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Abstract

Hidden Markov random fields (HMRFs) are
conventionally assumed to be homogeneous
in the sense that the potential functions are
invariant across different sites. However in
some biological applications, it is desirable
to make HMRFs heterogeneous, especially
when there exists some background knowl-
edge about how the potential functions vary.
We formally define heterogeneous HMRFs
and propose an EM algorithm whose M-step
combines a contrastive divergence learner
with a kernel smoothing step to incorpo-
rate the background knowledge. Simulations
show that our algorithm is effective for learn-
ing heterogeneous HMRFs and outperforms
alternative binning methods. We learn a het-
erogeneous HMRF in a real-world study.

1 Introduction

Hidden Markov models (HMMs) and hidden Markov
random fields (HMRFs) are useful approaches for mod-
elling structured data such as speech, text, vision and
biological data. HMMs and HMRFs have been ex-
tended in many ways, such as the infinite models [Beal
et al., 2002, Gael et al., 2008, Chatzis and Tsechpe-
nakis, 2009], the factorial models [Ghahramani and
Jordan, 1997, Kim and Zabih, 2002], the high-order
models [Lan et al., 2006] and the nonparametric mod-
els [Hsu et al., 2009, Song et al., 2010]. HMMs are
homogeneous in the sense that the transition matrix
stays the same across different sites. HMRFs, inten-
sively used in image segmentation tasks [Zhang et al.,
2001, Celeux et al., 2003, Chatzis and Varvarigou,
2008], are also homogeneous. The homogeneity as-
sumption for HMRFs in image segmentation tasks is
legitimate, because people usually assume that the
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neighborhood system on an image is invariant across
different regions. However, it is necessary to bring
heterogeneity to HMMs and HMRFs in some biolog-
ical applications where the correlation structure can
change over different sites. For example, a heteroge-
neous HMM is used for segmenting array CGH data
[Marioni et al., 2006], and the transition matrix de-
pends on some background knowledge, i.e. some dis-
tance measurement which changes over the sites. A
heterogeneous HMRF is used to filter SNPs in genome-
wide association studies [Liu et al., 2012a], and the
pairwise potential functions depend on some back-
ground knowledge, i.e. some correlation measure be-
tween the SNPs which can be different between differ-
ent pairs. In both of these applications, the transition
matrix and the pairwise potential functions are hetero-
geneous and are parameterized as monotone paramet-
ric functions of the background knowledge. Although
the algorithms tune the parameters in the monotone
functions, there is no justification that the parameter-
ization of the monotone functions is correct. Can we
adopt the background knowledge about these heteroge-
neous parameters adaptively during HMRF learning,
and recover the relation between the parameters and
the background knowledge nonparametrically?

Our paper is the first to learn HMRFs with hetero-
geneous parameters by adaptively incorporating the
background knowledge. It is an EM algorithm whose
M-step combines a contrastive divergence style learner
with a kernel smoothing step to incorporate the back-
ground knowledge. Details about our EM-kernel-PCD
algorithm are given in Section 3 after we formally de-
fine heterogeneous HMRFs in Section 2. Simulations
in Section 4 show that our EM-kernel-PCD algorithm
is effective for learning heterogeneous HMRFs and out-
performs alternative methods. In Section 5, we learn
a heterogeneous HMRF in a real-world genome-wide
association study. We conclude in Section 6.

2 Models

2.1 HMRFs And Homogeneity Assumption

Suppose that X = {0, 1, ...,m− 1} is a discrete space,
and we have a Markov random field (MRF) defined on
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a random vector X ∈ Xd. The conditional indepen-
dence is described by an undirected graph G(V,E).
The node set V consists of d nodes. The edge set E
consists of r edges. The probability of x from the MRF
with parameters θ is

P (x;θ) =
Q(x;θ)

Z(θ)
=

1

Z(θ)

∏
c∈C(G)

φc(x;θc), (1)

where Z(θ) is the normalizing constant. Q(x;θ) is
some unnormalized measure with C(G) being some
subset of the cliques in G. The potential function
φc is defined on the clique c and is parameterized by
θc. For simplicity in this paper, we consider pairwise
MRFs, whose potential functions are defined on the
edges, namely |C(G)| = r. We further assume that
each pairwise potential function is parameterized by a
single parameter, i.e. θc = {θc}.

