ER MODELING

[CH 2: SECTIONS 2.1-2.4.2 AND CH3: SECTIONS 3.5.1 - 3.5.4]
Database Design

• Requirements Analysis
 • Data stored, operations, apps, ...

• Conceptual Database Design
 • Model high-level description of the data, constraints, ER model

• Logical Database Design
 • Choose a DBMS and design a database schema

• Schema Refinement

• Physical Database Design

• Application and Security Design
ER Model Basics

- **Entity**: Distinguishable real-world object
 - Described by a set of *attributes*, Each attribute has a *domain*

- **Entity Set**: A collection of similar entities. E.g., all citizens.
 - All entities in an entity set have the same set of attributes.
 (Until we consider ISA hierarchies!)
 - **Key**: minimal set of attributes whose values uniquely identify an entity in an entity set
 - Primary key
 - Candidate key

- Pictorially ...

```
Citizen

ssn
name
bday
```
- **Relationship**: Association among two or more entities
- **Relationship Set**: Collection of similar relationships

Mathematical relation on n entities (degree N):
\[
\{(e_1, e_2, ..., e_n) \mid e_1 \in E_1, e_2 \in E_2, ..., e_n \in E_n\}
\]

- Entity sets:
 - Can participate in > 1 relationship sets in different “roles”.
Key Constraints

Key Constraint: Each citizen votes at most once
Key Constraints: Generalize

Each voter votes at most once (for one candidate) and at a single location
Participation Constraints

- Key Constraint: A citizen has a single vote
- Q: Must every citizen vote?
 - This is a participation constraint: Every citizen must participate (total vs. partial).

Every party must have exactly one candidate?
Other Constructs in the ER model

• Weak Entities: an entity that is dependent on another entity

• Hierarchies: Model “IS A” hierarchies.

• Aggregation: Make a relationship act like an entity when participating in another relationship.

See the text book if you are interested in these advanced constructs
Next Step

• Need to map the ER diagram to SQL DDL statements
Logical DB Design: ER to Relational

CREATE TABLE Citizens
 (ssn CHAR(11),
 name CHAR(20),
 bday DATE,
 PRIMARY KEY (ssn))
Relationship Sets to Tables

CREATE TABLE Votes(
 ssn CHAR(11),
 cid INTEGER,
 when DATE,
 PRIMARY KEY (ssn, cid),
 FOREIGN KEY (ssn) REFERENCES Citizens,
 FOREIGN KEY (cid) REFERENCES PR-Cands)

Can ssn have a null value?

Can generalize to n-ary relationships
Relationship Sets to Tables

CREATE TABLE Represents(
 elected_ssn CHAR(11),
 cons_ssn CHAR(11),
 PRIMARY KEY (elected_ssn, cons_ssn),
 FOREIGN KEY (elected_ssn) REFERENCES Citizens,
 FOREIGN KEY (cons_ssn) REFERENCES Citizens)
Key Constraints: Review

Key Constraint: Each citizen votes at most once
Key Constraints

CREATE TABLE Votes
(ssn CHAR(11),
 cid INTEGER,
 when DATE,
 PRIMARY KEY (ssn),
 FOREIGN KEY (ssn) REFERENCES Citizens,
 FOREIGN KEY (cid) REFERENCES PR-Cands)

CREATE TABLE Citizen_Votes
(ssn CHAR(11),
 name CHAR(20),
 bday DATE,
 when DATE,
 cid INTEGER,
 PRIMARY KEY (ssn),
 FOREIGN KEY (cid) REFERENCES PR-Cands)

Approach 1: Three tables
- Can generalize to n-ary relationships

Approach 2: Two tables!
- Fold into Citizens.
Q: Can cid be null?
Q: What if many citizens don’t vote
Q: Which approach is better?
CREATE TABLE Citizens_Votes
 (ssn CHAR(11),
 name CHAR(20),
 bday DATE,
 when DATE,
 pid INTEGER,
 cid INTEGER,
 PRIMARY KEY (ssn),
 FOREIGN KEY (cid) REFERENCES PR-Cands,
 FOREIGN KEY (pid) REFERENCES PollStns)
(Total) Participation Constraints

Using Approach 2

CREATE TABLE Citizen_Votes(
 ssn CHAR(11),
 name CHAR(20),
 bday DATE,
 when DATE,
 cid INTEGER NOT NULL,
PRIMARY KEY (ssn),
FOREIGN KEY (cid) REFERENCES PR_Cands,
 ON DELETE NO ACTION)

Participation constraint on OF

- Make ssn and cid not null
- ssn Fkey in Citizens pointing to Votes

Approach 1?
- Use Table constraints and assertions: Expressive but expensive!
Mapping Participating Constraints

CREATE TABLE RAB(
 r1 Integer,
 a1 Integer,
 a2 Integer,
 a3 Integer,
 b1 Integer,
 b2 Integer,
 b3 Integer ...)
Mapping Participating Constraints

CREATE TABLE RAB(
 r1 Integer,
 a1 Integer,
 a2 Integer,
 a3 Integer,
 b1 Integer NOT NULL,
 b2 Integer,
 b3 Integer,
 UNIQUE (b1), PRIMARY KEY (a1))
More modeling

• There are well-known techniques to map the advanced ER techniques (e.g. aggregation). See the book if you are interested.

• There are more than one ways to draw the ER diagram. A popular model is the “Crow’s Foot Notation.”

• Often the diagrams are generated using tools, and initial mappings are produced in automated ways.