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Abstract
We consider the following signal recovery prob-
lem: given a measurement matrix Φ ∈ Rn×p and
a noisy observation vector c ∈ Rn constructed
from c = Φθ∗ + ε where ε ∈ Rn is the noise
vector whose entries follow i.i.d. centered sub-
Gaussian distribution, how to recover the signal
θ∗ if Dθ∗ is sparse under a linear transformation
D ∈ Rm×p? One natural method using convex
optimization is to solve the following problem:

min
θ

1

2
‖Φθ − c‖2 + λ‖Dθ‖1.

This paper provides an upper bound of the es-
timate error and shows the consistency property
of this method by assuming that the design ma-
trix Φ is a Gaussian random matrix. Specifically,
we show 1) in the noiseless case, if the condition
number of D is bounded and the measurement
number n ≥ Ω(s log(p)) where s is the sparsity
number, then the true solution can be recovered
with high probability; and 2) in the noisy case,
if the condition number of D is bounded and
the measurement increases faster than s log(p),
that is, s log(p) = o(n), the estimate error con-
verges to zero with probability 1 when p and s
go to infinity. Our results are consistent with
those for the special case D = Ip×p (equiva-
lently LASSO) and improve the existing analy-
sis. The condition number of D plays a critical
role in our analysis. We consider the condition
numbers in two cases including the fused LASSO
and the random graph: the condition number in
the fused LASSO case is bounded by a constant,
while the condition number in the random graph
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case is bounded with high probability if m
p (i.e.,

#edge
#vertex ) is larger than a certain constant. Numeri-
cal simulations are consistent with our theoretical
results.

1. Introduction
The sparse signal recovery problem has been well studied
recently from the theory aspect to the application aspect
in many areas including compressive sensing (Candès &
Plan, 2009; Candès & Tao, 2007), statistics (Ravikumar
et al., 2008; Bunea et al., 2007; Koltchinskii & Yuan, 2008;
Lounici, 2008; Meinshausen et al., 2006), machine learn-
ing (Zhao & Yu, 2006; Zhang, 2009b; Wainwright, 2009;
Liu et al., 2012), and signal processing (Romberg, 2008;
Donoho et al., 2006; Zhang, 2009a). The key idea is to use
the `1 norm to relax the `0 norm (the number of nonzero
entries). This paper considers a specific type of sparse
signal recovery problems, that is, the signal is assumed to
be sparse under a linear transformation D. It includes the
well-known fused LASSO (Tibshirani et al., 2005) as a spe-
cial case. The theoretical property of such problem has not
been well understood yet, although it has achieved success
in many applications (Chan, 1998; Tibshirani et al., 2005;
Candès et al., 2006; Sharpnack et al., 2012). Formally, we
define the problem as follows: given a measurement ma-
trix Φ ∈ Rn×p (p � n) and a noisy observation vector
c ∈ Rn constructed from c = Φθ∗ + ε where ε ∈ Rn is
the noise vector whose entries follow i.i.d. centered sub-
Gaussian distribution1, how to recover the signal θ∗ if Dθ∗

is sparse where D ∈ Rm×p is a constant matrix dependent
on the specific application2? A natural model for such type

1Note that this “identical distribution” assumption can be re-
moved; see Zhang (2009a). For simplification of analysis, we
enforce this condition throughout this paper.

2We study the most general case of D, and thus our analysis
is applicable for both m ≥ p or m ≤ p.
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of sparsity recovery problems is:

min
θ

:
1

2
‖Φθ − c‖2 + λ‖Dθ‖0. (1)

The least square term is from the sub-Gaussian noise as-
sumption and the second term is due to the sparsity re-
quirement. Since this combinatorial optimization problem
is NP-hard, the conventional `1 relaxation technique can
be applied to make it tractable, resulting in the following
convex model:

min
θ

:
1

2
‖Φθ − c‖2 + λ‖Dθ‖1. (2)

Such model includes many well-known sparse formula-
tions as special cases:

