
	 1	

CS	564,	Spring	2017	
BadgerDB	Assignment	#1:	Buffer	Manager	

Due	Date:	Feb	17,	2017	by	2:00PM.	No	late	days.		

Note	2/17	is	also	the	quiz	date.	Please	plan	ahead!	
Project	Grade	Weight:	10%	of	the	total	grade	

Introduction	to	Badger	DB	
The	 goal	 of	 the	 BadgerDB	 projects	 is	 to	 allow	 students	 in	 CS	 564	 to	 learn	 about	 the	 internals	 of	 a	 data	
processing	engine.	 In	 this	 first	assignment,	you	will	build	a	buffer	manager,	on	 top	of	an	 I/O	Layer	 that	we	
provide.	The	second	BadgerDB	assignment	is	on	building	an	index	organization	(B+-tree).		

Logistics	
BadgerDB	is	coded	in	C++	and	runs	on	the	CS	Linux	machines.	Here	are	a	few	logistical	points:			

● Platform:	The	stages	will	be	compiled	and	tested	on	the	CS	department’s	64-bit	RedHat	6	Linux	machines	
called	mumble,	which	are	located	in	1350	CS.	We	will	use	the	latest	g++	compiler	on	those	machines.	You	
are	free	to	develop	on	other	platforms,	but	you	must	make	sure	that	your	project	works	with	the	official	
configuration.	We	will	uses	the	snares	pool	for	testing	and	grading	your	assignment.	

● Warnings:	One	of	the	strengths	of	C++	is	that	it	does	compile	time	code	checking	(consequently	reducing	
run-time	errors).	Try	to	take	advantage	of	this	by	turning	on	as	many	compiler	warnings	as	possible.	The	
Makefile	that	we	will	supply	will	have	-Wall	on	as	default.	

● Tools	:	Always	be	on	the	lookout	for	tools	that	might	simplify	your	job.	Example:	make	for	compiling	and	
building	your	project,	makedepend	for	automatically	generating	dependencies,	perl	for	writing	test	scripts,	
valgrind	for	tracking	down	memory	errors,	gdb	for	debugging	and	cvs	for	version	control.	While	we	will	not	
explicitly	educate	you	about	each	of	these,	feel	free	to	seek	the	TA's	advice	on	these	matters.	

● Software	 Engineering:	A	 large	 project	 such	 as	 this	 requires	 significant	 design	 effort.	 Spend	 some	 time	
thinking	before	you	start	writing	code.	

Evaluation	
We	will	run	a	bunch	of	our	own	(private)	tests	to	check	your	code.	So	please	develop	tests	beyond	the	ones	
that	we	give	you	to	stress	test	your	solution.	We	will	also	browse	your	code	to	review	your	coding	style	and	
read	your	Doxygen-generated	files.	80%	of	each	project	grade	is	allocated	to	the	correctness	test,	and	20%	for	
your	coding	style	and	clarity	of	documenting	your	code.		

Exam	Question	
All	topics	covered	in	the	BadgerDB	projects	are	fair	game	for	exam	questions.		

Academic	Integrity	
You	are	not	allowed	to	share	any	code	with	other	students	in	the	class.	Nor	will	you	attempt	to	use	any	code	
from	previous	offerings	of	this	course.	Deviations	from	this	will	be	punished	to	the	fullest	extent	possible.		We	
use	a	code	diffing	program	to	find	cheaters.	

	 2	

The	BadgerDB	I/O	Layer	
The	lowest	layer	of	the	BadgerDB	database	systems	is	the	I/O	layer.		This	layer	allows	the	upper	level	of	the	
system	to	create/destroy	files,	allocate/deallocate	pages	within	a	file	and	to	read	and	write	pages	of	a	file.	This	
layer	consists	of	two	classes:	a	file	(class	File)	and	a	page	(class	Page)	class.	These	classes	use	C++	exceptions	to	
handle	the	occurrence	of	any	unexpected	event.			