A hidden Markov random field [Zhang et al., 2001,
Celeux et al., 2003, Chatzis and Varvarigou, 2008] con-
sists of a hidden random field X ∈ Xd and an observ-
able random field Y ∈ Yd where Y is another space
(either continuous or discrete). The random field X
is a Markov random field with density P (x;θ), as de-
fined in Formula (1), and its instantiation x cannot be
measured directly. Instead, we can observe the emit-
ted random field Y with its individual dimension Yi
depending on Xi for i = 1, ..., d, namely P (y|x;ϕ) =∏d
i=1 P (yi|xi;ϕ) where ϕ = {ϕ0, ..., ϕm−1} and ϕxi

parameterizes the emitting distribution of Yi under the
state xi. Therefore, the joint probablity of x and y is

P (x,y;θ,ϕ) = P (x;θ)P (y|x;ϕ)

=
1

Z(θ)

∏
c∈C(G)

φc(x;θc)

d∏
i=1

P (yi|xi;ϕ).
(2)

Example 1: One pairwise HMRF model with three
latent variables (X1, X2, X3) and three observable
variables (Y1, Y2, Y3) is given in Figure 1. Let
X = {0, 1}. X1, X2 and X3 are connected by three
edges. The pairwise potential function φi on edge i
(connectingXu andXv) parameterized by θi (0<θi<1)

is φi(X; θi) = θ
I(Xu=Xv)
i (1−θi)I(Xu 6=Xv) for i = 1, 2, 3,

where I is an indicator variable. Let Y = R. For
i = 1, 2, 3, Yi|Xi=0 ∼ N(µ0, σ

2
0) and Yi|Xi=1 ∼

N(µ1, σ
2
1), namely ϕ0 = {µ0, σ0} and ϕ1 = {µ1, σ1}.

In common applications of HMRFs, we observe only
one instantiation y which is emitted according to the
hidden state vector x, and the task is to infer the most
probable state configuration of X, or to compute the
marginal probabilities of X. In both tasks, we need
to estimate the parameters θ = {θ1, ..., θr} and ϕ =
{ϕ0, ..., ϕm−1}. Usually, we seek maximum likelihood
estimates of θ and ϕ which maximize the log likelihood
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࣐
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Figure 1: The pairwise HMRF model with three latent
nodes (X1, X2, X3) and observable nodes (Y1, Y2, Y3)
with parameters θ = {θ1, θ2, θ3} and ϕ = {ϕ0, ϕ1}.

L(θ,ϕ) = logP (y;θ,ϕ) = log
∑
x∈Xd

P (x,y;θ,ϕ). (3)

Since we only have one instantiation (x,y), we usually
have to assume that θi’s are the same for i = 1, ..., r
for effective parameter learning. This homogeneity as-
sumption is widely used in computer vision problems
because people usually assume that the neighborhood
system on an image is invariant across its different re-
gions. Therefore, conventional HMRFs refer to homo-
geneous HMRFs, similar to conventional HMMs whose
transition matrix is invariant across different sites.

2.2 Heterogeneous HMRFs

In a heterogeneous HMRF, the potential functions on
different cliques can be different. Taking the model in
Figure 1 as an example, θ1, θ2 and θ3 can be different
if the HMRF is heterogeneous. As with conventional
HMRFs, we want to be able to address applications
that have one instantiation (x,y) where y is observ-
able and x is hidden. Therefore, learning an HMRF
from one instantiation y is infeasible if we free all θ’s.
To partially free the parameters, we assume that there
is some background knowledge k = {k1, ..., kr} about
the parameters θ = {θ1, ..., θr} in the form of some un-
known smooth mapping function which maps θi to ki
for i = 1, ..., r. The background knowledge describes
how these potential functions are different across dif-
ferent cliques. Taking pairwise HMRFs for example,
the potentials on the edges with similar background
knowledge should have similar parameters. We can re-
gard the homogeneity assumption in conventional HM-
RFs as an extreme type of background knowledge that
k1 = k2 = ... = kr. The problem we solve in this paper
is to estimate θ and ϕ which maximize the log likeli-
hood L(θ,ϕ) in Formula (3), subject to the condition
that the estimate of θ is smooth with respect to k.
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3 Parameter Learning Methods

