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Abstract

Large-scale genome-wide genetic profiling us-
ing markers of SNPs provides opportunities
to investigate the possibility of using those
biomarkers for predicting genetic risks. Re-
cent computational studies have identified
some associated genetic variations which can
explain a fraction of breast cancer risk and
prostate cancer risk. We attempt to build
accurate classification models for predicting
disease susceptibility based on human SNPs.
We firstly carry out feature selection via lo-
gistic regression coupled with a likelihood ra-
tio test and remove a large number of irrel-
evant SNPs. Then, we employ supervised
learning method SVM to build classification
models. Our computational results show that
our feature selection method based on logistic
regression and likelihood ratio test can effec-
tively select relevant features for SVM on the
prostate cancer dataset, whereas it does not
help SVM very much when applied on the
breast cancer dataset.

1. Introduction

Familial aggregation of some diseases such as breast
cancer and prostate cancer demonstrates there exist
genetic factors explaining the risk to some extent.
Large-scale genome-wide genetic profiling using mark-
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ers of SNPs provides good opportunities to investigate
the possibility of using those biomarkers for predicting
disease risks, and results in the great boom of genome
wide association studies on different heritable diseases
(Hunter et al., 2007; Yeager et al., 2007). In statistics
and machine learning terminology, typically an exam-
ple in GWAS is a human, the class variable is a disease
such as breast cancer or prostate cancer, and the fea-
tures are single positions in the entire genome where
individuals can vary, known as single nucleotide poly-
morphisms (SNPs). One goal in GWAS is to find a
subset of SNPs that can be used to predict the class
variable. In addition, the locations of the predictive
SNPs on the genome can give insight into the genetics
of the disease. The identification of the interactions
between those SNPs can also lead to a better under-
standing of the disease.

The human genome has roughly three billion posi-
tions, roughly three million of which are SNPs. At
the time of this writing, state-of-the-art technology
enables measurement of a million SNPs in one experi-
ment for a cost around 300 US dollars. Although this
means the full set of known SNPs cannot be mea-
sured, SNPs that are close together on the genome
are often highly correlated. Hence the omission of
some SNPs is not as much of a problem as one might
first think. Instead, we have the problem of strong-
correlation among our features: most SNPs are very
highly correlated with one or more nearby SNPs, with
R2 (squared correlation coefficient) values well above
0.8.

The primary problem of GWAS is that there are much
more predictor variables than samples, namely the
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p � n problem in statistics or the curse of dimen-
sionality in machine learning. In those cases, fea-
ture and variable selection (Guyon & Elisseeff, 2003) is
one necessary step before we can build the supervised
learning models. However, variable selection methods
such as forward selection or backward deletion will not
work because they are usually computation intensive.
Therefore, we need to carry out variable selection more
efficiently. We build a Logistics regression model for
each SNP, and test the fitness of the model with like-
lihood ratio test, and use the P-values from the tests
to rank the SNPs.

In addition, another challenge of GWAS is that there
exists strong correlation between predictor variables.
Therefore, we do not use generalized linear models. In-
stead, we employ support vector machine to build the
classification model because support vector machine
can be expected to work better in this circumstance.

Our computational results showed that the feature se-
lection method based on logistic regression and likeli-
hood ratio test can effectively select relevant features
for the classification algorithm SVM on the prostate
cancer dataset. However, the feature selection method
does not help SVM very much when applied on the
breast cancer dataset. One explanation is that genetic
factors can explain different amount of risk for differ-
ent diseases. It is estimated that 27% breast cancer is
caused by genetics whereas about 42% prostate cancer
is caused by genetics (Lichtenstein et al., 2000). There-
fore, we can expect the feature selection and super-
vised learning for breast cancer is more difficult than
prostate cancer.

2. Datasets

Our datasets in the experiment are from National Can-
cer Institutes Cancer Genetics Markers of Suscepti-
bility project 1. The breast cancer dataset contains
528,173 SNPs (genotyped by Illumina HumanHap500)
from 1145 breast cancer patients and 1142 controls
with European ancestry. The prostate cancer dataset
contains 546,593 SNPs from 1176 prostate cancer pa-
tients and 1101 controls (see Table 1).

Table 1. Description of the datasets.

] SNPs ] Cases ] Controls

Breast Cancer 528,173 1,145 1,142
Prostate Cancer 546,593 1,176 1,101

The original dataset records the nucleic acids appear-

1https://caintegrator.nci.nih.gov/cgems/
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Figure 1. Flow chart of the experiments.

ing at the locus on chromosomes of every single sample.
In our experiment, we convert AA into 1, AB into 0,
and BB into -1 where A stands for the common allele
at this locus and B stands for the minor allele. This
encoding method has been used in many studies such
as the work of Waddell et al. (2005).

3. Methods

Due to the extremely high dimensionality, we cannot
use all the features to train our model. We firstly
carry out variable selection on the training dataset to
remove non-relevant features. With a much smaller
feature set, we employ SVM to build the classification
models and evaluate the models on the testing dataset.
To evaluate them in a fair way, we repeat the exper-
iments in 10-fold cross validation fashion. The whole
procedure of feature selection and building classifica-
tion models is showed in Figure 1.

