
QUERY	PROCESSING
[BASED	ON	CH 12.1-12.3	AND	14	IN	THE	COW	BOOK]

Spring	2017

3/6/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 1

Life	Cycle	of	a	Query

3/6/17 CS 564: Database Management Systems, Jignesh M. Patel 2

Query

Query Result

Database Server

Select R.text from
Report R, Weather W
where W.image.rain()
and W.city = R.city
and W.date = R.date

and
R.text.

matches(“insurance claims”)

Query
Syntax Tree

Parser

Query Plan

Optimizer

Segments

Query
Scheduler |…|……|………..|………..|

…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..

Query
Result

Execute
Operators

Problem	Statement

3/6/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 3

CREATE TABLE User (
uid INTEGER, -- unique id or the user
login VARCHAR(20) -- unique login name
lname VARCHAR(80), -- lastname
fname VARCHAR(80), -- firstname
dob DATE, -- date of birth
PRIMARY KEY (uid), -- primary key for the table
UNIQUE (login) -- twid is also unique

);

CREATE TABLE Messages (
uniqueMsgID INTEGER, -- unique message id
tstamp TIMESTAMP, -- when was the message posted
uid INTEGER, -- unique id of the user
msg VARCHAR (140), -- the actual message
zip INTEGER, -- zipcode when the message was posted
reposted BOOLEAN -- is this a reposted message?
PRIMARY KEY (uniqueMsgID), -- primary key
FOREIGN KEY (uid) REFERENCES USER – Foreign key to the User table
);

Problem	Statement
• Run	the	following	query:

3/6/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 4

SELECT U.login AS login, COUNT(*) AS NumMsgsToday
FROM User U, Messages M
WHERE U.uid = M.uid
AND M.Date(tstamp) = CURRENT_DATE -- select msgs posted today

GROUP BY U.login -- group by login
ORDER BY NumMsgsToday DESC -- order by descending msg count

login NumMsgsToday
angelak 211
jackdr 101
petescafe 10
… …

Sample	output	table

Logical	Query	Plan	

3/6/17 CS 564: Database Management Systems 5

Here	the	ovals	are	
logical	operators.	
There	are	many	
different	algorithms	
for	each	of	these	
operators.	

We	study	these	
algorithms	next.

You	already	know	the	
sort	algorithm.	So	we	
can	skip	that	one!

SELECT
M.Date(tstamp)	=	
CURRENT_DATE

Messages	Table

SELECT
No	predicate,	so	just	a	scan

User	Table

JOIN
U.uid =	M.uid

AGGREGATE
Output:	Login,	COUNT(*)	

GROUP	BY	login

SORT
On	NumMsgsToday

Result	Table

Physical Query	Plan	

3/6/17 CS 564: Database Management Systems 6

Here	the	ovals	are	
physical	operators.	

Each	physical	operator	
specifies	the	exact	
algorithm/code	that	
should	be	run,	and	
parameters	(if	any)	for	
that	algorithm.

Index	Scan
Scan	using	the	index	

on	tstamp

Messages	Table

File	Scan
Scan	the	heapfile

User	Table

Hybrid	Hash	
Join

Hash-based	
Aggregate

Sort-Merge	
External	sort	with	

Quicksort	in	Pass	0,	and	
use	50	buffer	pages

Result	Table

Select	Operation

• Algorithms:	File	Scan	or	Index	Scan
• File	Scan: Disk	I/O	cost:	
• Index	Scan:	(on	some	predicate).	Disk	I/O	cost:

– Hash:	O() can	only	use	with	equality	predicates
– B+-tree:	O()	+	X

• X	=	number	of	selected	tuples/number	of	tuples	per	page
• X	=	1	per	selected	tuple	with	an	unclustered index.	To	reduce	
the	value	of	X,	we	could	sort	the	rids	and	then	fetch	the	
tuples.

– Bitmap	Index:				

3/6/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 7

3/6/17 CS 564: Database Management Systems 8

When	to	use	a	B+tree	index
• Consider	

– A	relation	with	1M	tuples
– 100	tuples	on	a	page
– 500	(key,	rid)	pairs	on	a	page

Clustered
Non-Clustered

1% Selection 10% Selection

data pages
= 1M/100 = 10K pages

leaf idx pgs
= 1M / (500 * 0.67)
~ 3K pages

NC + Sort Rids

30 + 100 300 + 1000
30 + 10,000 300 + 100,000

30 + (~ 10,000) 300 + (~ 10,000)

ð Choice of Index access plan, consider:
1. Index Selectivity 2. Clustering

ð Similar consideration for hash based indices

When	can	we	use	an	index

• Notion	of	“index	matches	a	predicate”
• Basically	mean	when	can	an	index	be	used	to	
evaluate	predicates	in	the	query	

