

Incorporating User Interaction and Topological Constraints within Contour Completion via Discrete Calculus

Jia Xu, Maxwell D. Collins, Vikas Singh

University of Wisconsin-Madison http://pages.cs.wisc.edu/~jiaxu/projects/euler-seg/

PROBLEM STATEMENT

Interactive multiple contour completion for edge-based segmentation

Main Intuition:

a) # of edgelets remains relatively unaffected by the image resolution b) No implicit assumption on region homogeneity

MAIN CHALLENGE

Modeling topological constraint while concurrently finding one or more minimum energy closed contours which satisfy:

- Foreground seeds must be "inside"
- Background seeds must be "outside".

ADVANTAGES OF OUR METHOD (EULERSEG)

- 1. Basic primitives are edgelets (Little dependence on # of pixels)
- 2. Dense strokes not needed to learn appearance model. Results do *NOT* vary with seed location

(Interaction constraints are completely geometric in form)

3. Incorporating connectedness priors and specifying # of closures is easy (Euler characteristic)

DISCRETE CALCULUS

Vertex

Edge

Face

Coherent

Anti-coherent

Vertex-edge and edge-face incidence matrices:

$$\mathbf{A}_{V_k,e_{ij}} = \begin{cases} +1 & k=i, \\ -1 & k=j, \\ 0 & \text{otherwise.} \end{cases} \quad \mathbf{C}_{e,f} = \begin{cases} +1 & e \vdash f, \text{ coherently oriented,} \\ -1 & e \vdash f, \text{ anti-coherently oriented,} \\ 0 & \text{otherwise.} \end{cases}$$

- More cell incidence matrices: $C_1 = C$, $C_2 = |C_1|$, $A_2 = |A|$, A_3 : $A_{3;ij} = A_{2;ij}/d_i$ where d_i denotes the degree of node i
- Graph construction: superpixel + globalPb.

PROBLEM FORMULATION

min $\mathbf{v}, \mathbf{x}, \mathbf{y}, \mathbf{z}$ $\mathbf{D}^T \mathbf{w}$, $\mathbf{D}^T \mathbf{w}$ (N: edge weight vector, \mathbf{D} : edge length vector) s.t. $\mathbf{w} = |C_1 \mathbf{x}|$, $2\mathbf{y} = \mathbf{w} + C_2 \mathbf{x}$, (Cell complex constraints) $A_3 \mathbf{y} \le \mathbf{z} \le A_2 \mathbf{y}$, $\mathbf{1}^T \mathbf{x} + \mathbf{1}^T \mathbf{z} - \mathbf{1}^T \mathbf{y} = n$, (Euler Characteristic) $\mathbf{x}_1 \le \mathbf{x} \le \mathbf{1} - \mathbf{x}_0$, $\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z} \in \{0, 1\}$. (Inside/outside constraint)

MINIMIZING A RATIO COST

Solved by minimizing

$$\psi(t, \mathbf{w}) = (\mathbf{N} - t\mathbf{D})^T \mathbf{w}$$

- ightharpoonup Over admissible **w** for a sequence of chosen values of t.
- Requires $\mathbf{D} \geq 0$ and $\mathbf{D}^T \mathbf{w} \neq 0$
- With an initial finite bounding interval $[t_l, t_u]$

Pick $t_0 = \frac{t_l + t_u}{2}$, and let

$$ar{\mathbf{w}} = rg\min_{\mathbf{w}} \psi(\mathbf{t_0}, \mathbf{w})$$

- $\psi(t_0, \bar{\mathbf{w}}) = 0$: $\mathbf{N}^T \bar{\mathbf{w}} / \mathbf{D}^T \bar{\mathbf{w}} = t_0$, terminate with solution t_0
- $\psi(t_0, \bar{\mathbf{w}}) < 0$: $\mathbf{N}^T \bar{\mathbf{w}} / \mathbf{D}^T \bar{\mathbf{w}} < t_0, t_u \leftarrow \mathbf{N}^T \bar{\mathbf{w}} / \mathbf{D}^T \bar{\mathbf{w}}$
- $\psi(t_0, \bar{\mathbf{w}}) > 0$: $\mathbf{N}^T \bar{\mathbf{w}} / \mathbf{D}^T \bar{\mathbf{w}} > t_0, t_l \leftarrow t_0$

BRANCH AND BOUND METHOD

- Limitations of superpixel decomposition: occlusions or weak boundaries give cases where the set of superpixel boundary primitives do not include some valid edgelets.
- Solution: supplement the basic set of edgelets with additional contour pieces that bridge the "gaps" and allow a more accurate contour closure even in the presence of very weak signal variations.
- **Euler spiral for shape completion**: isotropy, symmetry, smoothness, Extensibility, and roundness.
- ▶ **Key idea:** iteratively build upon the current partial path, until we get a cycle that encloses a feasible region. Subtrees are discarded if they give rise to a self-intersecting partial path; therefore, no need to explore the entire branch and bound tree.

EVALUATION ON CONTOUR COMPLETION

EVALUATION ON INTERACTIVE SEGMENTATION

TAKEAWAYS

- A IP model for multiple contour completion with seed constraints
- ightharpoonup An informative seeds dataset (\sim 1000 images)
- Topological constraints and interaction can be easily incorporated via discrete calculus

How much effort to reach F = 0.95?

Method	BJ [6]	RW [13]	SP [4]	GSCseq [15]	EulerSeg
Effort	5.51	6.48	4.54	2.30	2.06

Seeds can serve an important role beyond must link/cannot link