Implementation	of	the	File	class,	the	Page	class,	and	the	exception	classes	are	provided	to	you.	To	start,	you	
can	 copy	 http://www.cs.wisc.edu/~jignesh/cs564/projects/BadgerDB/bufmgr.tar.gz	 to	 your	 private	
workspace,	and	expand	this	tarball	using:	“tar -xzvf bufmgr.tar.gz”	

The	code	has	been	adequately	commented	to	help	you	with	understanding	how	it	does	what	it	does.	Please	
use	Doxygen	as	shown	below	to	generate	documentation	files	on	these	files.	Inside	the	bufmgr	directory	run	
following	commands	to	generate	documentation	files.	
> make doc

The	doc	files	will	be	generated	in	docs	directory.	Open	docs/index.html	file	inside	the	browser	and	go	through	
description	of	classes	and	their	methods	to	better	understand	their	implementation.	

Note	that	above,	‘>’	is	shell	prompt	on	Linux	machines	and	hence	not	part	of	the	command.	

	 3	

Your	First	BadgerDB	Assignment:	The	Buffer	Manager	
A	database	buffer	pool	is	an	array	of	fixed-sized	memory	buffers	called	frames	that	are	used	to	hold	database	
pages	 (also	 called	 disk	 blocks)	 that	 have	 been	 read	 from	 disk	 into	memory.	 A	 page	 is	 the	 unit	 of	 transfer	
between	the	disk	and	the	buffer	pool	residing	in	main	memory.		Most	modern	database	systems	use	a	page	
size	of	at	 least	8,192	bytes.	Another	 important	thing	to	note	 is	 that	a	database	page	 in	memory	 is	an	exact	
copy	of	the	corresponding	page	on	disk	when	it	 is	first	read	in.	Once	a	page	has	been	read	from	disk	to	the	
buffer	pool,	 the	DBMS	software	can	update	 information	stored	on	 the	page,	causing	 the	copy	 in	 the	buffer	
pool	to	be	different	from	the	copy	on	disk.		Such	pages	are	termed	“dirty”.	

Since	 the	 database	 on	 disk	 itself	 is	 often	 larger	 than	 the	 amount	 of	main	memory	 that	 is	 available	 for	 the	
buffer	pool,	only	a	subset	of	the	database	pages	fit	in	memory	at	any	given	time.		The	buffer	manager	is	used	
to	 control	which	 pages	 are	memory	 resident.	Whenever	 the	 buffer	manager	 receives	 a	 request	 for	 a	 data	
page,	 the	 buffer	 manager	 checks	 to	 see	 if	 the	 requested	 page	 is	 already	 in	 the	 one	 of	 the	 frames	 that	
constitutes	the	buffer	pool.	 If	so,	the	buffer	manager	simply	returns	a	pointer	to	the	page.	If	not,	the	buffer	
manager	frees	a	frame	(possibly	by	writing	to	disk	the	page	it	contains	if	the	page	is	dirty)	and	then	reads	in	
the	requested	page	from	disk	into	the	frame	that	has	been	freed.			

Before	reading	further	you	should	first	read	the	documentation	that	describes	the	 I/O	 layer	of	BadgerDB	so	
that	you	understand	its	capabilities	(described	on	the	previous	page).		In	a	nutshell	the	I/O	layer	provides	an	
object-oriented	 interface	to	the	Unix	file	with	methods	to	open	and	close	files	and	to	read/write	pages	of	a	
file.	 	For	now,	the	key	thing	you	need	to	know	is	that	opening	a	file	 (by	passing	 in	a	character	string	name)	
returns	an	object	of	type	File.	This	class	has	methods	to	read	and	write	pages	of	the	File.	You	will	use	these	
methods	to	move	pages	between	the	disk	and	the	buffer	pool.	

Buffer	Replacement	Policies	and	the	Clock	Algorithm	
There	are	many	ways	of	deciding	which	page	to	replace	when	a	free	frame	is	needed.	Commonly	used	policies	
in	operating	systems	are	FIFO,	MRU	and	LRU.	Even	though	LRU	is	one	of	the	most	commonly	used	policies	it	
has	high	overhead	and	 is	not	the	best	strategy	to	use	 in	a	number	of	common	cases	that	occur	 in	database	
systems.	Instead,	many	systems	use	the	clock	algorithm	that	approximates	LRU	behavior	and	is	much	faster.	

Figure	1	shows	the	conceptual	layout	of	a	buffer	pool.	Figure	2	illustrates	the	execution	of	the	clock	algorithm.	

