
B-TREES
(LOOSELY	BASED	ON	THE	COW	BOOK:	CH.	10)	

Spring	2017

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 1

Motivation

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 2

Consider the following table:
CREATE TABLE Tweets (

uniqueMsgID INTEGER, -- unique message id
tstamp TIMESTAMP, -- when was the tweet posted
uid INTEGER, -- unique id of the user
msg VARCHAR (140), -- the actual message
zip INTEGER -- zipcode when posted
);

Consider the following query, Q1: SELECT * FROM Tweets
WHERE uid = 145;

And, the following query, Q2: SELECT * FROM Tweets
WHERE zip BETWEEN 53000 AND 54999

Ways	to	evaluate	the	queries,	efficiently?
1. Store	the	table	as	a	heapfile,	scan	the	file.	I/O	Cost?
2. Store	the	table	as	a	sorted	file,	binary	search	the	file.	I/O	Cost?
3. Store	the	table	as	a	heapfile,	build	an	index,	and	search	using	the	index.
4. Store	the	table	in	an	index file.	The	entire	tuple	is	stored	in	the	index!	

Index
• Two	main	types	of	indices

– Hash index:	good	for	equality	search	(e.g.	Q1)
– B-tree index:	good	for	both	range	search	

(e.g.	Q2)	and	equality	search	(e.g.	Q1)
• Generally	a	hash	index	is	faster	than	a	B-tree	index	

for	equality	search

• Hash	indices	aim	to	get	O(1)	I/O	and	CPU	
performance	for	search	and	insert

• B-Trees	have	O(logFN)	I/O	and	CPU	cost	for	
search,	insert	and	delete.
1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 3

What	is	in	the	index
• Two	things:	index	key and	some	value

– Insert(indexKey,	value)
– Search	(indexKey)	->	value	(s)

• What	is	the	index	key	for	Q1	and	Q2?
• Consider	Q3:	

• Value:	
– Record	id
– List	of	record	id
– The	entire	tuple!

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 4

SELECT * FROM Tweets
WHERE uid = 145 AND
zip BETWEEN 53000 AND 54999

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 5

(Ubiquitous)	B+	Tree
• Height-balanced	(dynamic)	tree	structure
• Insert/delete	at	logF N	cost	(F	=	fanout,	N	=	#	leaf	pages)
• Minimum	50%	occupancy	(except	for	root).		

Each	node	contains	d <=		m <=	2d entries.		
The	parameter	d is	called	the	order of	the	tree.

• Supports	equality	and	range-searches	efficiently.

Index Entries
(Direct search)

Data
Entries

Data Entries
Entries in the leaf pages:

(search key value, recordid)

Index Entries
Entries in the index
(i.e. non-leaf) pages:

(search key value, pageid)

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 6

Example	B+	Tree
• Search:	Starting	from	root,	examine	index	entries	in	non-leaf	nodes,	

and	traverse	down	the	tree	until	a	leaf	node	is	reached
– Non-leaf	nodes	can	be	searched	using	a	binary	or	a	linear	search.

• Search	for	5*,	15*,	all	data	entries	>=24*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 Height = 1

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 7

B+-tree	Page	Format
Le

af
 P

ag
e

R1 K 1 R2 K 2 K n P n+1

data entries

record 1 record 2

Next
Page
Pointer

Rn

record n

P0

Prev
Page
Pointer

N
on

-le
af

Pa

ge

P1 K 1 P 2 K 2 P 3 K m P m+1

index entries

Pointer to a
page with
Values < K1

Pointer to a page
with values s.t.
K1≤ Values < K2

Pointer to a
page with
values ≥Km

Pointer to a page
with values s.t.,
K2≤ Values < K3

Pm

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 8

B+	Trees	in	Practice
• Typical	order:	100.		Typical	fill-factor:	67%.

– average	fanout	=	133

• Typical	capacities:
– Height	4:	1334 =	312,900,700	records
– Height	3:	1333 =					2,352,637	records

• Can	often	hold	top	levels	in	buffer	pool:
– Level	1	=											1	page		=					8	Kbytes
– Level	2	=						133	pages	=					1	Mbyte
– Level	3	=	17,689	pages	=	133	MBytes							

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 9

B+-Tree:	Inserting	a	Data	Entry
• Find	correct	leaf	L.
• Put	data	entry	onto	L.

– If	L	has	enough	space,	done!
– Else,	must	split L	(into	L	and	a	new	node	L2)

• Redistribute	entries	evenly,	copy	up middle	key.
• Insert	index	entry	pointing	to	L2	into	parent	of	L.

• This	can	happen	recursively
– To	split	non-leaf	node,	redistribute	entries	evenly,	but	

pushing	up the	middle	key.		(Contrast	with	leaf	splits.)

• Splits	“grow”	tree;	root	split	increases	height.		
– Tree	growth:	gets	wider or	one	level	taller	at	top.

