Spring 2017

EXTERNAL SORTING
(CH. 13 IN THE COW BOOK)

2/7/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013

Motivation for External Sort

* Often have a large (size greater than the available
main memory) that we need to sort.

* Why are we sorting:

— Query processing: e.g. there are sort-based join and
aggregate algorithms

— Bulkload B+-tree: recall you had to sort the data
entries in the leaf level for this.

— One can specify ORDER BY in SQL, which sorts the
output of the query

Problem Statement

* Given M memory pages, and a relation of size N pages,
where N > M, sort R on a sort key, to produce an output
relation R’ that is sorted on the sort key.

 Example: Sort the following table on zipcode

CREATE TABLE Tweets (
uniqueMsgID INTEGER, -- unique message 1id
tstamp TIMESTAMP, -- when was the tweet posted
uid INTEGER, -- unique id of the user
msg VARCHAR (140), -- the actual message
zip INTEGER, -- zipcode when posted
retweet BOOLEAN -- retweeted?
);

* Another example: SELECT * FROM Tweets
WHERE tstamp = TODAY«__
ORDER BY zip

Note the sort key can be composite

2/7/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013 3

Goal of a good sort algorithm

* Sort efficiently! Where does the
memory come from?

e Sort well!

— Able to sort large relations with “small” amounts of
main memory

 What does sort efficiently mean:
— Minimize the number of disk I/Os
— Try using sequential I/Os rather than random 1/Os
— Minimize the CPU costs
— Overlap 1/0O operations with CPU operations

Quick note: Sorting is very important in MapReduce. The reducer
expects data to arrive in sorted order from the mappers.

2/7/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013 4

2-Way Sort: Requires 3 Buffers

* Pass 1: Read a page, sort it, write it (a run).

— only one buffer page is used

Algorithms for

* Pass 2, 3, ..., etc.: o
sorting in memory?

— three buffer pages used.

S T
\// \//
| i JINPUT 1 \
OUTPUT o | |
| |
| 3 'f INPUT 2 7
- -
Disk Main memory buffers Disk

2/7/17 CS 564: Database Management Systems 5

Two-Way External Merge Sort

e Read & write entire file in
each pass

* N pages, # passes =
[log, N|+1
* So total cost is:
2N([log, N]+1)
* Divide and conquer

How can we utilize more
than three buffer pages?

- Input file

3,4 |6,2] |9,4| [8,7| |5,6] |3,1
|
\4 v \4 v \4 v \4 + PASS 0
3,4 12,6/ |4,9| [7,8] |56/ |1,3 2 - 1-page runs
\ ya \ ya \ Z N\ ya
N 4 N PASS 1
4,7
2,3 1,3 2-page runs
4,6 8,9 5,6
~ < PASS 2
o o
4,4 1,2 4-page runs
6,7 3,5
8,9 6
\./ PASS 3
1,2
2,3
3,4 8-page runs
4,5
6,6
7,8
9

2/7/17 CS 564: Database Management Systems

General External Merge Sort
e Sort a file with N pages using B buffer pages:

— Pass 0: use B buffer pages (run size = B pgs).
Produce| N/B |sorted runs of B pages each.

— Pass 2, 3, merge B-1 runs.

> INPUT 1 < >
N~ @ @ |

I I | |
| | »| INPUT 2 k‘ |1 |

OUTPUT

| |‘\ / | l
< \-‘INPUT B-1 —_—
Disk Disk

B-1 way merge.

Total buffer pages: B Where are the main memory

buffer pages allocated?

2/7/17 CS 564: Database Management Systems 7

Cost of External Sort Merge
* H# passes =
* |/O Cost = # passes * 2 N

* Consider sorting a file with a 1000 pages, using 11
buffer pages.

— At the end of the first pass, we have ‘runs of
Size pages

— Next pass produces runs of size. pages each

— The next pass

2/7/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013 8

Number of Passes of External Sort

N (# of pages)| B=3| B=17| B=257

100 /
10,000, 13
1,000,000, 20

10,000,000 23
100,000,000 26
1,000,000,000; 30
f)))
32kpg 7/ —
size, 3_2TBJ @1ms per read, 1111
relation hours = 46 days!

