Spring 2017

BUFFER MANAGER, FILES AND RECORDS
(LOOSELY BASED ON THE COW BOOK: 9.4 — 9.7)

1/22/17 CS 564: Database Management Systems, Jignesh M. Patel

View of the disks

A bunch of files. Each file

: can be opened, scanned,
Query Execution (searched if its an index

file), and modified

Has to make this

Storage Manager mapping happen

A bunch of sectors

1/22/17 CS 564: Database Management Systems, Jignesh M. Patel

Managing Disk Space

* How does the database |0 layer work with the disk

device. Two ways:

1. OS exports a “raw” device interface, which essentially looks
like one big file that is a large byte array

2. OR, the DBMS grabs a big file/directory space in the OS and
then uses the OS file as a container for the database

Either way, the raw disk space is organized into files
Files are made up of pages, and pages contain records

Data is allocated and deallocated in increments of pages.

Logically “near” pages should be kept physically close

Buffer Management in a DBMS

 Data must be in RAM for DBMS to operate on it!
— Can’t keep all the DBMS pages in main memory

* Buffer Manager: Efficiently uses main memory
— Memory divided into buffer frames: slots for holding disk pages

I Page Requests from Higher Levels

BUFFER POOL

/_/ Upper levels:
disk page release pages
/\4 P when done
e indicate if a
free frame page is modified
MAIN MEMORY]
DISK ‘\ choice of frame dictated

E DB j by the replacement policy

1/22/17 CS 564: Database Management Systems 4

Buffer Manager 2 requestors war to modify

* Bookkeeping per frame:

— pin count : # users of the page in the frame
* Pinning : Indicate that the page is in use
* Unpinning : Release the page, and also indicate if the page is dirtied

— dirty bit : Indicates if changes must be propagated to disk
* When a Page is requested:

— In buffer pool -> return a handle to the frame. Done!

* Increment the pin count Can you tell the # current

— Not in the buffer pool: users of a page in the BP?
« Choose a frame for replacement
(Only replace pages with pin count == 0)
- If frame is dirty, write it to disk
- Read requested page into chosen frame
 Pin the page and return its address

1/22/17 CS 564: Database Management Systems 5

Buffer Replacement Policy

* Chose a frame for replacement
— Least-recently-used (LRU), Clock, MRU etc.

LRU: queue of pointers to “empty” frames

— Add to end of queue, grab frames from front of queue

Clock: variant of LRU, but lower overhead

* Policy can have big impact on # of I/O’s; depends on
the access pattern.

* Sequential flooding: Nasty situation caused by LRU +
repeated sequential scans.

— # buffer frames < # pages in file

1/22/17 CS 564: Database Management Systems

DBMS vs. OS File System

Why not let the OS handle disk space and buffer mgmt.?
« DBMS better at predicting the reference patterns

e Buffer management in DBMS requires ability to:
— pin a page in buffer pool
— force a page to disk (required to implement CC & recovery)
— adjust replacement policy

— pre-fetch pages based on predictable access patterns
- Pages available when needed later

- Amortize rotational and seek costs

. Can better control the overlap of I/O with computation

 DBMS can leverage multiple disks more effective

1/22/17 CS 564: Database Management Systems 7

Files of Records

* Page or block is OK for I/0O, but
higher levels operate on records, and files of
records.

* File: A collection of pages
Page: a collection of records.

* File operations:

— insert/delete/modify record
— read a particular record (specified using the record id)

— scan all records (possibly with some conditions on
the records to be retrieved)

Unordered (Heap) Files

Simplest file structure contains records in no particular
order.

As file grows and shrinks, disk pages are allocated and de-
allocated.

