Fall 2013

CS 564: DATABASE MANAGEMENT SYSTEMS
Teaching Staff

• Instructor: Jignesh Patel, jignesh@cs.wisc.edu
 Office Hours: Mon, Wed 1:30-2:30 AM, CS 4357

• Class: MW 2:30-3:45 and F 2:30-3:20
 [Need to attend all three sessions each week!]

• Sangmin Shin, email: sangmin@cs.wisc.edu,
 OH: TBD

• 2nd TA: TBD

Web Page: http://pages.cs.wisc.edu/~jignesh/cs564/
Course Outline

• Exams: 60%
 – Mid-term on October 21 (in class): 20%
 – Final exam on December 21 (cumulative): 35%
 – Two in-class quizzes: 5% total

• Projects: 40%
 – C++ assignment (out now): 5%
 – Two BadgerDB Assignments: 23%
 • Buffer Manager: 10%
 • B+-tree: 13%
 – Two SQL Assignments: 12%

All assignments are individual assignments.
Assignments are in C++
No late days
Course Contents

• Database management systems – “under the hood” perspective
 – Algorithms, data structures, storage organization, that make data management systems work

• How to use a database system
 – A smaller focus of this course

• Textbook: “Database Management Systems,” by Raghu Ramakrishnan and Johannes Gehrke
Database Management System (DBMS)

- A DBMS manages a database.
- A database is a collection of data, usually with some description of the structure of the data.
 - Structure description, if present, is described using a schema. e.g. the CREATE TABLE command in SQL.
Data Storage Management

• Store and retrieve data in an efficient way
 – Organize data in blocks called pages on disk
 – “Index” data for efficient retrieval

• Make efficient use of memory hierarchy
 – Cache frequently used data in a main memory buffer pool

• Safely allow concurrent access to the data

• Make sure updates are “committed”
Describe and Query the Data

- **Data model** is the abstraction to describe the data
- A **schema** describes a specific database using the “language” of the data model
 - E.g. In the relational data model the CREATE TABLE command is used to express the schema of a table

- Provide a high-level language to allow a user to pose queries easily
 - Declarative languages are preferred, e.g. SQL
- Need **query processing algorithms** to evaluate the query and techniques to **optimize** the query
Data Management Systems: Three Common Types

1. Relational Database Management Systems: **RDBMS**
 - e.g. PostgreSQL, Sqlite3, MySQL, Oracle, SQL Server ...
 - Store data as tuples in tables. Query using SQL.

2. **Key-value (KV) stores**
 - e.g. BigTable, Hbase, Dynamo, Cassandra, ...
 - Store data as “key, value” pairs. Retrieve data based on keys.

3. **MapReduce (MR)**
 - Works on top of a key-value distributed file system (DFS).
 - Invented by Google to run data processing on large clusters. Open-source version is called **Hadoop**.
 - A new trend is to put a SQL interface on top of MR. e.g. Hive
RDBMS

-- Section 1: Creating schemas in SQL, i.e. SQL DDL

-- Create a table to store student information
CREATE TABLE Students (name VARCHAR(80),
 bday DATE,
 hobbies VARCHAR(100),
 uwid INTEGER,
 PRIMARY KEY (uwid) -- Do not allow two tuples with the same uwid
);

-- Add sample tuples to the Student table
INSERT INTO Students VALUES ('Jane Doe', '1990-03-01', 'sailing', 111);
INSERT INTO Students VALUES ('Joe Smith', '1991-05-12', 'dancing', 222);
INSERT INTO Students VALUES ('Goof Ball', '1992-12-31', 'watching TV', 333);

-- Section 2: Querying in SQL -- i.e. SQL DML

SELECT * FROM Students WHERE bday > '1991-01-01' AND hobbies <> 'watching TV';
Key-value store example: MongoDB

MongoDB browser shell version: 0.1.0
connecting to random database
type "help" for help
type "tutorial" to start the tutorial
> db.students.save({name: "James Bond", age: 21, uwid: 111})
"ok"
> db.students.save({name: "Jane Cool", age: 20, uwid: 222})
"ok"
> db.students.find({age: 21})

[{
 "name" : "James Bond", "_id" : { "$oid" : "50fdffdbcc93742c16007880" }, "uwid" : 111, "age" : 21
}
] > |
MR System: example Hive

CREATE TABLE page_views (viewTime INT,
 userid BIGINT,
 page_url STRING,
 referrer_url STRING,
 ip STRING COMMENT 'IP Address of the User')
COMMENT 'This is the page view table'
PARTITIONED BY(dt STRING, country STRING)
STORED AS SEQUENCEFILE;

The following Hive query finds all page_views in the month of 03/2013 referred from domain xyz.com:

 SELECT page_views.*
 FROM page_views
 WHERE page_views.date >= '2013-03-01'
 AND page_views.date <= '2013-03-31'
 AND page_views.referrer_url like '%xyz.com';
Common Requirement Across All Data Management Systems

- Data Storage
- Describe and query the data

9/4/13

CS 564: Database Management Systems, Jignesh M. Patel
Quick note on MapReduce
(I pulled a quick one a few slides ago ...)

• SQL-like interfaces (e.g. Hive) are increasingly being used for structured data processing
• ... but you can also put unstructured data in MR, e.g. web pages
• ... and do complex processing directly on the data, e.g. run a machine learning module to find correlation patterns in the data
• For this course, we will only focus on structured data processing
Data Management Systems

Data Mining

Data Cleaning

Visualization
Assignment 1: Word count in C++

Do not take this class if you can’t make the Friday meetings

• Assignment 1 is now posted
 – C++ warm up: Due 2/1
 – No late days

• Discussions lead by your TA

• Must attend discussion sessions on Friday: Primary venue for project discussions

• Friday meeting usually used for the discussion, but will be used occasionally for regular lecture
A note about using email

• Don’t use email as the primary mechanism of communication. Attend the lectures, discussion, and use the OH.

• Project Questions to the TAs. This first assignment is run by Sangmin

• When you send an email, please start the subject line with [CS564 Fall 2013]: ... actual topic ...