Learning heterogeneous HMRFs in above manner in-
volves three difficulties, (i) the intractable Z(θ), (ii)
the latent x, and (iii) the heterogeneous θ. The way
we handle the intractable Z(θ) is similar to using con-
trastive divergence [Hinton, 2002] to learn MRFs. We
review contrastive divergence and its variations in Sec-
tion 3.1. To handle the latent x in HMRF learning,
we introduce an EM algorithm in Section 3.2, which is
applicable to conventional HMRFs. In Section 3.3, we
further address the heterogeneity of θ in the M-step of
the EM algorithm.

3.1 Contrastive Divergence for MRFs

Assume that we observe s independent samples X =
{x1,x2, ...,xs} from (1), and we want to estimate θ.
The log likelihood L(θ|X) is concave w.r.t. θ, and we
can use gradient ascent to find the MLE of θ. The
partial derivative of L(θ|X) with respect to θi is

∂L(θ|X)

∂θi
=

1

s

s∑
j=1

ψi(x
j)−Eθψi = EXψi−Eθψi, (4)

where ψi is the sufficient statistic corresponding to θi,
and Eθψi is the expectation of ψi with respect to the
distribution specified by θ. In the i-th iteration of
gradient ascent, the parameter update is

θ(i+1) = θ(i) +η∇L(θ(i)|X) = θ(i) +η(EXψ−Eθ(i)
ψ),

where η is the learning rate. However the exact
computation of Eθψi takes time exponential in the
treewidth of G. A few sampling-based methods have
been proposed to solve this problem. The key dif-
ferences among these methods are how to draw par-
ticles and how to compute Eθψ from the particles.
MCMC-MLE [Geyer, 1991, Zhu and Liu, 2002] uses
importance sampling, but might suffer from degen-
eracy when θ(i) is far away from θ(1). Contrastive
divergence [Hinton, 2002] generates new particles in
each iteration according to the current θ(i) and does
not require the particles to reach equilibrium, so as
to save computation. Variations of contrastive diver-
gence include particle-filtered MCMC-MLE [Asuncion
et al., 2010], persistent contrastive divergence (PCD)
[Tieleman, 2008] and fast PCD [Tieleman and Hin-
ton, 2009]. Because PCD is efficient and easy to
implement, we employ it in this paper. Its pseudo-
code is provided in Algorithm 1. Other than con-
trastive divergence, MRF can be learned via ratio
matching [Hyvärinen, 2007], non-local contrastive ob-
jectives [Vickrey et al., 2010], noise-contrastive esti-
mation [Gutmann and Hyvärinen, 2010] and minimum
KL contraction [Lyu, 2011].

Algorithm 1 PCD-n Algorithm [Tieleman, 2008]

1: Input: independent samples X = {x1,x2, ...,xs}
from P (x;θ), maximum iteration number T

2: Output: θ̂ from the last iteration
3: Procedure:
4: Initialize θ(1) and initialize particles
5: Calculate EXψ from X
6: for i = 1 to T do
7: Advance particles n steps under θ(i)
8: Calculate Eθ(i)

ψ from the particles
9: θ(i+1) = θ(i) + η(EXψ − Eθ(i)

ψ)
10: Adjust η
11: end for

3.2 Expectation-Maximization for Learning
Conventional HMRFs

We begin with a lower bound of the log likelihood
function, and then introduce the EM algorithm which
handles the latent variables in HMRFs. Let qx(x)
be any distribution on x∈Xd. It is well known that
there exists a lower bound of the log likelihood L(θ,ϕ)
in (3), which is provided by an auxiliary function
F(qx(x), {θ,ϕ}) defined as follows,

F(qx(x),{θ,ϕ}) =
∑
x∈Xd

qx(x) log
P (x,y;θ,ϕ)

qx(x)

= L(θ,ϕ)−KL[qx(x)|P (x|y,θ,ϕ)],

(5)

where KL[qx(x)|P (x|y,θ,ϕ)] is the Kullback-Leibler
divergence between qx(x) and P (x|y,θ,ϕ), the pos-
terior distribution of the hidden variables. This
Kullback-Leibler divergence is the distance between
L(θ,ϕ) and F(qx(x), {θ,ϕ}).

