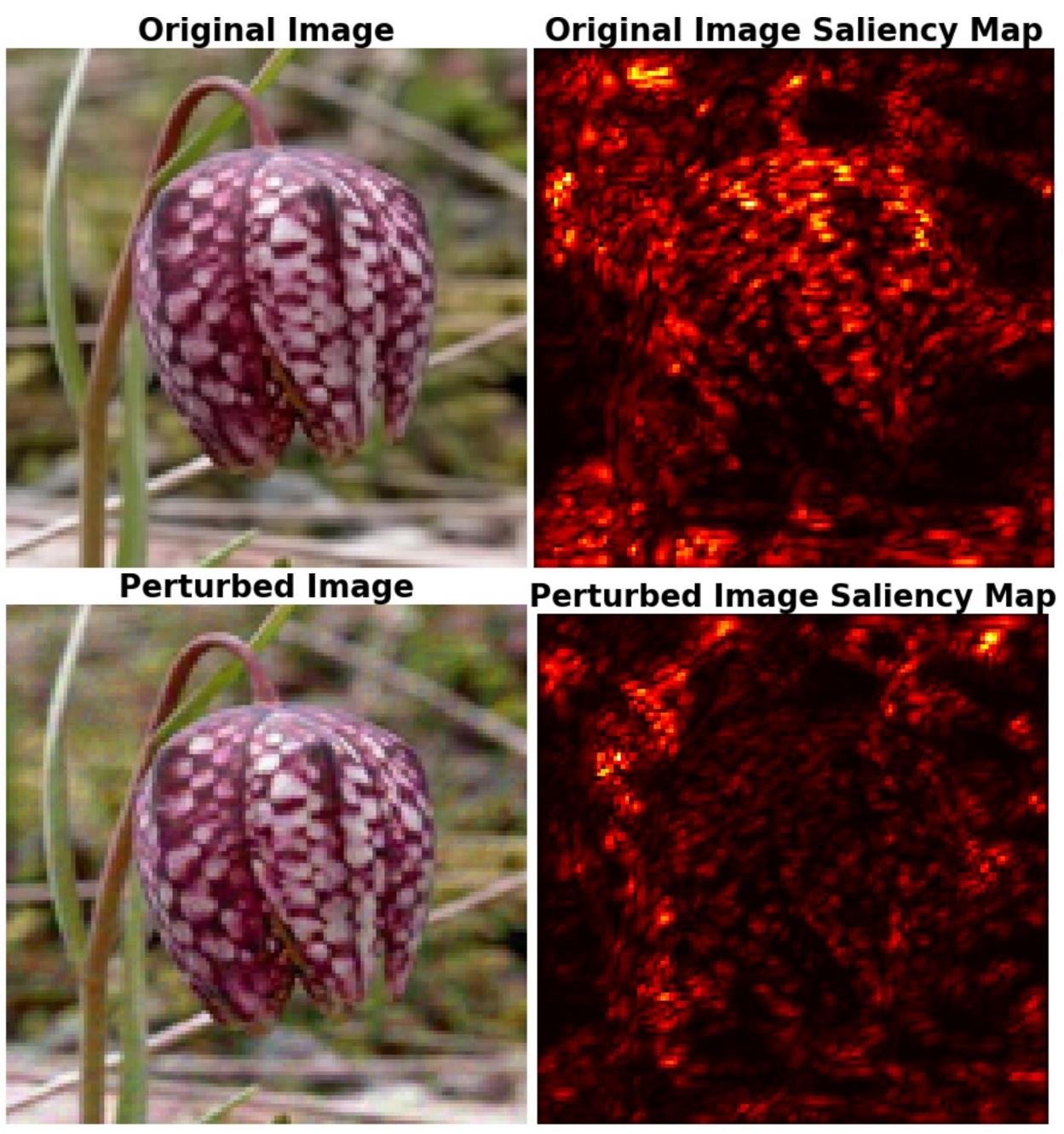
Model Interpretations

An **attribution vector** indicates the importance of each feature in the input for the prediction. It can be computed via Simple Gradient, DeepLIFT, Integrated Gradients(IG), etc.

Attribution of naturally trained model is brittle

Ghorbani et al. demonstrated that for existing models, one can generate minimal perturbations that substantially change model interpretations while **keeping their predictions intact**.



Top-1000 Intersection: 0.1% Kendall's Correlation: 0.2607

Useful Information

Paper Link: https://arxiv.org/abs/1905.09957 **Code link can be found in our paper!**

Robust Attribution Regularization

Jiefeng Chen¹ Xi Wu² Vaibhav Rastogi ¹University of Wisconsin-Madisor

RAR Training

We propose Robust Attribution Regularization(RAR) training to achieve robust attribution.

Uncertainty Set Model

 $\underset{\theta}{\text{minimize}}$ $\mathbb{E}_{(\mathbf{x},y)\sim P}[\rho(\mathbf{x},y;\theta)]$ where $\rho(\mathbf{x}, y; \theta) =$ $\ell(\mathbf{x}, y; \theta) + \lambda \max_{\mathbf{x}' \in N(\mathbf{x}, \varepsilon)} s(\mathrm{IG}_{h}^{\ell_{y}}(\mathbf{x}, \mathbf{x}'; r))$

Refer to the paper for objectives in Distributional Robustness Model!

Instantiations

Classic Objectives are Weak Instantiations for Robust Attribution

- Madry et al.'s Robust Prediction Objective: Size function s() is sum(). Not a metric and allow attribution to cancel.
- Input Gradient Regularization: Only uses the first-term of IG for regularization.
- Surrogate loss of Madry et al.'s min-max objective: Regularizes by attribution of the loss output.