• The fused LASSO (Tibshirani et al., 2005; Friedman
et al., 2007) solves

min
θ

:
1

2
‖Φθ − c‖2 + λ1‖θ‖1 + λ2‖Qθ‖1 (3)

where the total variance matrix Q ∈ R(p−1)×p

is defined as Q = [I(p−1)×(p−1);0p−1] −
[0p−1; I(p−1)×(p−1)], that is,

Q =


1 −1 0 ... 0
0 1 −1 ... 0
... ... ... ... ...
0 0 ... 1 −1

 .
One can write Eq. (3) in the form of Eq. (2) by letting
λ = 1 and D be the conjunction of the identity matrix
and the total variance matrix, that is,

D =

[
λ1Ip×p
λ2Q

]
.

• The general K dimensional changing point detection
problem (Candès et al., 2006) can be expressed by

min
θ

:
1

2

∑
(i1,i2,··· ,iK)∈S

(θi1,i2,··· ,iK − ci1,i2,··· ,iK )2+

λ

I1−1∑
i1=1

I2−1∑
i2=1

· · ·
IK−1∑
iK=1

(|θi1,i2,··· ,iK − θi1+1,i2,··· ,iK |+

· · ·+ |θi1,i2,··· ,iK − θi1,i2,··· ,iK+1|)
(4)

where θ ∈ RI1×I2×···IK is a K dimensional tensor
with a stepwise structure and S is the set of indices.
The second term is used to measure the total variance.
The changing point is defined as the point where the
signal changes. One can properly define D to rewrite

Eq. (4) in the form of Eq. (2). In addition, if the struc-
ture of the signal is piecewise constant, then one can
replace the second term by

λ

I1−1∑
i1=2

I2−1∑
i2=2

· · ·
IK−1∑
iK=2

(|2θi1,i2,··· ,iK − θi1+1,i2,··· ,iK−

θi1−1,i2,··· ,iK |+ · · ·+ |2θi1,i2,··· ,iK
− θi1,i2,··· ,iK+1 − θi1,i2,··· ,iK−1|).

It can be written in the form of Eq. (2) as well.

• The second term of (4), that is, the total variance, is
defined as the sum of differences between two neigh-
boring entries (or nodes). A graph can generalize this
definition by using edges to define neighboring entries
rather than entry indexes. Let G(V,E) be a graph.
One has

min
θ∈R|V |

:
1

2
‖Φθ − c‖2 + λ

∑
(i,j)∈E

|θi − θj |, (5)

where
∑

(i,j)∈E |θi − θj | defines the total variance
over the graph G. The kth edge between nodes i
and j corresponds to the kth row of the matrix D ∈
R|E|×|V | with zero at all entries except Dki = 1 and
Dkj = −1. Taking Φ = Ip×p, one obtains the edge
LASSO (Sharpnack et al., 2012).

This paper studies the theoretical properties of problem (2)
by providing an upper bound of the estimate error, that is,
‖θ̂ − θ∗‖ where θ̂ denotes the estimation. The consistency
property of this model is shown by assuming that the design
matrix Φ is a Gaussian random matrix. Specifically, we
show 1) in the noiseless case, if the condition number of D
is bounded and the measurement number n ≥ Ω(s log(p))
where s is the sparsity number, then the true solution can
be recovered under some mild conditions with high prob-
ability; and 2) in the noisy case, if the condition number
of D is bounded and the measurement number increases
faster than s log(p), that is, n = O(s log(p)), then the
estimate error converges to zero with probability 1 under
some mild conditions when p goes to infinity. Our results
are consistent with those for the special case D = Ip×p
(equivalently LASSO) and improve the existing analysis in
(Candès et al., 2011; Vaiter et al., 2013). To the best of our
knowledge, this is the first work that establishes the con-
sistency properties for the general problem (2). The condi-
tion number of D plays a critical role in our analysis. We
consider the condition numbers in two cases including the
fused LASSO and the random graph: the condition number
in the fused LASSO case is bounded by a constant, while
the condition number in the random graph case is bounded
with high probability if m

p (that is, #edge
#vertex ) is larger than a

certain constant. Numerical simulations are consistent with
our theoretical results.
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1.1. Notations and Assumptions