Expectation-Maximization: We maximize L(θ,ϕ)
with an expectation-maximization (EM) algo-
rithm which iteratively maximizes its lower bound
F(qx(x), {θ,ϕ}). We first initialize θ(0) and ϕ(0). In
the t-th iteration, the updates in the expectation (E)
step and the maximization (M) step are

q(t)x = arg max
qx

F(qx(x), {θ(t−1),ϕ(t−1)}) (E),

θ(t),ϕ(t) = arg max
{θ,ϕ}

F(q(t)x , {θ,ϕ}) (M).

In the E-step, we maximize F(qx(x), {θ(t−1),ϕ(t−1)})
with respect to qx(x). Because the differ-
ence between F(qx(x), {θ,ϕ}) and L(θ,ϕ) is
KL[qx(x)|P (x|y,θ,ϕ)], the maximizer in the E-step

q
(t)
x is P (x|y,θ(t−1),ϕ(t−1)), namely the posterior

distribution of x|y under the current estimated

parameters θ(t−1) and ϕ(t−1). This posterior distribu-
tion can be calculated by Markov chain Monte Carlo
for general graphs.
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In the M-step, we maximize F(q
(t)
x (x), {θ,ϕ}) with

respect to {θ,ϕ}, which can be rewritten as

arg max
{θ,ϕ}

F(q(t)x (x), {θ,ϕ})

= arg max
{θ,ϕ}

∑
x∈Xd

q(t)x (x) logP (x,y;θ,ϕ)

= arg max
{θ,ϕ}

∑
x∈Xd

q(t)x (x)

{
logP (x;θ) + logP (y|x;ϕ)

}
.

It is obvious that this function can be maximized with
respect to ϕ and θ separately as

θ(t) = arg max
θ

∑
x∈Xd

q(t)x (x) logP (x;θ),

ϕ(t) = arg max
ϕ

∑
x∈Xd

q(t)x (x) logP (y|x;ϕ).
(6)

Estimating ϕ: Estimating ϕ in this maximum like-
lihood manner is straightforward, because the maxi-
mization can be rewritten as follows,

arg max
ϕ

∑
x∈Xd

q(t)x (x) logP (y|x;ϕ)

= arg max
ϕ

d∑
i=1

∑
xi∈X

q(t)xi
(xi) logP (yi|xi;ϕ),

where q
(t)
x (x) =

∏d
i=1 q

(t)
xi (xi).

Estimating θ: Estimating θ in Formula (6) is dif-
ficult due to the intractable Z(θ). Some approaches
[Zhang et al., 2001, Celeux et al., 2003] use pseudo-
likelihood [Besag, 1975] to estimate θ in the M-step.

It can be shown that
∑

x∈Xd q
(t)
x (x) logP (x;θ) is con-

vex with respect to θ. Therefore, we can use gradient
ascent to find the MLE of θ, which is similar to using
contrastive divergence [Hinton, 2002] to learn MRFs
in Section 3.1.

Denote
∑

x∈Xd q
(t)
x (x) logP (x;θ) by LM (θ|q(t)x ). The

partial derivative of LM (θ|q(t)x ) with respect to θi is

∂LM (θ|q(t)x )

∂θi
=
∑
x∈Xd

q(t)x (x)

{
ψi(x)− Eθψi(x)

}
.

Therefore, the derivative here is similar to the deriva-
tive in contrastive divergence in Formula (4) except we

have to reweight it to q
(t)
x . We run the EM algorithm

until both θ and ϕ converge. Note that when learn-
ing homogeneous HMRFs with this algorithm, we tie
all θ’s all the time, namely θ = {θ}. Therefore, we
name this parameter learning algorithm for conven-
tional HMRFs the EM-homo-PCD algorithm.

