
EXTERNAL	SORTING
(CH.	13	IN	THE	COW	BOOK)	

Spring	2017

2/7/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 1

Motivation	for	External	Sort

• Often	have	a	large	(size	greater	than	the	available	
main	memory)	that	we	need	to	sort.

• Why	are	we	sorting:
– Query	processing:	e.g.	there	are	sort-based	join	and	

aggregate	algorithms
– Bulkload B+-tree:	recall	you	had	to	sort	the	data	

entries	in	the	leaf	level	for	this.	
– One	can	specify	ORDER	BY	in	SQL,	which	sorts	the	

output	of	the	query
– …

2/7/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 2

Problem	Statement
• Given	M memory	pages,	and	a	relation	of	size	N pages,	

where	N	>	M,	sort	R	on	a	sort	key,	to	produce	an	output	
relation	R’	that	is	sorted	on	the	sort	key.

• Example:		Sort	the	following	table	on	zipcode

• Another	example:	SELECT	*	FROM	Tweets	
WHERE	tstamp =	TODAY	
ORDER	BY	zip
2/7/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 3

CREATE TABLE Tweets (
uniqueMsgID INTEGER, -- unique message id
tstamp TIMESTAMP, -- when was the tweet posted
uid INTEGER, -- unique id of the user
msg VARCHAR (140), -- the actual message
zip INTEGER, -- zipcode when posted
retweet BOOLEAN -- retweeted?
);

Note	the	sort	key	can	be	composite

Goal	of	a	good	sort	algorithm
• Sort	efficiently!
• Sort	well!	
– Able	to	sort	large	relations	with	“small”	amounts	of	

main	memory
• What	does	sort	efficiently	mean:
–Minimize	the	number	of	disk	I/Os
– Try	using	sequential	I/Os rather	than	random	I/Os
–Minimize	the	CPU	costs
– Overlap	I/O	operations	with	CPU	operations

2/7/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 4

Where	does	the	
memory	come	from?

Quick	note:	Sorting	is	very	important	in	MapReduce.	The	reducer	
expects	data	to	arrive	in	sorted	order	from	the	mappers.	

2/7/17 CS 564: Database Management Systems 5

2-Way	Sort:	Requires	3	Buffers
• Pass	1:	Read	a	page,	sort	it,	write	it	(a	run).

– only	one	buffer	page	is	used
• Pass	2,	3,	…,	etc.:

– three	buffer	pages	used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Algorithms	for
sorting	in	memory?

2/7/17 CS 564: Database Management Systems 6

Two-Way	External	Merge	Sort
Input	file3,4 6,2 9,4 8,7 5,6 3,1 2

1-page	runs
PASS	0

3,4 5,62,6 4,9 7,8 1,3 2

2-page	runs

PASS	1
2,3
4,6

4,7
8,9

1,3
5,6 2

4-page	runs

PASS	2
2,3
4,4
6,7
8,9

1,2
3,5
6

8-page	runs

PASS	3

9

1,2
2,3
3,4
4,5
6,6
7,8

• Read	&	write	entire	file	in	
each	pass

• N	pages,	#	passes	=

• So	total	cost	is:

• Divide	and	conquer

log2 N!" #$+1

2N log2 N" #+1()

How	can	we	utilize	more	
than	three	buffer	pages?	

2/7/17 CS 564: Database Management Systems 7

General	External	Merge	Sort
• Sort	a	file	with	N pages	using	B buffer	pages:
– Pass	0:	use	B	buffer	pages	(run	size	=	B	pgs).	

Produce										sorted	runs	of B pages	each.
– Pass	2,	3,	…:	merge	B-1 runs.	

é ùN/B

B-1	way	merge.
Total	buffer	pages:	B

INPUT	1

INPUT	B-1

OUTPUT

DiskDisk

INPUT	2

.

Where	are	the	main	memory	
buffer	pages	allocated?

Cost	of	External	Sort	Merge
• #	passes	=
• I/O	Cost	=	#	passes	*	2	N
• Consider	sorting	a	file	with	a	1000	pages,	using	11	

buffer	pages.
– At	the	end	of	the	first	pass,	we	have																	runs	of	

size	11	pages
– Next	pass	produces														runs	of	size	110	pages	each
– The	next	pass	produces	the	fully	sorted	file	

2/7/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 8

1000
11

!

""
#

$$
= 91

91
10
!

""
#

$$
=10``

``

2/7/17 CS 564: Database Management Systems 9

Number	of	Passes	of	External	Sort
N (# of pages) B=3 B=17 B=257

100 7 2 1

10,000 13 4 2

1,000,000 20 5 3

10,000,000 23 6 3

100,000,000 26 7 4

1,000,000,000 30 8 4

 32K pg
size, 32TB
relation

@1ms	per	read,	1111	
hours	=	46	days!