Strong Instantiations for Robust Attribution

IG-NORM:

 $\min_{\theta} \mathbb{E}_{(\mathbf{x},y)\sim P} [\ell(\mathbf{x},y;\theta) + \lambda \max_{\mathbf{x}' \in N(\mathbf{x},\varepsilon)} \| \operatorname{IG}^{\ell_y}(\mathbf{x},\mathbf{x}') \|_1]$ IG-SUM-NORM:

 $\min_{\theta} \mathbb{E}_{(\mathbf{x},y)\sim P} [\max_{\mathbf{x}'\in N(\mathbf{x},\varepsilon)} \ell(\mathbf{x}',y;\theta) + \beta \| \operatorname{IG}^{\ell_y}(\mathbf{x},\mathbf{x}')\|_1]$

Read our paper to know how to set hyper-parameters to get these interesting instantiations!

i ²	Yingyu Lian	g ¹ Somesh Jha ^{1,3}
n	² Google	³ XaiPient

(1)

1-Layer Neural Networks

Robust interpretation equals Robust prediction

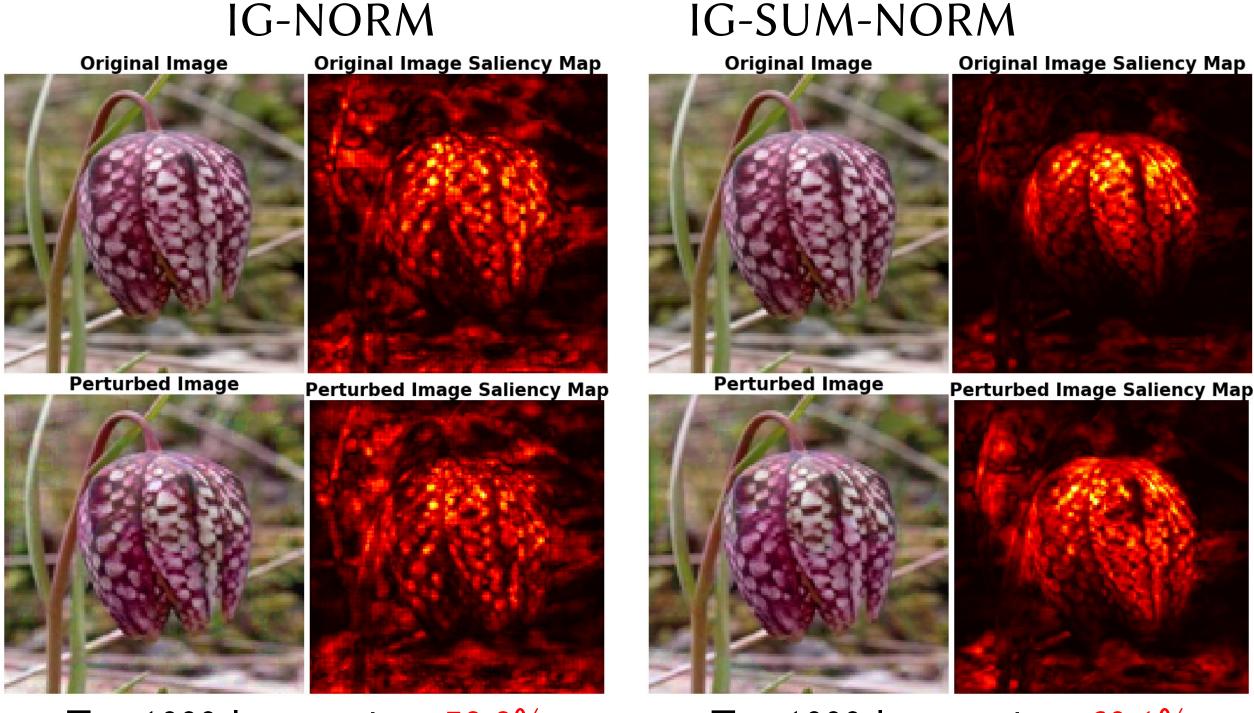
For the special case of one-layer neural networks, where the loss function takes the form of $\ell(\mathbf{x}, y; \boldsymbol{w}) = g(-y \langle \boldsymbol{w}, \mathbf{x} \rangle)$, the strong instantiations ($s(\cdot) = \| \cdot \|_1$) and weak instantiations $(s(\cdot) = sum(\cdot))$ coincide.

Read our paper for the details of our theories!

Much more robust attribution using our technique!

Dataset	Approach	NA	AA	IN	CO
	NATURAL	99.17%	0.00%	46.61%	0.1758
MNIST	IG-NORM	98.74%	81.43%	71.36%	0.2841
	IG-SUM-NORM	98.34%	88.17%	72.45%	0.3111
	NATURAL	98.57%	21.05%	54.16%	0.6790
GTSRB	IG-NORM	97.02%	75.24%	74.81%	0.7555
	IG-SUM-NORM	95.68%	77.12%	74.04%	0.7684
	NATURAL	86.76%	0.00%	8.12%	0.4978
Flower	IG-NORM	85.29%	24.26%	64.68%	0.7591
	IG-SUM-NORM	82.35%	47.06%	66.33%	0.7974

IG-NORM



Top-1000 Intersection: 58.8% Kendall's Correlation: 0.6736

More experimental results can be found in our paper!

Empirical Results

Top-1000 Intersection: 60.1% Kendall's Correlation: 0.6951