Define

ρ+
Ψ,Y (l1, l2) = max

h∈Rl1×H(Y,l2)

‖Ψh‖2

‖h‖2
,

ρ−Ψ,Y (l1, l2) = min
h∈Rl1×H(Y,l2)

‖Ψh‖2

‖h‖2
,

where l1 and l2 are nonnegative integers, Y is the dictio-
nary matrix, and H(Y, l2) is the union of all subspaces
spanned by l2 columns of Y :

H(Y, l2) = {Y v | ‖v‖0 ≤ l2}.

Note that the length of h is the sum of l1 and the dimension
of the subspaceH (which is in general not equal to l2). The
definition of ρ+

Ψ,Y (l1, l2) and ρ−Ψ,Y (l1, l2) is inspired by the
D-RIP constant (Candès et al., 2011). Recall that the D-RIP
constant δd is defined by the smallest quantity such that

(1− δd)‖h‖2 ≤ ‖Ψh‖2 ≤ (1 + δd)‖h‖2 ∀ h ∈ H(Y, l2).

One can verify that δd = max{ρ+
Ψ,Y (0, l2) − 1, 1 −

ρ−Ψ,Y (0, l2)} if Ψ satisfies the D-RIP condition in terms of
the sparsity l2 and the dictionary Y . Denote ρ+

Ψ,Y (0, l2)

and ρ−Ψ,Y (0, l2) as ρ+
Ψ,Y (l2) and ρ−Ψ,Y (l2) respectively for

short.

Denote the compact singular value decomposition (SVD)
of D as D = UΣV Tβ . Let Z = UΣ and its pseudo-
inverse be Z+ = Σ−1UT . One can verify that Z+Z = I .
σmin(D) denotes the minimal nonzero singular value of D
and σmax(D) denotes the maximal one, that is, the spectral
norm ‖D‖. One has σmin(D) = σmin(Z) = σ−1

max(Z+)
and σmax(D) = σmax(Z) = σ−1

min(Z+). Define

κ :=
σmax(D)

σmin(D)
=
σmax(Z)

σmin(Z)
.

Let T0 be the support set of Dθ∗, that is, a subset of
{1, 2, · · · ,m}, with s := |T0|. Denote T c0 as its comple-
mentary index set with respect to {1, 2, · · · ,m}. Without
loss of generality, we assume that D does not contain zero
rows. Assume that c = Φθ + ε where ε ∈ Rn and all en-
tries εi’s are i.i.d. centered sub-Gaussian random variables
with sub-Gaussian norm ∆ (Readers who are not familiar
with the sub-Gaussian norm can treat ∆ as the standard
derivation in Gaussian random variable). In discussing the
dimensions of the problem and how they are related to each
other in the limit (as n and p both approach∞), we make
use of order notation. If α and β are both positive quanti-
ties that depend on the dimensions, we write α = O(β) if α
can be bounded by a fixed multiple of β for all sufficiently
large dimensions. We write α = o(β) if for any positive
constant φ > 0, we have α ≤ φβ for all sufficiently large

dimensions. We write α = Ω(β) if both α = O(β) and
β = O(α). Throughout this paper, a Gaussian random ma-
trix means that all entries follow i.i.d. standard Gaussian
distribution N (0, 1).

1.2. Related Work

Candès et al. (2011) proposed the following formulation to
solve the problem in this paper:

min
θ

: ‖Dθ‖1 s.t. : ‖Φθ − c‖ ≤ ε, (6)

where D ∈ Rm×p is assumed to have orthogonal
columns and ε is taken as the upper bound of ‖ε‖. They
showed that the estimate error is bounded by C0ε +
C1‖(Dθ∗)T c‖1/