2/7/17 CS 564: Database Management Systems 10

Internal	Sort	Algorithm:	Replacement	Sort

1. In-memory	10,	20,	30,	40
2. Read	25,	Output	10. In-memory:	20,	25,	30,	40
3. Read	35,	Output	20. In-memory	:	25,	30,	35,	40
4. Read	9,			Output	25. In-memory	:	9,	30,	35,	40
5. Read	8,			Output	30.	 In-memory	:	8,	9,	35,	40
6. Read	7,			Output	35.	 In-memory	:	7,	8,	9,	40
7. Read	6,			Output	40.	 In-memory	:	6,	7,	8,	9
8. Read	5,			Flush	output,	Start	new	run.	In-memory	…

On	Disk:	10,	20,	25,	30,	35,	40

Example:	M	=	2	pages,	2	tuples	per	page.	
Input	Sequence:	10,	20,	30,	40,	25,	35,	9,	8,	7,	6,	5,	…

Size	of	the	
buffer	pool?

Average	length	of	a	run	in	replacement	sort	is	2M	

Internal	Sort	Algorithm
• Quicksort	is	a	fast	way	to	sort	in	memory.
• An	alternative	is	replacement	sort,	which	is	also	called	tournament	

sort	or	heapsort
– Top:Read in M	pages	of	the	relation	R
– Output:move smallest	record	to	output	buffer
– Read	in	a	new	record	r
– insert	r	into	“sorted	heap”
– if	r	not	smallest,	then	GOTO Output
– else	remove	r from	“heap”
– output	“heap”	in	order;	GOTO Top

• Worst-Case:	What	is	min	length	of	a	run?	How	does	this	arise?
• Best-Case:	What	is	max	length	of	a	run?	How	does	this	arise?
• Quicksort	is	faster,	but	longer	runs	often	means	fewer	passes!

2/7/17 CS 564: Database Management Systems 11

2/7/17 CS 564: Database Management Systems 12

Blocked	I/Os
• So	far	we	reading/writing	one	page	at	a	time,	but	we	

know	that	reading	a	block of	pages	sequentially is	faster.
• Make	each	buffer	(input/output)	be	a	block of	pgs.

– Will	reduce	fan-out	during	merge	passes!	Side-effect?
– Reduces	per	page	I/O	cost.

– First	Pass:	Each	run	2B	pages, ⌈⌈N/2B⌉⌉ runs	(where	B is	the	size	
of	the	buffer	pool	in	#pages)
• Which	internal	sort	algorithm	are	we	using?

– Merge	Tree	Fanout:	F	=	⌊⌊B/b⌋⌋ - 1,	b	is	block	size

– #	passes:	⌈⌈logF…⌉⌉ +	1
– In	practice,	buffer	pools	are	large,	so	most	files	are	sorted	in	2-3	

passes

2/7/17 CS 564: Database Management Systems 13

Double	Buffering
• Overlap	CPU	and	IO	processing
• Prefetch into	shadow	block.	

– Potentially,	more	passes;	in	practice,	2-3	passes.

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

Reduces	response	time.	
What	about	throughput?

2/7/17 CS 564: Database Management Systems 14

Using	B+	Trees	for	Sorting
• Scenario:	Table	to	be	sorted	has	B+	tree	index	on	

sorting	column(s).
• Idea:	Can	retrieve	records	in	order	by	traversing	leaf	

pages.
• Is	this	a	good	idea?
• Cases	to	consider:

– B+	tree	is	clustered Good	idea!
– B+	tree	is	not	clustered Could	be	a	very	bad	idea!

2/7/17 CS 564: Database Management Systems 15

Clustered	B+	Tree	Used	for	Sorting
• Go	to	the	left-most	leaf,	

then	retrieve	all	leaf	
pages

• If	data	entry	has	records,	
then	we	are	done!

• If	the	data	entries	have	
rids,	each	data	page	is		
fetched	just	once	(since	
this	is	a	clustered	index)

FFaasstteerr tthhaann
eexxtteerrnnaall ssoorrttiinngg!!

((DDiirreeccttss sseeaarrcchh))

DDaattaa RReeccoorrddss

IInnddeexx

DDaattaa EEnnttrriieess
("Sequence set")

Why	not	scan	the	data	file	directly?

2/7/17 CS 564: Database Management Systems 16

Unclustered B+	Tree	Used	for	Sorting
• Unclustered B+-trees	only	have	rids	in	the	data	entries
• So,	in	general,	one	I/O	per	data	record!

DDaattaa RReeccoorrddss

IInnddeexx ((DDiirreeccttss sseeaarrcchh))

DDaattaa EEnnttrriieess
("Sequence set")

When	can	this	be	useful?

2/7/17 CS 564: Database Management Systems 17

• Sorting	is	a	competitive	sport!	
• See	http://sortbenchmark.org/
– Task	is	to	sort	100	byte	records.		
– Different	flavors	of	metrics	that	people	compete	on.	
– Sort	at	trillion	records	as	fast	as	you	can,	
• using	general	purpose	sorting	code	(Daytona)	or	
• code	specialized	just	for	the	benchmark	(Indy)

Sorting	Records!