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 10

Inserting	8*	into	B+	Tree
Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Entry to be inserted in parent node
Copied up (and continues to
appear in the leaf)

2* 3* 5* 7* 8*

5

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 11

Inserting	8*	into	B+	Tree

Insert in parent node.
Pushed up (and only appears once in
the index)

5 24 30

17

13

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 12

2* 3*

Root
17

24 30

14*16* 19*20*22* 24*27*29* 33*34*38*39*

135

7*5* 8*

Inserting	8*	into	B+	Tree

• Root	was	split:	height	increases	by	1
• Could	avoid	split	by	re-distributing	entries	with	a	sibling

– Sibling:	immediately	to	left	or	right,	and	same	parent

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 13

Inserting	8*	into	B+	Tree

• Re-distributing	entries	with	a	sibling
– Improves	page	occupancy
– Usually	not	used	for	non-leaf	node	splits.	Why?

• Increases	I/O,	especially	if	we	check	both	siblings
• Better	if	split	propagates	up	the	tree	(rare)
• Use	only	for	leaf	level	entries	as	we	have	to	set	pointers

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

8* 14* 16*

8

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 14

B+-Tree:	Deleting	a	Data	Entry
• Start	at	root,	find	leaf	L where	entry	belongs.
• Remove	the	entry.

– If	L	is	at	least	half-full,	done!	
– If	L	has	only	d-1	entries,

• Try	to	re-distribute,	borrowing	from	sibling (adjacent	
node	with	same	parent	as	L).

• If	re-distribution	fails,	merge L	and	sibling.

• If	merge	occurred,	must	delete	entry	(pointing	to	L or	
sibling)	from	parent	of	L.

• Merge	could	propagate to	root,	decreasing	height.

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 15

Deleting	22*	and	20*

• Deleting	22*	is	easy.
• Deleting	20*	is	done	with	re-distribution.	

Notice	how	the	middle	key	is	copied	up.

27*29*2* 3*

Root
17

24 30

14*16* 19* 20*22* 24* 33*34*38*39*

135

7*5* 8*

27

24* 27* 29*

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 16

...	And	Then	Deleting	24*
• Must	merge.
• In	the	non-leaf	node,	
toss the index	entry	
with	key	value	=	27

30

19* 27* 29* 33* 34* 38* 39*

Can this
merge?

2* 3* 7* 14* 16* 19* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17 n Pull down of

index entry

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 17

Non-leaf	Re-distribution
• Tree	during	deletion	of	24*.	
• Can	re-distribute	entry	from	left	child	of	root	to	

right	child.		
Root

135 17 20

22

30

14*16* 17*18* 20* 33*34*38*39*22* 27*29*21*7*5* 8*3*2*

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 18

After	Re-distribution
• Rotate	through	the	parent	node
• It	suffices	to	re-distribute	index	entry	with	key	20;	For	

illustration	17	also	re-distributed

14*16* 33*34*38*39*22* 27*29*17*18* 20*21*7*5* 8*2* 3*

Root

135

17

3020 22

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 19

B+-Tree	Deletion
• Try	redistribution	with	all siblings	first,	then	

merge.	Why?
– Good	chance	that	redistribution	is	possible	(large	

fanout!)
– Only	need	to	propagate	changes	to	parent	node
– Files	typically	grow	not	shrink!

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 20

Duplicates
• Duplicate	Keys:	many	data	entries	with	the	same	key	

value
• Solution	1:	

– All	entries	with	a	given	key	value	reside	on	a	single	page
– Use	overflow	pages!

• Solution	2:	
– Allow	duplicate	key	values	in	data	entries
– Modify	search
– Use	RID	to	get	a	unique (composite)	key!

• Use	list	of	rids	instead	of	a	single	rid	in	the	leaf	level
– Single	data	entry	could	still	span	multiple	pages

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 21

A	Note	on	Order
• Order (d)	concept	replaced	by	physical	space	criterion	

in	practice	(at	least	half-full).
– Index	(i.e.	non-leaf)	pages	can	typically	hold	many	more	

entries	than	leaf	pages.
• Leaf	pages	could	have	actual	data	records

– Variable	sized	records	and	search	keys	mean	different	
nodes	will	contain	different	numbers	of	entries.

– Even	with	fixed	length	fields,	multiple	records	with	the	
same	search	key	value	(duplicates)	can	lead	to	variable-
sized	data	entries	(e.g.	list	of	rids).

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 22

ISAM	- Indexed	Sequential	Access	Method
• A	static	B+-tree

– When	the	index	is	created,	build	a	B+-tree	on	the	relation
– Updates	and	deletes	don’t	change	the	non-leaf	pages.	
– Use	overflow	pages.	Leaf	pages	could	be	empty!

• Search	Cost:	LogFN +	#	overflow	pages

Non-leaf
Pages

Overflow
page

Primary pages

Leaf Pages
(primary
pages
sequential)