3/6/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 9

3/6/17 CS 564: Database Management Systems 10

General	Selection	Conditions
• Index	on	(R.a,	R.b)	

– Hash	or	tree-based
• Predicate:	

– R.a >	10
– R.b <	30
– R.a =	10	and R.b =	30
– R.a =	10	or	R.b =	30

• Predicate:	(p1	and	p2)	or	p3
• Convert	to	Conjunctive	Normal	Form(CNF)

(p1	or	p3)	and	(p2	or	p3)
• An	index	matches a	predicate

– Index	can	be	used	to	evaluate	the	predicate

3/6/17 CS 564: Database Management Systems 11

Index	Matching
• B+-tree	index	on	<a,	b,	c>	

– a=5	and	b=	3?
– a	>	5	and	b	<	3
– b=3
– a=7	and	b=5	and	c=4	
and	d>4

– a=7	and	c=5

Hash Idx
•
•
•
•

•

•
•
•
•
(primary conjunct)
•

n Index matches (part of) a predicate
1. Conjunction of terms involving only attributes (no disjuctions)
2. Hash: only equality operation, predicate has all index attributes.
3. Tree: Attributes are a prefix of the search key, any ops.

3/6/17 CS 564: Database Management Systems 12

Index	Matching
• A	predicate	could	match	more	than	1	index	
• Hash	index	on	<a,	b>	and	B+tree index	on	<a,	c>	

– a=7	and	b=5	and	c=4 Which	index?

– Option1:	Use	either	(or	a	file	scan!)
• Check	selectivity	of	the	primary	conjuct

– Option2:	Use	both!	Algorithm:	Intersect	rid	sets.
• Sort	rids,	retrieve	rids	in	both	sets.
• Side-effect:	tuples	retrieved	in	the	order	on	disk!

3/6/17 CS 564: Database Management Systems 13

Selection
• Hash	index	on	<a>	and	Hash	index	on		

– a=7	or b>5 Which	index?
– Neither!	File	scan	required	for	b>5	

• Hash	index	on	<a>	and	B+-tree	on		
– a=7	or b>5 Which	index?
– Option	1:	Neither
– Option	2:	Use	both!	Fetch	rids	and	union

• Look	at	selectivities closely.	Optimizer!

• Hash	index	on	<a>	and	B+-tree	on		
– (a=7	or c>5)	and	b	>	5 Which	index?
– Could	use	B+-tree	(check	selectivity)

3/6/17 CS 564: Database Management Systems 14

Projection	Algorithm
• Used	to	project	the	selected	attributes.
Simple	case:	Example	SELECT	R.a,	R.d.

– Algorithm:	for	each	tuple,	only	output	R.a,	R.d

Harder	case:	DISTINCT	clause
• Example:	SELECT	DISTINCT	R.a,	R.d

– Remove	attributes	and eliminate	duplicates
• Algorithms

– Sorting:	Sort	on	all the	projection	attributes
• Pass	0:	eliminate	unwanted	fields.	Tuples	in	the	sorted-runs	may	be	
smaller

• Eliminate	duplicates	in	the	merge	pass	&	in-memory	sort
– Hashing:	Two	phases

• Partitioning	
• Duplicate	elimination

3/6/17 CS 564: Database Management Systems 15

Hashing

Partitions

Input buffer
for partition i

Hash table for
partition i

B main memory buffersDisk

Output
buffer

Disk

Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h1 B-1

Partitions

1

2

B-1

. . .
Can	h1	=	h2?

What	if	the	hash	table	
for	a	partition	overflows,	
i.e.	can’t	fit	in	memory?

R’	=	πP(R)
No	overflows	if
|R’|	<	B2/F
F	=	fudge	factor	(to	
account	for	the	hash	table)

Part.	Sz,	P	=	|R’|/B-1
Hash	Tab	Sz	=	F*P	<	B

3/6/17 CS 564: Database Management Systems 16

Projection	…
• Sort-based	approach	

– better	handling	of	skew
– result	is	sorted
– I/O	costs	are	comparable	if	B2 >	|R’|

• Index-only	scan
– Projection	attributes	subset	of	index	attributes
– Apply	projection	techniques	to	data	entries	(much	smaller!)

• If	an	ordered	(i.e.,	tree)	index	contains	all	projection	
attributes	as	prefix	of	search	key:
1. Retrieve	index	data	entries	in	order
2. Discard	unwanted	fields
3. Compare	adjacent	entries	to	eliminate	duplicates	(if	required)

