
QUERY	PROCESSING
[JOINS,	SET	OPERATIONS,	AND	AGGREGATES]

Spring	2017

2/19/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 1

Joins

• The	focus	here	is	on	“equijoins”
• These	are	very	common,	given	how	we	design	the	

database	schemas	using	primary	and	foreign	keys
• Equijoins	are	used	to	bring	the	tuples	back	together
• Example:

2/19/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 2

SELECT U.login AS login, COUNT(*) AS NumMsgsToday
FROM User U, Messages M
WHERE U.uid = M.uid
AND M.Date(tstamp) = CURRENT_DATE -- select msgs posted today

GROUP BY U.login -- group by login
ORDER BY NumMsgsToday DESC -- order by descending msg count

We	look	at	equijoin	algorithms	next

Page	Nested	Loops	Join:	PNL

2/19/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 3

1. For	each	page	in	the	User	table,	pu

2. For	each	page	of	Message,	pm

3. Join	the	tuples	on	page	puwith tuple	in	pm

4. Output	matching	tuples	(after	applying	any	projection)

Let |U| denote the # pages in the User table and
|M| denote the # pages in the Messages table,

Then, the IO cost of the PNL Algorithm is:
How	many	buffer	pool	pages	does	this	algorithm	use?

Can	we	do	better	if	we	have	a	larger	
buffer	pool	with	B	pages?	Where,	B	>>	3

Block	Nested	Loops	Join:	BNL

2/19/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 4

1. Scan	the	User	table	B-2	pages	at	a	time

2. For	each	page	of	Message,	pm

3. Probe	the	hash	table	with	each	tuple	on	the	page	pm

4. Output	matching	tuples	(after	applying	any	projection)

Let |U| denote the # pages in the User table and
|M| denote the # pages in the Messages table,

Then, the IO cost of the BNL Algorithm is: O()

What	is	the	CPU	cost	for	this	algorithm?

Block	Nested	Loops	Join:	BNL

2/19/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 5

1. Scan	the	User	table	B-2	pages	at	a	time
2. Insert	the	user	tuples	into	an	in-memory	hash	table	on	the	join	attribute
3. For	each	page	of	Message,	pm

4. Probe	the	hash	table	with	each	tuple	on	the	page	pm

5. Output	matching	tuples	(after	applying	any	projection)

Let |U| denote the # pages in the User table and
|M| denote the # pages in the Messages table,

Then, the IO cost of the BNL Algorithm is: O()

Index	Nested	Loops	Join:	INL

2/19/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 6

1. For	each	page	in	the	User	table,	pu

2. For	each	tuple	on	page	pu

3. Probe	the	Index	on	the	join	attribute	on	Messages	
4. Output	matching	tuples	(after	applying	any	projection)

Let |U| denote the # pages in the User table, and
||U|| denote the # tuples in the User table, and
Im denote the cost of one index probe on the Messages table

Then, the IO cost of the PNL Algorithm is:

Can	be	used	when	there	is	an	index	on	the	join	attribute	on	one	of	the	tables

The	cost	of	Im depends	on	the	type	of	the	index	
and	if	the	index	is	clustered	or	unclustered

How	many	buffer	
pages	does	this	use?

Blocked	Index	Nested	Loops	Join:	BINL

2/19/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 7

1. Scan	the	User	table	B-2	pages	at	a	time
2. Sort	the	tuples	in	the	B-2	pages	on	the	join	key
3. For	each	tuple	of	the	User	table
4. Probe	the	Index	on	the	join	attribute	on	Messages	
5. Output	matching	tuples	(after	applying	any	projection)

Why	does	sorting	help?

Sort-Merge	Join:	SMJ

2/19/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 8

1. Generate	sorted	runs	for	U	(Pass	0)
2. Generate	sorted	runs	for	M	(Pass	0)
3. Merge	the	sorted	runs	for	U	and	M
4. While	merging	check	for	the	join	condition
5. Output	matching	tuples

Runs	of	U	on	average	are	~2B	pages	long	(with	B	buffer	pages)
Runs	of	M	are	also	~2B	pages	long

So	we	have	|U|/2B	and	|M|/2B	runs	after	Line	2
Need	to	hold	one	page	from	each	of	these	runs	in	memory	for	Line	3
So,	|U|/2B	+	|M|/2B	≤	B
If	|M|	is	the	larger	relation,	then	this	means	that	a	“safe”	criteria	is:	