3.3 Learning Heterogeneous HMRFs

Learning heterogeneous HMRFs is different from
learning conventional homogeneous HMRFs in two
ways. First, we need to free the θ’s in heterogeneous
HMRFs. Second, there is some background knowl-
edge k about how the θ’s are different, as introduced
in Section 2. Therefore, we make two modifications to
the EM-homo-PCD algorithm in order to learn hetero-
geneous HMRFs with background knowledge. First,
we estimate the θ’s separately, which obviously brings
more variance in estimation. Second, within each it-
eration of the contrastive divergence update, we apply
a kernel regression to smooth the estimate of the θ’s
with respect to the background knowledge k. Specifi-
cally, in the i-th iteration of PCD update, we advance
the particles under θ̂(i) for n steps, and calculate the
moments Eθ̂(i)

ψ from the particles. Therefore, we can

update the estimate as

θ̃(i+1) = θ̂(i) + η∇LM (θ|q(t)x ).

Then we regress θ̃(i+1) with respect to k via Nadaraya-
Watson kernel regression [Nadaraya, 1964, Watson,

1964], and set θ̂(i+1) to be the fitted values. For
ease of notation, we drop the iteration index (i + 1).
Suppose that θ̃ = {θ̃1, ..., θ̃r} is the estimate be-
fore kernel smoothing; we set the smoothed estimate
θ̂ = {θ̂1, ..., θ̂r} as

θ̂j =
∑r

i=1
γij θ̃i,∀j = 1, ..., r,

where

γij =
K(

ki−kj
h )∑r

m=1K(
km−kj
h )

.

For the kernel function K, we use the Epanechnikov
kernel, which is usually computationally more efficient
than a Gaussian kernel. We tune the bandwidth h
through cross-validation, namely we select the band-
width which minimizes the leave-one-out score

1

r

∑r

i=1

(
θ̃i − θ̂i
1− γii

)2

.

Tuning the bandwidth is usually computation-
intensive, so we tune it every t0 iterations to save com-
putation. We name our parameter learning algorithm
for heterogeneous HMRFs the EM-kernel-PCD algo-
rithm. Its pseudo-code is given in Algorithm 2.

Another intuitive way of handling background knowl-
edge about these heterogeneous parameters is to cre-
ate bins according to the background knowledge and
tie the θ’s that are in the same bin. Suppose that
we have b bins after we carefully select the binwidth,
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Algorithm 2 EM-kernel-PCD Algorithm

1: Input: sample y, background knowledge k, max
iteration number T , initial bandwidth h

2: Output: θ̂ from the last iteration
3: Procedure:
4: Initialize θ̂, ϕ̂ and particles
5: while not converge do
6: E-step: infer x̂ from y
7: Calculate Ex̂ψ from x̂
8: for i = 1 to T do
9: Advance particles for n steps under θ̂(i)

10: Calculate Eθ̂(i)
ψ from the particles

11: θ̃(i+1) = θ̂(i) + η∇LM (θ|q(t)x )

12: θ̂(i+1) = kernelRegF it(θ̃(i+1),k, h)
13: Adjust η and tune bandwidth h
14: end for
15: MLE ϕ̂ from x̂ and y
16: end while

namely we have θ = {θ1, ..., θb}. The rest of the al-
gorithm is the same as the EM-homo-PCD algorithm
in Section 3.2. We name this parameter learning al-
gorithm via binning the EM-binning-PCD algorithm.
We can also regard our EM-kernel-PCD algorithm as
a soft-binning version of EM-binning-PCD.

4 Simulations

We investigate the performance of our EM-kernel-
PCD algorithm on heterogeneous HMRFs with differ-
ent structures, namely a tree-structure HMRF and a
grid-structure HMRF. In the simulations, we first set
the ground truth of the parameters, and then set the
background knowledge. We then generate one exam-
ple x and then generate one example y|x. With the
observable y, we apply EM-kernel-PCD, EM-binning-
PCD and EM-homo-PCD to learn the parameters θ.
We eventually compare the three algorithms by their
average absolute estimate error 1/r

∑r
i=1 |θi−θ̂i| where

θ̂i is the estimate of θi.