O N O O DN
B W WD -

2/7/17 CS 564: Database Management Systems

Internal Sort Algorithm: Replacement Sort

Size of the
buffer pool?

Example: M = 2 pages, 2 tuples per page.
Input Sequence: 10, 20, 30, 40, 25, 35,9, 8, /7,6, 5, ...

In-memory 10, 20, 30, 40
In-memory: 20, 25, 30, 40

1.

0 N O U B W N

Read 25, Output 10.
Read 35, Output 20.
Read 9, Output 25.
Read 8, Output 30.
Read 7, Output 35.
Read 6, Output 40.

Read 5, Flush output, Start new run. In-memory ...

In-memory :
In-memory :
In-memory :
In-memory :

In-memory :

On Disk: 10, 20, 25, 30, 35, 40

25, 30, 35, 40
9, 30, 35, 40
8,9, 35,40
7,8,9,40
6,7,8,9

Average length of a run in replacement sort is 2M

2/7/17 CS 564: Database Management Systems 10

Internal Sort Algorithm

* Quicksort is a fast way to sort in memory.

An alternative is replacement sort, which is also called tournament

sort or heapsort

Top : Read in M pages of the relation R
Output : move smallest record to output buffer
Read in a new record r

insert r into “sorted heap”

if r not smallest, then GOTO Output

else remove r from “heap”

output “heap” in order; GOTO Top

* Worst-Case: What is min length of a run? How does this arise?

* Best-Case: What is max length of a run? How does this arise?

* Quicksort is faster, but longer runs often means fewer passes!

2/7/17

CS 564: Database Management Systems 11

Blocked I/Os

* So far we reading/writing one page at a time, but we
know that reading a block of pages sequentially is faster.

* Make each buffer (input/output) be a block of pgs.
— Will reduce fan-out during merge passes! Side-effect?

— Reduces per page I/0O cost.

— First Pass: Each run 2B pages, [N/2B] runs (where B is the size
of the buffer pool in #pages)

- Which internal sort algorithm are we using?
— Merge Tree Fanout: F = |B/b] - 1, b is block size
- # passes: [logg...] +1

— In practice, buffer pools are large, so most files are sorted in 2-3
passes

Reduces response time.

Double BUffe ring What about throughput?

* Overlap CPU and IO processing
* Prefetch into shadow block.

— Potentially, more passes; in practice, 2-3 passes.

INPUT 1

INPUT 2 OUTPUT, [)

| T = B IR
' ¢ 0 O
000 INPUT 2 OUTPUT'

N o 0 0 -

\ bl ?< ' —
DISk INPUT k OCK Slze D|sk

B main memory buffers, k-way merge

2/7/17 CS 564: Database Management Systems 13

Using B+ Trees for Sorting

Scenario: Table to be sorted has B+ tree index on
sorting column(s).

ldea: Can retrieve records in order by traversing leaf
pages.

Is this a good idea?

Cases to consider:

— B+ tree is clustered Good idea!
— B+ tree is not clustered Could be a very bad idea!

2/7/17 CS 564: Database Management Systems 14

Clustered B+ Tree Used for Sorting

 Go to the left-most leaf,

then retrieve all leaf Index
pages (Directs search)

* If data entry has records,

= Data Entries
then we are done!

\\\\\\\\\\\\\\\\\\\\\\\ "Sequence set")

rids, each data page is

fetched just once (since Data Records
this is a clustered index)

Faster than
external sorting! Why not scan the data file directly?

2/7/17 CS 564: Database Management Systems 15

Unclustered B+ Tree Used for Sorting

* Unclustered B+-trees only have rids in the data entries
* So, in general, one I/O per data record!

When can this be useful? Index (Directs search)

, Data Entries
| ("Sequence set")

Data Records

2/7/17 CS 564: Database Management Systems 16

Sorting Records!

* Sorting is a competitive sport!

* See http://sortbenchmark.org/

— Task is to sort 100 byte records.
— Different flavors of metrics that people compete on.

— Sort at trillion records as fast as you can,

* using general purpose sorting code (Daytona) or

e code specialized just for the benchmark (Indy)

2/7/17 CS 564: Database Management Systems

17