	

	
Figure	1:	Structure	of	the	Buffer	Manager	

	 4	

	

In	Figure	1,	each	square	box	corresponds	to	a	 frame	 in	the	
buffer	pool.		Assume	that	the	buffer	pool	contains	numBufs	
frames,	 numbered	 0	 to	 numBufs-1.	 	 Conceptually,	 all	 the	
frames	 in	 the	 buffer	 pool	 are	 arranged	 in	 a	 circular	 list.	
Associated	with	each	 frame	 is	a	bit	 termed	the	refbit.	Each	
time	a	page	in	the	buffer	pool	 is	accessed	(via	a	readPage()	
call	 to	 the	buffer	manager)	 the	 refbit	of	 the	 corresponding	
frame	is	set	to	true.	At	any	point	in	time	the	clock	hand	(an	
integer	 whose	 value	 is	 between	 0	 and	 numBufs	 -	 1)	 is	
advanced	 (using	modular	 arithmetic	 so	 that	 it	 does	 not	 go	
past	numBufs	-	1)	in	a	clockwise	fashion.	For	each	frame	that	
the	 clockhand	 goes	 past,	 the	 refbit	 is	 examined	 and	 then	
cleared.	If	the	bit	had	been	set,	the	corresponding	frame	has	
been	 referenced	 "recently"	 and	 is	 not	 replaced.	 On	 the	
other	 hand,	 if	 the	 refbit	 is	 false,	 the	 page	 is	 selected	 for	
replacement	 (assuming	 it	 is	not	pinned	–	pinned	pages	are	
discussed	below).	 If	 the	selected	buffer	 frame	 is	dirty	 (ie.	 it	
has	been	modified),	the	page	currently	occupying	the	frame	
is	written	back	 to	disk.	Otherwise	 the	 frame	 is	 just	cleared	
and	 a	 new	 page	 from	 disk	 is	 read	 in	 to	 that	 location.	 The	
details	of	the	algorithm	is	given	below.	

	
	

The	Structure	of	the	Buffer	Manager	
The	BadgerDB	buffer	manager	uses	 three	C++	classes:	 	BufMgr,	BufDesc	and	BufHashTbl.	 There	 is	only	one	
instance	of	the	BufMgr	class.	A	key	component	of	this	class	is	the	actual	buffer	pool	which	consists	of	an	array	
of	 numBufs	 frames,	 	 each	 the	 size	 of	 a	 database	 page.	 In	 addition	 to	 this	 array,	 the	 BufMgr	 instance	 also	
contains	an	array	of	numBufs	instances	of	the	BufDesc	class	that	is	used	to	describe	the	state	of	each	frame	in	
the	buffer	pool.	A	hash	table	is	used	to	keep	track	of	the	pages	that	are	currently	resident	in	the	buffer	pool.	
This	hash	table	is	implemented	by	an	instance	of	the	BufHashTbl	class.	This	instance	is	a	private	data	member	
of	the	BufMgr	class.	These	classes	are	described	in	detail	below.	

The	BufHashTbl	Class		
The	BufHashTbl	class	is	used	to	map	
file	 and	 page	 numbers	 to	 buffer	
pool	 frames	 and	 is	 implemented	
using	 chained	 bucket	 hashing.	 We	
have	provided	an	implementation	of	
this	class	for	your	use.	

struct	hashBucket	{	
				File*	file;		 	 //	pointer	to	a	file	object	(more	on	this	below)	
				PageId	pageNo;		 //	page	number	within	a	file	
				FrameId	frameNo;		 //	frame	number	of	page	in	the	buffer	pool	
				hashBucket*	next;		 //	next	bucket	in	the	chain	
};		

Figure	2:	The	Clock	Replacement	Algorithm	

	 5	

	

	

Here	is	the	definition	of	the	hash	table.	