So far, a wide variety of feature selection approaches
has been proposed and can be classified into two cate-
gories, namely filters and wrappers (Guyon & Elisseeff,
2003). Usually filters assume independence between
features and rank them individually according to some
relevance criterion. Wrapper methods iteratively gen-
erate a candidate feature subset and test it by a specific
learning algorithms performance, until some criterion
is satisfied. Wrapper methods are usually much more
computation intensive. Therefore we use one typical
filter method, namely logistic regression coupled with
likelihood ratio test.

Logistic regression is one generalized linear model for
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Figure 2. QQ plots for the likelihood ratio test statistics in the breast cancer data (left) and prostate cancer data (right).

binary response variables, which models the log odds
ratio as a linear model of predictor variables. In our
problem, we build a logistic regression model for each
SNP, in which we code one SNP as two indicator vari-
ables for heterozygous carrier of the minor allele (X1)
and homozygote carrier of the minor allele (X2). In
other words, we convert AA into X1 = 0, X2 = 0, AB
into X1 = 1, X2 = 0, and BB into X1 = 0, X2 = 1
where A stands for the common allele at this locus and
B stands for the minor allele.

One way of testing the models fitness is the likelihood
ratio test. Under the null hypothesis, the test statistic
S has an asymptotic chi-square distribution with q de-
grees of freedom. In our problem, q is 2. The p-values
from the tests not only tell us the fitness of the logis-
tic regression model, but also tell us the relevance of
the SNPs with the disease. The smaller the p-value is,
the corresponding SNP is more highly correlated with
the disease. With this criterion, we pick the top 50,
top 100, top 150, top 200, ..., top 1,000 features and
use them in different independent experiments so as
to evaluate how the feature size affects these compu-
tational supervised learning methods.

In our experiment, we use one popular supervised
learning algorithm SVM to generate our classification
models. Like other classification tasks, we evaluate our
classification models based on accuracy.

4. Results and Discussion

In order to demonstrate the existence of associated
SNPs, we make the quantile-quantile plots for the test

statistics in the likelihood ratio test with two degrees of
freedom (shown in Figure 2). Figure 2(a) is for breast
cancer and Figure 2(b) is for prostate cancer. If all the
SNPs are not associated with the diseases, we expect
the plots line up perfectly on the 45 degree straight
line (in red). However, in both of the two diseases,
we can observe a clear deviation from the straight line
if the statistics is larger enough. Another interesting
observation is that for the two diseases, the quantile-
quantile plots depart from the straight line to different
directions.

Figure 3 shows the prediction performance of SVM
with different numbers of SNPs selected on the breast
cancer dataset and the prostate cancer dataset. The
accuracies are average accuracies from 10-fold cross
validation. For breast cancer, the feature selection
method does not help very much to improve the clas-
sification performance for SVM. When we are using
the top 50 SNPs, the accuracy is 49.1%. As we add
more SNPs, the accuracy improves a little. When we
use 200 SNPs, SVM’s classification accuracy peaks at
51.55%. After that, adding more SNPs does not help
improving the performance.

When our method is applied to the prostate cancer
dataset, the overall performance is better than the per-
formance on breast cancer. When the top 100 SNPs
are selected, SVM achieves its best performance with
classification accuracy 54.88%. When we use more
SNPs, the performance does not get improved and the
corresponding accuracies are between 53% and 54%.

One explanation of the performance difference between
the two diseases is that most diseases have both a ge-
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50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Breast Cancer 49.1 48.97 49.72 51.55 50.63 50.81 50.38 50.24 50.11 51.03 50.89 51.25 51.16 51.29 51.29 50.24 50.98 50.59 50.64 51.16
Prostate Cancer 53.87 54.88 54.17 52.81 52.77 53.48 53.08 53.26 52.99 53.74 53.26 53.56 53.43 53.48 53.43 54.44 54.05 53.78 53.82 53.74
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Figure 3. Performance of SVM against the number of SNPs selected on breast cancer data and prostate cancer data.

netic and environmental component, and the genetic
factors can explain different amount of disease risk.
It is estimated that 27% breast cancer is caused by
genetics whereas about 42% prostate cancer is caused
by genetics (Lichtenstein et al., 2000). Therefore, if we
just use the genetic factors to build the classification
model, we could expect the model for prostate cancer
works better than the model for breast cancer.

Future work is additional empirical study. First, it
would be useful to repeat the comparative experiments
in the present paper with other GWAS data sets. Sec-
ond, it also would be interesting to propose and im-
plement new feature selection algorithms which could
potentially remove the redundant features. Finally, we
would like to explore using wrapper-based feature se-
lection algorithms. While wrapper-based approaches
are computationally infeasible on the original high-
dimension data, once our feature selection method has
been used to filter out a big fraction of irrelevant fea-
tures, a wrapper-based approach could be employed
for further feature subset selection.
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