For the HMRFs, each dimension of X takes values in
{0, 1}. The pairwise potential function φi on edge i
(connecting Xu and Xv) parameterized by θi (0 <

θi < 1) is φi(X; θi) = θ
I(Xu=Xv)
i (1 − θi)I(Xu 6=Xv) for

i = 1, 2, 3, where I is an indicator variable. For the
tree structure, we choose a perfect binary tree of height
12, which yields a total number of 8,191 nodes and
8,190 parameters, i.e. d = 8,191 and r = 8,190. For
the grid-structure HMRFs, we choose a grid of 100
rows and 100 columns, which yields a total number of
10,000 nodes and 19,800 parameters, i.e. d = 10,000
and r = 19,800. For both of the two models, we gen-
erate θi ∼ U(0.5, 1) independently and then generate
the background knowledge ki. We have two types of
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Figure 2: Performance of EM-homo-PCD, EM-
binning-PCD and EM-kernel-PCD in tree-HMRFs and
grid-HMRFs for two types of background knowledge:
(a) ki = sin θi + ε, and (b) ki = θ2i + ε.

background knowledge. In the first type of background
knowledge, we set ki = sin θi + ε. In the second type
of background knowledge, we set ki = θ2i + ε, where ε
is some random Gaussian noise from N(0, σ2

ε ). We try
three values for σε, namely 0.0, 0.01 and 0.02. Then we
generate one instantiation x. Finally, we generate one
observable y from a d dimensional multivariate normal
distribution N(µx, σ2I) where µ = 2 is the strength of
signal, and σ2 = 1.0 is the variance of the manifesta-
tion, and I is the identity matrix of dimension d. For
our EM-kernel-PCD algorithm, we use an Epanech-
nikov kernel with α = β = 5. For tuning bandwidth h,
we try 100 values in total, namely 0.005, 0.01, 0.015,
..., 0.5. For the EM-binning-PCD algorithm, we set
the binwidth to be 0.005. The rest of the parameter
settings for the three algorithms are the same, includ-
ing the n parameter in PCD which is set to be 1 and
the number of particles which is set to be 100. We also
replicate each experiment 20 times, and the averaged
results are reported.

Performance of the algorithms The results from
the tree-structure HMRFs and the grid-structure HM-
RFs are reported in Figure 2. We plot the aver-
age absolute error of the estimate of the three algo-
rithms against the number of iterations of PCD up-
date. We have separate plots for background knowl-
edge ki = sin θi + ε, and background knowledge ki =
θ2i +ε. Since there are three noise levels for background
knowledge, both the EM-kernel-PCD algorithm and
the EM-binning-PCD algorithm have three variations.
All the three algorithms converge as they iterate. It
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is observed that the absolute estimate error of the
EM-homo-PCD algorithm reduces to 0.125 as it con-
verges. Since the parameters θi’s are drawn indepen-
dently from the uniform distribution on the interval
[0.5, 1], the EM-homo-PCD algorithm ties all the θi’s
and estimates them to be 0.75. Therefore, the av-

eraged absolute error is
∫ 1.0

0.5
2|x − 0.75|dx = 0.125.

Our EM-kernel-PCD algorithm significantly outper-
forms the EM-binning-PCD algorithm and the EM-
homo-PCD algorithm. It is also observed that as the
noise level of background knowledge increases, the per-
formance of the EM-kernel-PCD algorithm and the
EM-binning-PCD algorithm deteriorates. However, as
long as the noise level is moderate, the performance
of our EM-kernel-PCD algorithm is satisfactory. The
results from the tree-structure HMRFs and the grid-
structure HMRFs are comparable except that it takes
more iterations to converge in grid-structure HMRFs
than in tree-structure HMRFs.

Behavior of the algorithms We then plot the esti-
mated parameters against their background knowledge
in the iterations of our EM-kernel-PCD algorithm. We
provide plots for after 100 iterations, after 200 itera-
tions and after convergence respectively, to show how
the EM-kernel-PCD algorithm behaves during the gra-
dient ascent. Figure 3 shows the plots for the back-
ground knowledge ki = sin θi + ε and the background
knowledge ki = θ2i +ε with three levels of noise (namely
σε=0, 0.01 and 0.02) for both the tree-structure HM-
RFs and the grid-structure HMRFs. It is observed
that as the algorithm iterates, it gradually recovers
the relationship between the parameters and the back-
ground knowledge. There is still a gap between our
estimate and the ground truth. This is because we
only have one hidden instantiation x and we have to
infer x from the observed y in the E-step. Especially
at the boundaries, we can observe a certain amount
of estimate bias. The boundary bias is very common
in kernel regression problems because there are fewer
data points at the boundaries [Fan, 1992].