	

The	BufDesc	Class	
The	BufDesc	class	is	used	
to	keep	track	of	the	state	
of	 each	 frame	 in	 the	
buffer	 pool.	 It	 is	 defined	
as	follows:		

First	 notice	 that	 all	
attributes	of	the	BufDesc	
class	are	private	and	that	
the	 BufMgr	 class	 is	
defined	 to	 be	 a	 friend.	
While	 this	 may	 seem	
strange,	 this	 approach	
restricts	 access	 to	
BufDesc’s	 private	
variables	 to	 only	 the	
BufMgr	 class.	 The	
alternative	 (making	

class	BufHashTbl	
{	
		private:	
				hashBucket**	ht;	//	pointer	to	actual	hash	table	
				int	HTSIZE;	
				int	hash(const	File*	file,	const	PageId	pageNo);	 //returns	a	value	between	0	and	HTSIZE-1		
		public:	
				BufHashTbl(const	int	htSize);	//	constructor	
				~BufHashTbl();	//	destructor		
	
				//	insert	entry	into	hash	table	mapping	(file,pageNo)	to	frameNo	
				void	insert(const	File*	file,	const	int	pageNo,	const	int	frameNo);		
	
				//	Check	if	(file,pageNo)	is	currently	in	the	buffer	pool	(ie.	in	
				//	the	hash	table.	If	so,	set	the	corresponding	frame	number	in	frameNo	and	return	true.	
				bool	lookup(const	File*	file,	const	int	pageNo,	int&	frameNo);		
	
				//	remove	entry	obtained	by	hashing	(file,pageNo)	from	hash	table.	
				void	remove(const	File*	file,	const	int	pageNo);	
};		

class	BufDesc	{		
				friend	class	BufMgr;		
		private:		
				File*	file;	 		 //	pointer	to	file	object		
				PageId	pageNo;		 //	page	within	file		
					FrameId	frameNo;		//	buffer	pool	frame	number	
				int	pinCnt;		 	 //	number	of	times	this	page	has	been	pinned	
				bool	dirty;	 		 //	true	if	dirty;	false	otherwise	
				bool	valid;	 		 //	true	if	page	is	valid	
				bool	refbit;	 		 //	true	if	this	buffer	frame	been	referenced	recently	

	

				void	Clear();		 //	initialize	buffer	frame	
				void	Set(File*	filePtr,	PageId	pageNum);	//set	BufDesc	member	variable	values	

				void	Print()	 	 //Print	values	of	member	variables	

				BufDesc();	 	 //Constructor	
};	

	 6	

everything	public)	opens	up	access	too	far.	

The	 purpose	 of	most	 of	 the	 attributes	 of	 the	 BufDesc	 class	 should	 be	 pretty	 obvious.	 The	 dirty	 bit,	 if	 true	
indicates	that	the	page	is	dirty	(i.e.	has	been	updated)	and	thus	must	be	written	to	disk	before	the	frame	is	
used	to	hold	another	page.	The	pinCnt	indicates	how	many	times	the	page	has	been	pinned.	The	refbit	is	used	
by	the	clock	algorithm.	The	valid	bit	is	used	to	indicate	whether	the	frame	contains	a	valid	page.	You	do	not	
HAVE	to	implement	any	methods	in	this	class.	However	you	are	free	to	augment	it	in	any	way	if	you	wish	to	do	
so.		

The	BufMgr	Class	
The	BufMgr	class	is	the	heart	of	the	buffer	manager.	This	is	where	you	write	your	code	for	this	assignment.		

This	class	is	defined	as	follows:		

BufMgr(const	int	bufs)		
This	is	the	class	constructor.		Allocates	an	array	for	the	buffer	pool	with	bufs	page	frames	and	a	corresponding	
BufDesc	table.	The	way	things	are	set	up	all	frames	will	be	in	the	clear	state	when	the	buffer	pool	is	allocated.	
The	hash	table	will	also	start	out	in	an	empty	state.	We	have	provided	the	constructor.	

class	BufMgr		
{		
		private:		
				FrameId	clockHand;	//	clock	hand	for	clock	algorithm	
				BufHashTbl	*hashTable;	 //	hash	table	mapping	(File,	page)	to	frame	number		
				BufDesc	*bufDescTable;	 //	BufDesc	objects,	one	per	frame	
				std::uint32_t	numBufs;	 //	Number	of	frames	in	the	buffer	pool	
				BufStats	bufStats;	 		 //	Statistics	about	buffer	pool	usage		
	