(Simple)	Hash	Join	Algorithm:	HJ

2/19/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 9

1. Partition	U	into	P	partitions,	using	a	hash	function	h1	on	the	join	key
2. Partition	M	into	P	partitions,	using	a	hash	function	h1	on	the	join	key
3. Join	each	partition	of	U	with	the	corresponding	partition	of	M
4. (using	hashing	as	in	BNL,	so	build	a	hash	table	on	the	U	partition)
//	Note	the	hash	function	in	the	second	part	must	be	different	from	h1

With	B	buffer	pages,	#	partitions	is	~B	(for	each	U	and	M)
Each	partition	of	U	must	fit	in	memory	(with	its	hash	table).
Assume	that	the	hash	table	increases	the	space	required	by	a	factor	of	F.	
Thus,	the	largest	U	that	can	be	joined	in	two	passes	is	constrained	by:	

2/19/17 EECS 484: Database Management Systems, Jignesh M. Patel 10

Hash-Join

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h1 B-1

Partitions

1

2

k

. . .

What if f*|Ui| > B-2?

Hash	Join	versus	Sort-Merge	Join

• Need	to	join	U	with	M,	where	|M|	>	|U|,	using	B	
buffer	pages	

• To	do	a	two-pass	join,	SMJ	needs
– In	this	case	the	IO	cost	is:	3	*	(|U|	+	|M|)

• To	do	a	two-pass	join,	HJ	needs
• In	this	case	the	IO	cost	is:	3	*	(|U|	+	|M|)

2/19/17 CS 564: Database Management Systems 11

So	HJ	can	sort	two	relations	with	fewer	buffer	pages!

2/19/17 EECS 484: Database Management Systems, Jignesh M. Patel 12

General	Join	Conditions
• Equalities	over	several	attributes

e.g.,	R.sid=S.sid AND R.rname=S.sname:
– Index	NL

• index	on <sid,	sname>
• index	on	sid or	sname.

– SM	and	Hash,	sort/hash	on	combination	of	join	attrs

• Inequality	conditions	(e.g.,	R.rname <	S.sname):
– For	Index	NL,	need	(clustered!)	B+	tree	index.

• Large	#	index	matches

– SM	and	Hash	not	applicable
– Block	NL	likely	to	be	the	winner

2/19/17 EECS 484: Database Management Systems, Jignesh M. Patel 13

Set	Operations
• ∩ and	ⅩⅩ special	cases	of	join
• ∪∪ and	− similar;	we’ll do	∪∪.

– Duplicate	elimination

• Sorting:
– Sort	both	relations	(on	all	attributes).
– Merge	sorted	relations	eliminating	duplicates.
– Alternative:		Merge	sorted	runs	from	both relations.

• Hashing:
– Partition	R	and	S
– Build	hash	table	for	Ri.	
– Probe	with	tuples	in	Si,	add	to	table	if	not	a	duplicate

2/19/17 EECS 484: Database Management Systems, Jignesh M. Patel 14

Aggregates
• Sorting
– Sort	on	group	by	attributes	(if	any)
– Scan	sorted	tuples,	computing	running	aggregate

• Max:	Max
• Average:	Sum,	Count

– If	the	group	by	attribute	changes,	output	aggregate	
result

• Cost:	sorting	cost

2/19/17 EECS 484: Database Management Systems, Jignesh M. Patel 15

Aggregates

• Hashing
– Hash	on	group	by	attributes	(if	any)

• Hash	entry:	group	attributes	+	running	aggregate

– Scan	tuples,	probe	hash	table,	update	hash	entry

– Scan	hash	table,	and	output	each	hash	entry

• Cost:	Scan	relation!

• What	if	we	have	a	large	#	groups?

2/19/17 EECS 484: Database Management Systems, Jignesh M. Patel 16

Aggregates
• Index
– Without	Grouping

• Can	use	B+tree on	aggregate	attribute(s)
• Where	clause?	

– With	grouping
• B+tree on	all	attributes	in	SELECT,	WHERE	and	GROUP	BY	clauses

– Index-only	scan
– If	group-by	attributes	prefix	of	search	key	

=>	data	entries/tuples	retrieved	in	group-by	order
– Else	=>	get	data	entries	and	then	use	a	sort	or	hash	aggregate	

algorithm