√
|T | with high probability if

√
nΦ ∈

Rn×p is a Gaussian random matrix3 with n ≥ Ω(s logm),
where C0 and C1 are two constants. Letting T = T0 and
ε = ‖ε‖, the error bound turns out to be C0‖ε‖. This re-
sult shows that in the noiseless case, with high probabil-
ity, the true signal can be exactly recovered. In the noisy
case, assume that εi’s (i = 1, · · · , n) are i.i.d centered
sub-Gaussian random variables, which implies that ‖ε‖2 is
bounded by Ω(n) with high probability. Note that since the
measurement matrix Φ is scaled by 1/

√
n from the defini-

tion of “Gaussian random matrix” in (Candès et al., 2011),
the noise vector should be corrected similarly. In other
words, ‖ε‖2 should be bounded by Ω(1) rather than Ω(n),
which implies that the estimate error in (Candès et al.,
2011) converges to a constant asymptotically.

Nama et al. (2012) considered the noiseless case and ana-
lyzed the formulation

min
θ

: ‖Dθ‖1 s.t. : Φθ = c, (7)

assuming all rows ofD to be in the general position, that is,
any p rows ofD are linearly independent, which is violated
by the fused LASSO. An sufficient condition was proposed
to recover the true signal θ∗ using the cosparse analysis.

Vaiter et al. (2013) also considered the formulation in
Eq. (2) but mainly gave robustness analysis for this model
using the cosparse technique. A sufficient condition [dif-
ferent from Nama et al. (2012)] to exactly recover the true
signal was given in the noiseless case. In the noisy case,
they took λ to be a value proportional to ‖ε‖ and proved
that the estimate error is bounded by Ω(‖ε‖) under certain
conditions. However, they did not consider the Gaussian
ensembles for Φ; see (Vaiter et al., 2013, Section 3.B).

3Note that the “Gaussian random matrix” defined in (Candès
et al., 2011) is slightly different from ours. In (Candès et al.,
2011), Φ ∈ Rn×p is a Gaussian random matrix if each entry of
Φ is generated from N (0, 1/n). Please refer to Section 1.5 in
(Candès et al., 2011). Here we only restate the result in (Candès
et al., 2011) by using our definition for Gaussian random matrices.
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The fused LASSO, a special case of Eq. (2), was also stud-
ied recently. The sufficient condition of detecting jump-
ing points is given by Kolar et al. (2009). A special fused
LASSO formulation was considered by Rinaldo (2009) in
which Φ was set to be the identity matrix and D to be the
combination of the identity matrix and the total variance
matrix. Sharpnack et al. (2012) proposed and studied the
edge LASSO by letting Φ be the identity matrix and D be
the matrix corresponding to the edges of a graph.

1.3. Organization

The remaining of this paper is organized as follows. To
build up a uniform analysis framework, we simplify the
formulation (2) in Section 2. The main result is presented
in Section 3. Section 4 analyzes the value of an impor-
tant parameter in our main results in two cases: the fused
LASSO and the random graph. The numerical simulation
is presented to verify the relationship between the estimate
error and the condition number in Section 5. We conclude
this paper in Section 6. All proofs are provided in the long
version of this paper (Liu et al., 2013).

2. Simplification
As highlighted by Vaiter et al. (2013), the analysis for a
wide D ∈ Rm×p (that is, p > m) significantly differs from
a tall D (that is, p < m). To build up a uniform anal-
ysis framework, we use the singular value decomposition
(SVD) of D to simplify Eq. (2), which leads to an equiva-
lent formulation.

Consider the compact SVD of D: D = UΣV Tβ where U ∈
Rn×r, Σ ∈ Rr×r(r is the rank of D), and Vβ ∈ Rp×r. We
then construct Vα ∈ Rp×(p−r) such that

V :=
[
Vα Vβ

]
∈ Rp×p

is a unitary matrix. Let β = V Tβ θ and α = V Tα θ. These
two linear transformations split the original signal into two
parts as follows:

min
α,β

:
1

2

∥∥∥∥Φ [Vα Vβ ]

[
V Tα
V Tβ

]
θ − c

∥∥∥∥2

+ λ‖UΣV Tβ θ‖1

(8)

≡1

2

∥∥∥∥[ΦVα ΦVβ ]

[
α
β

]
− c
∥∥∥∥2

+ λ‖UΣβ‖1 (9)