Choosing parameter n One parameter in con-
trastive divergence algorithms is n, the number of
MCMC steps we need to perform under the current
parameters in order to generate the particles. The ra-
tionale of contrastive divergence is that it is enough to
find the direction to update the parameters by a few
MCMC steps using the current parameters, and we
do not have to reach the equilibrium. Therefore, the
parameter n is usually set to be very small to save com-
putation when we are learning general Markov random
fields. Here we explore how we should choose the n pa-
rameter in our EM-kernel-PCD algorithm for learning
HMRFs. We choose three values for n in the simula-
tions, namely 1, 5 and 10. In Figure 4, the running

time and absolute estimate error are plotted for the
three choices in the tree-structure HMRFs and grid-
structure HMRFs under different levels of noise in the
background knowledge ki = sin θi + ε and the back-
ground knowledge ki = θ2i + ε. The running time
increases as n increases, but the estimation accuracy
does not increase. This observation stays the same for
different structures and different levels of noise in dif-
ferent types of background knowledge. This suggests
that we can simply choose n = 1 in our EM-kernel-
PCD algorithm.

5 Real-world Application

We use our EM-kernel-PCD algorithm to learn a het-
erogeneous HMRF model in a real-world genome-wide
association study on breast cancer. The dataset is
from NCI’s Cancer Genetics Markers of Susceptibility
(CGEMS) study [Hunter et al., 2007]. In total, 528,173
genetic markers (single-nucleotide polymorphisms or
SNPs) for 1,145 breast cancer cases and 1,142 controls
are genotyped on the Illumina HumanHap500 array,
and the task is to identify the SNPs which are associ-
ated with breast cancer. This dataset has been used
in the study of Liu et al. [2012b]. We build a heteroge-
neous HMRF model to identify the associated SNPs.
In the HMRF model, the hidden vector X ∈ {0, 1}d
denotes whether the SNPs are associated with breast
cancer, i.e. Xi = 1 means that the SNPi is associated
with breast cancer. For each SNP, we can perform
a two-proportion z-test from the minor allele count in
cases and the minor allele count in controls. Denote Yi
to be the test statistic from the two-proportion z-test
for SNPi. It can be derived that Yi|Xi=0 ∼ N(0, 1)
and Yi|Xi=1 ∼ N(µ1, 1) for some unknown µ1 (µ1 6=
0). We assume that X forms a pairwise Markov ran-
dom field with respect to the graph G. The graph G
is built as follows. We query the squared correlation
coefficients (r2 values) among the SNPs from HapMap
[The International HapMap Consortium, 2003]. Each
SNP becomes a node in the graph. For each SNP,
we connect it with the SNP having the highest r2

value with it. We also remove the edges whose r2 val-
ues are below 0.25. There are in total 340,601 edges
in the graph. The pairwise potential function φi on
edge i (connecting Xu and Xv) parameterized by θi
(0 < θi < 1) is φi(X; θi) = θ

I(Xu=Xv)
i (1− θi)I(Xu 6=Xv)

for i = 1, ..., 340,601, where I is an indicator variable.
It is believed that two SNPs with a higher level of cor-
relation are more likely to agree in their association
with breast cancer. Therefore, we set the background
knowledge k about the parameters to be the r2 values
between the SNPs on the edge. We first perform the
two-proportion z-test and set y to be the calculated
test statistics. Then we estimate θ|y,k in the het-
erogeneous HMRF with respect to G using our EM-
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Figure 3: The behavior of the EM-kernel-PCD algorithm during gradient ascent for different types of background
knowledge with different levels of noise in the tree-structure HMRFs and the grid-structure HMRFs. The red
dots show the mapping pattern between the ground truth of the parameters and their background knowledge.

Figure 5: The estimated parameters against their
background knowledge, namely the r2 values between
the pairs of SNPs.

kernel-PCD algorithm. After we estimate θ and µ1,
we calculate the marginal probabilities of the hidden
X. Eventually, we rank the SNPs by the marginal
probabilities P (Xi = 1|y; θ̂, µ̂1), and select the SNPs
with the largest marginal probabilities.