				//	allocate	a	free	frame	using	the	clock	algorithm		
		void	allocBuf(FrameId	&	frame);	

		void	advanceClock();	//Advance	clock	to	next	frame	in	the	buffer	pool	

		public:	
				Page	*bufPool;	 		 	//	actual	buffer	pool		
	
				BufMgr(std::uint32_t	bufs);	//	Constructor	
				~BufMgr();		 	 	 	//	Destructor	

				void	readPage(File*	file,	const	PageId	PageNo,	Page*&	page);		

				void	unPinPage(File*	file,	const	PageId	PageNo,	const	bool	dirty);		

				void	allocPage(File*	file,	PageId&	PageNo,	Page*&	page);		

				void	disposePage(File*	file,	const	PageId	pageNo);	

				void	flushFile(const	File*	file);		
};		

	 7	

~BufMgr()		
Flushes	out	all	dirty	pages	and	deallocates	the	buffer	pool	and	the	BufDesc	table.	

void	advanceClock()	
Advance	clock	to	next	frame	in	the	buffer	pool.	

void	allocBuf(FrameId&	frame)		
Allocates	a	free	frame	using	the	clock	algorithm;	if	necessary,	writing	a	dirty	page	back	to	disk.	

Throws	BufferExceededException	 if	 all	 buffer	 frames	 are	pinned.	 This	 private	method	will	 get	 called	by	 the	
readPage()	and	allocPage()	methods	described	below.	

Make	sure	that	if	the	buffer	frame	allocated	has	a	valid	page	in	it,	you	remove	the	appropriate	entry	from	the	
hash	table.	

void		readPage(File*	file,	const	PageId	PageNo,	Page*&	page)		
First	check	whether	the	page	is	already	in	the	buffer	pool	by	invoking	the	lookup()	method,	which	returns	false	
when	page	is	not	in	the	buffer	pool,	on	the	hashtable	to	get	a	frame	number.	There	are	two	cases	to	be	
handled	depending	on	the	outcome	of	the	lookup()	call:	

Case	 1:	 Page	 is	 not	 in	 the	 buffer	 pool.	 Call	 allocBuf()	 to	 allocate	 a	 buffer	 frame	 and	 then	 call	 the	method		
file->readPage()	 to	 read	 the	 page	 from	 disk	 into	 the	 buffer	 pool	 frame.	 Next,	 insert	 the	 page	 into	 the	
hashtable.	Finally,	invoke	Set()	on	the	frame	to	set	it	up	properly.	Set()	will	leave	the	pinCnt	for	the	page	set	to	
1.		Return	a	pointer	to	the	frame	containing	the	page	via	the	page	parameter.		

Case	2:		Page	is	in	the	buffer	pool.		In	this	case	set	the	appropriate	refbit,	increment	the	pinCnt	for	the	page,	
and	then	return	a	pointer	to	the	frame	containing	the	page	via	the	page	parameter.	

void	unPinPage(File*	file,	const	PageId	PageNo,	const	bool	dirty)		
Decrements	the	pinCnt	of	the	frame	containing	(file,	PageNo)	and,	if	dirty	==	true,	sets	the	dirty	bit.		Throws	
PAGENOTPINNED	if	the	pin	count	is	already	0.	Does	nothing	if	page	is	not	found	in	the	hash	table	lookup.	

void	allocPage(File*	file,	PageId&	PageNo,	Page*&	page)		
The	 first	 step	 in	 this	 method	 is	 to	 to	 allocate	 an	 empty	 page	 in	 the	 specified	 file	 by	 invoking	 the		
file->allocatePage()	method.	 This	method	will	 return	 the	 page	 number	 of	 the	 newly	 allocated	 page.	 	 Then	
allocBuf()	 is	called	to	obtain	a	buffer	pool	 frame.	 	Next,	an	entry	 is	 inserted	 into	the	hash	table	and	Set()	 is	
invoked	on	the	frame	to	set	it	up	properly.		The	method	returns	both	the	page	number	of	the	newly	allocated	
page	to	the	caller	via	the	pageNo	parameter	and	a	pointer	to	the	buffer	frame	allocated	for	the	page	via	the	
page	parameter.		

void	disposePage(File*	file,	const	PageId	pageNo)	
This	method	deletes	a	particular	page	from	file.	Before	deleting	the	page	from	file,	it	makes	sure	that	if	the	
page	to	be	deleted	is	allocated	a	frame	in	the	buffer	pool,	that	frame	is	freed	and	correspondingly	entry	from	
hash	table	is	also	removed.	