≡1

2
‖Aα+Bβ − c‖2 + λ‖Zβ‖1 (10)

where A = ΦVα ∈ Rn×(p−r), B = ΦVβ ∈ Rn×r,
and Z = UΣ ∈ Rm×r. Let α̂, β̂ be the solution of
Eq. (10). One can see the relationship between α̂ and β̂:
α̂ = −(ATA)−1AT (Bβ̂ − c),4 which can be used to fur-

4Here we assume that ATA is invertible.

ther simplify Eq. (10):

min
β

: f(β) :=
1

2
‖(I−A(ATA)−1AT )(Bβ−c)‖2+λ‖Zβ‖1.

Let
X = (I −A(ATA)−1AT )B

and
y = (I −A(ATA)−1AT )c.

We obtain the following simplified formulation:

min
β

: f(β) =
1

2
‖Xβ − y‖2 + λ‖Zβ‖1, (11)

where X ∈ Rn×r and Z ∈ Rm×r.

Denote the solution of Eq. (2) as θ̂ and the ground truth as
θ∗. One can verify θ̂ = V [α̂T β̂T ]T . Define α∗ := V Tα θ

∗

and β∗ := V Tβ θ
∗. Note that unlike α̂ and β̂ the following

usually does not hold: α∗ = −(ATA)−1AT (Bβ∗ − c).
Let h = β̂ − β∗ and d = α̂ − α∗. We will study the upper
bound of ‖θ̂ − θ∗‖ in terms of ‖h‖ and ‖d‖ based on the
relationship ‖θ̂ − θ∗‖ ≤ ‖h‖+ ‖d‖.

3. Main Results
This section presents the main results in this paper. The
estimate error by Eq. (2), or equivalently Eq. (11), is given
in Theorem 1:
Theorem 1. Define

WXh,1 :=ρ−X,Z+(s+ l),

WXh,2 :=6σ−1
min(Z)ρ+

X,Z+(s+ l)
√
s/l,

Wd,1 :=
1

2
σ−1

min(ATA)(ρ̄+(s+ l + p− r)−

ρ̄−(s+ l + p− r)),

Wd,2 :=
3

2
σ−1

min(ATA)σ−1
min(Z)

√
s/l(ρ̄+(l + p− r)−

ρ̄−(l + p− r)),

Wσ :=
σmax(Z)σmin(Z)

σmin(Z)− 3
√
s/lσmax(Z)

,

Wh :=3
√
s/lσ−1

min(Z),

where ρ̄+(p−r, .) and ρ̄−(p−r, .) denote ρ+
[A,B],Z+(p−r, .)

and ρ−[A,B],Z+(p − r, .) respectively for short. Taking λ >
2‖(Z+)TXT ε‖∞ in Eq. (2), we have if ATA is invertible
(apparently, n ≥ p − r is required) and there exists an
integer l > 9κ2s such that WXh,1 −WXh,2Wσ > 0, then

‖θ̂ − θ∗‖ ≤Wθ

√
sλ+ ‖(ATA)−1AT ε‖ (12)

where

Wθ = 6
(1 +Wd,1)Wσ + (Wh +Wd,2)W 2

σ

WXh,1 −WXh,2Wσ
.
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One can see from the proof that the first term of (12) is
mainly due to the estimate error of the sparse part β and
the second term is due to the estimate error of the free part
α.

The upper bound in Eq. (12) strongly depends on parame-
ters about X and Z+ such as ρ+

X,Z+(·), ρ−X,Z+(·), ρ̄+(·, ·),
and ρ̄−(·, ·). Although for a given Φ and D, X and Z+

are fixed, it is still challenging to evaluate these parameters.
Similar to existing literature like (Candès & Tao, 2005), we
assume Φ to be a Gaussian random matrix and estimate the
values of these parameters in Theorem 2.