The algorithm ran for 46 days on a single processor
(AMD Opteron Processor, 3300 MHz) before it con-

verged. We plotted the estimated parameters against
their background knowledge, namely the r2 values be-
tween the pairs of SNPs on the edges. The plot is
provided in Figure 5. It is observed that the map-
ping between the estimated parameters and the back-
ground knowledge is monotone increasing, as we ex-
pect. Finally we calculated the marginal probabilities
of the hidden X, and ranked the SNPs by the marginal
probabilities P (Xi = 1|y; θ̂, µ̂1). There are in total five

SNPs with P (Xi = 1|y; θ̂, µ̂1) greater than 0.99, which
means they are associated with breast cancer with a
probability greater than 0.99 given the observed test
statistics y under the estimated parameters θ̂ and µ̂1.
There is strong evidence in the literature that supports
the association with breast cancer for three of them.
The two SNPs rs2420946 and rs1219648 on chromo-
some 10 are reported by Hunter et al (2007), and have
been further validated by 1,776 cases and 2,072 con-
trols from three additional studies. Their associated
gene FGFR2 is very well known to be associated with
breast cancer in the literature. There is also strong evi-
dence supporting the association of the SNP rs7712949
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(1a) tree structure,  ki = sin(θi) + ε ,  σε =0
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(1b) tree structure,  ki = sin(θi) + ε ,  σε =0.01
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(1c) tree structure,  ki = sin(θi) + ε ,  σε =0.02
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(2a) tree structure,  ki = θi
2 + ε ,  σε =0
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(2b) tree structure,  ki = θi
2 + ε ,  σε =0.01
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(2c) tree structure,  ki = θi
2 + ε ,  σε =0.02
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(3a) grid structure,  ki = sin(θi) + ε ,  σε =0

n=1
n=5
n=10
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(3b) grid structure,  ki = sin(θi) + ε ,  σε =0.01

n=1
n=5
n=10
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(3c) grid structure,  ki = sin(θi) + ε ,  σε =0.02

n=1
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(4a) grid structure,  ki = θi
2 + ε ,  σε =0

n=1
n=5
n=10
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(4b) grid structure,  ki = θi
2 + ε ,  σε =0.01

n=1
n=5
n=10
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(4c) grid structure,  ki = θi
2 + ε ,  σε =0.02

n=1
n=5
n=10

Figure 4: Absolute estimate error (plotted in blue, in the units on the right axes) and running time (plotted
in black, in minutes on the left axes) of the EM-kernel-PCD algorithm in the tree-structure HMRFs and the
grid-structure HMRFs when we choose different n values; n is the number of MCMC steps for advancing particles
in the PCD algorithm. The absolute estimate error in the first 400 iterations is not shown in the plots.

on chromosome 5. The SNP rs7712949 is highly corre-
lated (r2=0.948) with SNP rs4415084 which has been
identified to be associated with breast cancer by an-
other six large-scale studies. 1

6 Conclusion
Capturing parameter heterogeneity is an important is-
sue in machine learning and statistics, and it is partic-
ular challenging in HMRFs due to both the intractable
Z(θ) and the latent x. In this paper, we propose the
EM-kernel-PCD algorithm for learning the heteroge-
neous parameters with background knowledge. Our
algorithm is built upon the PCD algorithm which han-
dles the intractable Z(θ). The EM part we add is for
dealing with the hidden x. The kernel smoothing part
we add is to adaptively incorporate the background
knowledge about the heterogeneity in parameters in
the gradient ascent learning. Eventually, the relation

1http://snpedia.com/index.php/rs4415084

between the parameters and the background knowl-
edge is recovered in a nonparametric way, which is also
adaptive to the data. Simulations show that our algo-
rithm is effective for learning heterogeneous HMRFs
and outperforms alternative binning methods.

Similar to other EM algorithms, our algorithm only
converges to a local maximum of the likelihood
L(θ,ϕ), although the lower bound F(qx(x), {θ,ϕ})
nondecreases over the EM iterations (except for some
MCMC error introduced in the E-step). Our algorithm
also suffers from long run time due to computationally
expensive PCD algorithm within each M-step. These
two issues are important directions for future work.
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