To support record level operations, we must:
— keep track of the pages in a file: page id (pid)
— keep track of free space on pages
— keep track of the records on a page: record id (rid)
— Many alternatives for keeping track of this information

Operations: create/destroy file, insert/delete record, fetch
a record with a specified rid, scan all records

Heap File Implemented as a List

N Y

Data Data Full Pages
Page Page

Header

=N "
\» Eaa ;2 Pages with
Free Space

(heap file name, header page id) recorded in a known location
Each page contains two pointers plus data: Pointer = Page ID (pid)
Pages in the free space list have “some” free space

What happens with variable length records?

Fetch a record with rid

1/22/17 CS 564: Database Management Systems 10

Heap File Using a Page Directory
T # * Entry for a page:
Header N Page 1
Page \\T — Free/full
C — Number of free bytes
CCPM ¢ Can locate pages for new

(tuples faster!

DIRECTORY Page N

1/22/17 CS 564: Database Management Systems 11

Page Formats

File -> collection of pages
Page -> collection of tuples/records
Query operators deal with tuples

Slotted page format

— Page a collection of slots
— Each slot contains a record

RID: <page id, slot number>
Other ways of generating rids

Many slotted page organizations. Must support
— Search, insert, delete records on a page

Page Formats: Fixed Length Records

Slot 1 Slot 1
Slot 2 Slot 2
Free = ~—"
| [| | Space H B [|
Slot N

Slot N
Slot M
1/.../0/1 1‘M~\

number M.. 321 number
PACKED of records UNPACKED, BITMAP of slots

JRecord id = <page id, slot #>

 First alternative: moving records changes rid
J may not be acceptable.

1/22/17 CS 564: Database Management Systems

Page Formats: Variable Length Records

Page num = 11

Rid=?(11, 1)

e o o
.:: i ﬂ'

120,(-1, |560,| -1, | 0, |70, s] .

: 20| o 90| o | 70 | 50 | © 5 Book-keeping

. *

\5 4 2 \zv/ 1 01 / Directory grows
Free Space ----------- ynrennrn s baCkwa rds|
Pointer Slot directory :

Move records on same

Delete a record?

1/22/17

Slot Entry: Offset,
reclen

page; rid unchanged!
Good for fixed-length
records too.

CS 564: Database Management Systems 14

Record Formats: Fixed Length

F1 F2 F3 F4
—L1—{ L2 L3 L4
Base address (B) Address = B+L1+L2

* All records on the page are the same length

* Information about field types same for all
records in a file; stored in system catalogs.

1/22/17 CS 564: Database Management Systems 15

Record Formats: Variable Length

Two alternative formats (# fields is fixed):

F1 F2 F3 F4
4 $ $ $
. ———
Field Field delimiter
Count (special symbol)
N NSNS
Array of N
Offsets

= Second alternative offers direct access to i'th field
= Efficient storage of nulls
= Small directory overhead.

= [ssues with growing records!

= changes in attribute value, add/drop attributes

= Records larger than pages

1/22/17

CS 564: Database Management Systems

16

Column Stores: Motivation

e Consider a table:
— Foo (a INTEGER, b INTEGER, ¢ VARCHAR(255), ...)

* And the query:
— SELECT a FROM Foo WHERE a > 10

 What happens with the previous record format in
terms of the bytes that have to be read from the
1O subsystem?

1/22/17 CS 564: Database Management Systems, Jignesh M. Patel 17

Column Stores

e Store data “vertically”

Contrast that with a “row-store” that stores all the
attributes of a tuple/record contiguously
— The previous record formats are “row stores”

111 | 212 | It was a cold morning
222 | 222 | Warm and sunny here
333 | 232 |Artic winter conditions
444 | 242 Tropical weather

©00

-

111 212 It was a cold morning
222 222 | | Warm and sunny here
333 232 | |Artic winter conditions
444 242 Tropical weather

O Q Q

Q@ Q@ @

® Q Q

File 1 File?2 File 3

Column Stores

* Are there any disadvantages associated with
column stores?

1/22/17 CS 564: Database Management Systems, Jignesh M. Patel

19