Theorem 2. Assume that Φ is a Gaussian random ma-
trix. The following holds with probability at least 1 −
2 exp{−Ω(k log(em/k))}:√

ρ+
X,Z+(k) ≤

√
n+ r − p+ Ω

(√
k log(em/k)

)
(13)

√
ρ−X,Z+(k) ≥

√
n+ r − p−Ω

(√
k log(em/k)

)
. (14)

The following holds with probability at least 1 −
2 exp{−Ω ((k + p− r) log(ep/(k + p− r)))}:√

ρ+
[A,B],Z+(p− r, k) ≤
√
n+ Ω(

√
(k + p− r) log(ep/(k + p− r)))

(15)

√
ρ−[A,B],Z+(p− r, k) ≥
√
n− Ω(

√
(k + p− r) log(ep/(k + p− r))).

(16)

Now we are ready to analyze the estimate error given in
Eq. (12). Two cases are considered in the following: the
noiseless case ε = 0 and the noisy case ε 6= 0.

3.1. Noiseless Case ε = 0

First let us consider the noiseless case. Since ε = 0, the
second term in Eq. (12) vanishes. We can choose a value of
λ to make the first term in Eq. (12) arbitrarily small. Hence
the true signal θ∗ can be recovered with an arbitrary preci-
sion as long as Wθ > 0, which is equivalent to requiring
WXh,1 −WXh,2Wσ > 0. Actually, when λ is extremely
small, Eq. (2) approximately solves the problem in Eq. (7)
with ε = 0.

Intuitively, the larger the measurement number n is, the
easier the true signal θ∗ can be recovered, since more mea-
surements give a feasible subspace with a lower dimension.
In order to estimate how many measurements are required,
we consider the measurement matrix Φ to be a Gaussian
random matrix (This is also a standard setup in compres-
sive sensing.). Since this paper mainly focuses on the large

scale case, one can treat the value of l as a number propor-
tional to κ2s.

Using Eq. (13) and Eq. (14), we can estimate the lower
bound of WXh,1 −WXh,2Wσ in Lemma 1.

Lemma 1. Assume Φ to be a Gaussian random matrix. Let
l = (10κ)2s. With probability at least 1− 2 exp{−Ω((s+
l) log(em/(s+ l)))}, we have

WXh,1 −WXh,2Wσ ≥
1

7
(n+ r − p)−

Ω

(√
(n+ r − p)(s+ l) log

(
em

s+ l

))
.

(17)

From Lemma 1, to recover the true signal, we only need

(n+ r − p) > Ω((s+ l) log(em/(s+ l))).

To simplify the discussion, we propose several minor con-
ditions first in Assumption 1.

Assumption 1. Assume that

• p− r ≤ φn (φ < 1) in the noiseless case and p− r ≤
Ω(s) in the noisy case 5;

• the condition number κ = σmax(D)
σmin(D) = σmax(Z)

σmin(Z) is
bounded;

• m = Ω(pi) where i > 0, that is, m can be a polyno-
mial function in terms of p.

One can verify that under Assumption 1, taking l =
(10κ)2s = Ω(s), the right hand side of (17) is greater than

Ω(n)−Ω(
√
ns log(em/s)) = Ω(n)−Ω(

√
ns log(ep/s)).

Letting n ≥ Ω(s log(ep/s)) [or Ω(s log(em/s)) if without
assuming m = Ω(pi)], one can have that

WXh,1 −WXh,2Wσ ≥ Ω(n)− Ω(
√
ns log(ep/s)) > 0

holds with high probability (since the probability in
Lemma 1 converges to 1 while p goes to infinity). In other
words, in the noiseless case the true signal can be recovered
at an arbitrary precision with high probability.

To compare with existing results, we consider two special
cases: D = Ip×p (Candès & Tao, 2005) and D has orthog-
onal columns (Candès et al., 2011), that is, DTD = I .

