ER MODELING

[CH 2: SECTIONS 2.1-2.4.2 AND CH3: SECTIONS 3.5.1 - 3.5.4]
Database Design

• Requirements Analysis
 • Data stored, operations, apps, ...

• Conceptual Database Design
 • Model high-level description of the data, constraints, ER model

• Logical Database Design
 • Choose a DBMS and design a database schema

• Schema Refinement

• Physical Database Design

• Application and Security Design
ER Model Basics

• **Entity**: Distinguishable real-world object
 – Described by a set of *attributes*, Each attribute has a *domain*

• **Entity Set**: A collection of similar entities. E.g., all citizens.
 – All entities in an entity set have the same set of attributes.
 (Until we consider ISA hierarchies!)
 – **Key**: minimal set of attributes whose values uniquely identify an entity in an entity set
 • Primary key
 • Candidate key

• Pictorially ...

```plaintext
ssn
name
bday
Citizen
```
- **Relationship**: Association among two or more entities
- **Relationship Set**: Collection of similar relationships

![Entity-Relationship Diagram](image)

- Mathematical relation on n entities (degree N):
 \[\{(e_1, e_2, \ldots, e_n) \mid e_1 \in E_1, e_2 \in E_2, \ldots, e_n \in E_n \} \]
- Entity sets:
 - Can participate in > 1 relationship sets in different "roles".
Key Constraints

Key Constraint: Each citizen votes at most once

Diagram showing relationships between Citizen and PR-vote, and PR-vote and PR-Cand.
Key Constraints: Generalize

Each voter votes at most once (for one candidate) and at a single location
Participation Constraints

- Key Constraint: A citizen has a single vote
- Q: Must every citizen vote?
 - This is a *participation constraint*: Every citizen must participate *(total vs. partial)*.

\[
\text{Citizen (ssn, name, bday)} \rightarrow \text{PR-vote} \rightarrow \text{PR-Cand (cid, waddr, budget)}
\]

Every party must have exactly one candidate?
Other Constructs in the ER model

• Weak Entities: an entity that is dependent on another entity
• Hierarchies: Model “IS A” hierarchies.
• Aggregation: Make a relationship act like an entity when participating in another relationship.

See the text book if you are interested in these advanced constructs
Next Step

• Need to map the ER diagram to SQL DDL statements
Logical DB Design: ER to Relational

CREATE TABLE Citizens
(ssn CHAR(11),
 name CHAR(20),
 bday DATE,
 PRIMARY KEY (ssn))
Relationship Sets to Tables

Attributes:
- Participating entity set primary keys
 - Foreign key
 - Superkey
- Descriptive attributes

CREATE TABLE Votes(
 ssn CHAR(11),
 cid INTEGER,
 when DATE,
PRIMARY KEY (ssn, cid),
FOREIGN KEY (ssn) REFERENCES Citizens,
FOREIGN KEY (cid) REFERENCES PR-Cands)

Can ssn have a null value?
Can generalize to n-ary relationships
CREATE TABLE Represents(
 elected_ssn CHAR(11),
 cons_ssn CHAR(11),
PRIMARY KEY (elected_ssn, cons_ssn),
FOREIGN KEY (elected_ssn) REFERENCES Citizens,
FOREIGN KEY (cons_ssn) REFERENCES Citizens)
Key Constraints: Review

Key Constraint: Each citizen votes at most once
CREATE TABLE Votes (ssn CHAR(11), cid INTEGER, when DATE, PRIMARY KEY (ssn), FOREIGN KEY (ssn) REFERENCES Citizens, FOREIGN KEY (cid) REFERENCES PR-Cands)

CREATE TABLE Citizen_Votes (ssn CHAR(11), name CHAR(20), bday DATE, when DATE, cid INTEGER, PRIMARY KEY (ssn), FOREIGN KEY (cid) REFERENCES PR-Cands)

Approach 1: Three tables

Approach 2: Two tables!
- Fold into Citizens.

Q: Can cid be null?
Q: What if many citizens don’t vote
Q: Which approach is better?

Can generalize to n-ary relationships
CREATE TABLE Citizens_Votes
(
 ssn CHAR(11),
 name CHAR(20),
 bday DATE,
 when DATE,
 pid INTEGER,
 cid INTEGER,
 PRIMARY KEY (ssn),
 FOREIGN KEY (cid) REFERENCES PR-Cands,
 FOREIGN KEY (pid) REFERENCES PollStns
)
(Total) Participation Constraints

Using Approach 2

CREATE TABLE Citizen_Votes(
 ssn CHAR(11),
 name CHAR(20),
 bday DATE,
 when DATE,
 cid INTEGER NOT NULL,
PRIMARY KEY (ssn),
FOREIGN KEY (cid) REFERENCES PR_Cands,
 ON DELETE NO ACTION)

- Participation constraint on OF
 - Use Table constraints and assertions: Expressive but expensive!

Approach 1?
- Make ssn and cid not null
- ssn Fkey in Citizens pointing to Votes
Mapping Participating Constraints

CREATE TABLE RAB(
 r1 Integer,
 a1 Integer,
 a2 Integer,
 a3 Integer,
 b1 Integer,
 b2 Integer,
 b3 Integer ...
)

Key constraints?
Mapping Participating Constraints

```
CREATE TABLE RAB(
    r1 Integer,
    a1 Integer,
    a2 Integer,
    a3 Integer,
    b1 Integer NOT NULL,
    b2 Integer,
    b3 Integer,
    UNIQUE (b1), PRIMARY KEY (a1))
```
More modeling

• There are well-known techniques to map the advanced ER techniques (e.g. aggregation). See the book if you are interested.

• There are more than one ways to draw the ER diagram. A popular model is the “Crow’s Foot Notation.”

• Often the diagrams are generated using tools, and initial mappings are produced in automated ways.