27)

since

M = UΣMV > =
[

U U⊥
] [

ΣM 0
0 0

] [
V >

V >
⊥

]

(28)
and we define the SVD of Z as follows:

Z = UZΣZV >
Z

=
[

Ū Ū⊥
] [

Σp×p 0
0 Σ(n−p)×(m−p)

] [
V̄ >

V̄ >
⊥

]

(29)
Here, we let σ(ΣZ) be a vector consisting of the singular
value in descending order. By incorporating Eq. (28) and
Eq. (29) into Eq. (27), we obtain:

[
U U⊥

] [
ΣM 0
0 0

] [
V >

V >
⊥

]

+
γ

θ

[
U U⊥

] [
Ip×p 0

0 N

] [
V >

V >
⊥

]

=
[

Ū Ū⊥
] [

Σp×p 0
0 Σ(n−p)×(m−p)

] [
V̄ >

V̄ >
⊥

]

It follows that

[
U U⊥

] [
γ
θ Ip×p + ΣM 0

0 γ
θ N

] [
V >

V >
⊥

]

=
[

Ū Ū⊥
] [

Σp×p 0
0 Σ(n−p)×(m−p)

] [
V̄ >

V̄ >
⊥

]

(30)
Next, we set U = Ū , V = V̄ , U⊥ = Ū⊥, V⊥ = V̄⊥, ΣM =
Σp×p − γ

θ Ip×p and N = γ
θ Σ(n−p)×(m−p), so that the Eq.

(30) holds. To make sure ‖N‖2 ≤ 1 and ΣM is positive
semidefinite, p is chosen as p ∈ {p | σp ≥ γ

θ , σp+1 ≤
γ
θ or p = min(m,n)}. In summery, we get

M∗ = UΣMV > = Dτ (Z). (31)
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