5This assumption indicates that the free dimension of the true
signal θ∗ (or the dimension of the free part α ∈ Rp−r) should not
be too large. Intuitively, one needs more measurements to recover
the free part because it has no sparse constraint and much fewer
measurements to recover the sparse part. Thus, if only limited
measurements are available, we have to restrict the dimension of
the free part.
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When D = Ip×p and Φ is a Gaussian random matrix,
the required measurements in (Candès & Tao, 2005) are
Ω(s log(ep/s)) , which is the same as ours. Also note
that if D = Ip×p, Assumption 1 is satisfied automatically.
Thus our result does not enforce any additional condition
and is consistent with existing analysis for the special case
D = Ip×p. Next we consider the case when D has orthog-
onal columns as in (Candès et al., 2011). In this situation,
all conditions exceptm = Ω(pi) in Assumption 1 are satis-
fied. One can easily verify that the required measurements
to recover the true signal are Ω(s log(em/s)) without as-
suming m = Ω(pi) from our analysis above, which is con-
sistent with the result in (Candès et al., 2011).

3.2. Noisy Case ε 6= 0

Next we consider the noisy case, that is, study the upper
bound in (12) while ε 6= 0. Similarly, we mainly focus
on the large scale case and assume Gaussian ensembles for
the measurement matrix Φ. Theorem 3 provides the up-
per bound of the estimate error under the conditions in As-
sumption 1.

Theorem 3. Assume that the measurement matrix Φ is
a Gaussian random matrix, the measurement satisfies
n = O(s log p), and Assumption 1 holds. Taking λ =
C‖(Z+)TXT ε‖∞ with C > 2 in Eq. (2), we have

‖θ̂ − θ∗‖ ≤ Ω

(√
s log p

n

)
, (18)

with the probability at least 1 − Ω(p−1) − Ω(m−1) −
Ω(−s log(ep/s)).

One can verify that when p goes to infinity, the upper bound
in (18) converges to 0 from n = O(s log p) and the prob-
ability converges to 1 due to m = Ω(pi). It means that
the estimate error converges to 0 asymptotically given the
measures n = O(s log p).

This result shows the consistency property, that is, if the
measurement number n grows faster than s log(p), the
estimate error will vanish. This consistency property is
consistent with the special case LASSO by taking D =
Ip×p (Zhang, 2009a). Candès et al. (2011) considered
Eq. (6) and obtained an upper bound for the estimate error
Ω(ε/

√
n) which does not guarantee the consistency prop-

erty like ours since ε = Ω(‖ε‖) = Ω(
√
n). Their result

only guarantees that the estimation error bound converges
to a constant given n = O(s log p).

In addition, from the derivation of Eq. (18), one can sim-
ply verify that the boundedness requirement for κ can ac-
tually be removed, if we allow more observations, for ex-
ample, n = O(κ4s log p). Here we enforce the bound-
edness condition just for simplification of analysis and a

convenient comparison to the standard LASSO (it needs
n = O(s log p) measurements).

4. The Condition Number of D
Since κ is a key factor from the derivation of Eq. (18), we
consider the fused LASSO and the random graphs and es-
timate the values of κ in these two cases.

Let us consider the fused LASSO first. The transformation
matrix D is[ [

I(p−1)×(p−1) 0p−1

]
−
[
0p−1 I(p−1)×(p−1)

]
Ip×p

]
.

One can verify that

σmin(D) = min
‖v‖=1

‖Dv‖ ≥ min
‖v‖=1

‖v‖ = 1

and

σmax(D) = max
‖v‖=1

‖Dv‖

≤ max
‖v‖=1

‖
[
I(p−1)×(p−1) 0p−1

]
v−[

0p−1 I(p−1)×(p−1)

]
v‖+ ‖v‖

≤ max
‖v‖=1

‖
[
I(p−1)×(p−1) 0p−1

]
‖‖v‖+

‖
[
0p−1 I(p−1)×(p−1)

]
‖‖v‖+ ‖v‖

≤3

which implies that σmin(D) ≥ 1 and σmax(D) ≤ 3. Hence
we have κ ≤ 3 in the fused LASSO case.