	

	 8	

void	flushFile(File*	file)		
Should	scan	bufTable	for	pages	belonging	to	the	file.	For	each	page	encountered	it	should:	

a) if	the	page	is	dirty,	call	file->writePage()	to	flush	the	page	to	disk	and	then	set	the	dirty	bit	for	the	page	to	
false	

b) remove	the	page	from	the	hashtable	(whether	the	page	is	clean	or	dirty)	
c) invoke	the	Clear()	method	of	BufDesc	for	the	page	frame.	

Throws	PagePinnedException	if	some	page	of	the	file	is	pinned.	

Throws	BadBufferException	if	an	invalid	page	belonging	to	the	file	is	encountered	

Getting	Started	
When	you	expand	the	tarball	at	http://www.cs.wisc.edu/~jignesh/cs564/projects/BadgerDB/bufmgr.tar.gz,	
you	will	have	a	directory	called	bufmgr.	In	this	directory	you	will	find	the	following	files:		

● Makefile	 :	A	make	file.	You	can	make	the	project	by	typing	`make'.	
● main.cpp	 :	Driver	file.	Shows	how	to	use	File	and	Page	classes.	Also	contains	simple	test	cases	for		

																													the	Buffer	manager.	You	must	augment	these	tests	with	your	more	rigorous	test	suite.	
● buffer.h	 :	Class	definitions	for	the	buffer	manager	
● buffer.cpp	 :	Skeleton	implementation	of	the	methods.	Provide	your	actual	implementation	here.	
● bufHash.h	 :	Class	definitions	for	the	buffer	pool	hash	table	class.		Do	not	change.	
● bufHash.cpp		 :	Implementation	of	the	buffer	pool	hash	table	class.		Do	not	change.	
● file.h	 	 :	Class	definitions	for	the	File	class.	You	should	not	change	this	file.	
● file.cpp		 :	Implementations	of	the	File	class.	You	should	not	change	this	file.	
● file_iterator.h	 :	Implementation	of	iterator	for	pages	in	a	file.	Do	not	change.		
● page.h		 :	Class	definition	of	the	page	class.	Do	not	change.	
● page.cpp	 :	Implementation	of	the	page	class.		Do	not	change.	
● page_iterator.h:	Implementation	of	iterator	for	records	in	a	page.	
● exceptions	directory:	Implementation	of	all	your	exception	classes.	Feel	free	to	add	more	files	here	if			

																																							you	need	to.	

Coding	and	Testing	
We	 have	 defined	 this	 project	 so	 that	 you	 can	 understand	 and	 reap	 the	 full	 benefits	 of	 object-oriented	
programming	 using	 C++.	 Your	 coding	 style	 should	 continue	 this	 by	 having	 well-defined	 classes	 and	 clean	
interfaces.	Reverting	to	the	C	(procedural)	style	of	programming	is	not	recommended	and	will	be	penalized.	
The	code	should	be	well-documented,	using	Doxygen	style	comments.	Each	file	should	start	with	your	name	
and	student	id,	and	should	explain	the	purpose	of	the	file.	Each	function	should	be	preceded	by	a	few	lines	of	
comments	describing	the	function	and	explaining	the	input	and	output	parameters	and	return	values.	

Handing	In	
Please	follow	these	instructions	to	submit	P2:		

1)	name	the	project	directory: <lastname>_<firstname>_P2 (e.g. Musk_Elon_P2)

2) run: make clean from	inside	the	directory	(so	that	the	submitted	file	size	is	small)	

	 9	

3) run: tar -czvf <lastname>_<firstname>_P1.tar.gz /path-to-the-project/lastname_firstname_P2

4)	submit	the	tar	file	

5) To check you	can	uncompress	the	tar	file	(run:		tar -xzvf <lastname>_<firstname>_P2.tar.gz).	You	
should	see	the	Makefile	and	all	the	source	code	files	(e.g.	buffer.cpp,	buffer.h	and	other	files	inside	the	src	
folder)	inside	the	directory.	If you do not adhere to this standard, you risk losing all the test points on this
project as our test driver will fail
.
We	will	compile	your	buffer	manager,	link	it	with	our	test	driver	and	test	it.	Since	we	are	supposed	to	be	able	
to	test	your	code	with	any	valid	driver,	it is important to be faithful to the exact definitions of the interfaces
that are specified here.

	