Next we consider the the random graph. The transforma-
tion matrix D corresponding to a random graph is gener-
ated in the following way: (1) each row is independent of
the others; (2) two entries of each row are uniformly se-
lected and are set to 1 and −1 respectively; (3) the remain-
ing entries are set to 0. The following result shows that the
condition number of D is bounded with high probability.
Theorem 4. For anym and p satisfying thatm ≥ cpwhere
c is large enough, the following holds:

σmax(D)

σmin(D)
≤
√
m+ Ω(

√
p)

√
m− Ω(

√
p)
,

with probability at least 1− 2 exp{−Ω(p)}.

From this theorem, one can see that

• If m = cp where c is large enough, then

κ =
σmax(Z)

σmin(Z)
=
σmax(D)

σmin(D)

is bounded with high probability;

• If m = p(p− 1)/2 which is the maximal possible m,
then κ→ 1.
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Figure 1. Illustration of the relationship between condition number and performance in terms of relative error. Three problem sizes are
used as examples.

5. Numerical Simulations
In this section, we use numerical simulations to verify some
of our theoretical results. Given a problem size n and p and
condition number κ, we randomly generate D as follows.
We first construct a p× p diagonal matrix D0 such that

Diag(D0) > 0 and
max(Diag(D0))

min(Diag(D0))
= κ.

We then construct a random basis matrix V ∈ Rp×p, and
let D = D0V . Clearly, D has independent columns and
the condition number equals to κ. Next, a vector x ∈ Rp
is generated such that xi ∼ N (0, 1), i = 1, . . . , p10 and
xj = 0, j = p

10 + 1, . . . , p. θ∗ is then obtained as
θ∗ = D−1x. Finally, we generate a matrix Φ ∈ Rn×p
with Φij ∼ N (0, 1), noise ε ∈ Rn with εi ∼ N (0, 0.001)
and y = Φθ∗ + ε.

We solve Eq. (2) using the standard optimization package
CVX6 and λ is set as λ = 2‖(Z+)TXT ε‖∞ as suggested
by Theorem 1. We use three different sizes of problems,
with n ∈ {40, 100, 200}, p ∈ {50, 150, 300} and κ rang-
ing from 1 to 1000. For each problem setting, 100 random
instances are generated and the average performance is re-
ported. We use the relative error ‖θ̂−θ

∗‖
‖θ∗‖ for evaluation, and

present the performance with respect to different condition
numbers in Figure 1. We can observe from Figure 1 that
in all three cases the relative error increases when the con-
dition number increases. If we fix the condition number,
by comparing the three curves, we can see that the relative
error decreases when the problem size increases. These
are consistent with our theoretical results in Section 3 [see
Eq. (18)].

6. Conclusion and Future Work
This paper considers the problem of estimating a specific

6cvxr.com/cvx/

type of signals which is sparse under a given linear trans-
formation D. A conventional convex relaxation technique
is used to convert this NP-hard combinatorial optimiza-
tion into a tractable problem. We develop a unified frame-
work to analyze the convex formulation with a generic
D and provide the estimate error bound. Our main re-
sults establish that 1) in the noiseless case, if the condi-
tion number ofD is bounded and the measurement number
n ≥ Ω(s log(p)) where s is the sparsity number, then the
true solution can be recovered with high probability; and 2)
in the noisy case, if the condition number of D is bounded
and the measurement number grows faster than s log(p)
[that is, s log(p) = o(n)], then the estimate error converges
to zero when p and s go to infinity with probability 1. Our
results are consistent with existing literature for the spe-
cial case D = Ip×p (equivalently LASSO) and improve
the existing analysis for the same formulation. The con-
dition number of D plays a critical role in our theoretical
analysis. We consider the condition numbers in two cases
including the fused LASSO and the random graph. The
condition number in the fused LASSO case is bounded by
a constant, while the condition number in the random graph
case is bounded with high probability if mp (that is, #edge

#vertex )
is larger than a certain constant. Numerical simulations are
consistent with our theoretical results.

In future work, we plan to study a more general formulation
of Eq. (2):

min
θ

: f(θ) + λ‖Dθ‖1,

where D is an arbitrary matrix and f(θ) is a convex and
smooth function satisfying the restricted strong convexity
property. We expect to obtain similar consistency proper-
ties for this general formulation.
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