
RELATIONAL	ALGEBRA
[CH 4:	SECTIONS	4.1	AND	4.2]

Spring	2017

4/4/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 1

4/4/17 CS 564: Database Management Systems 2

Relational	Query	Languages
• Allow	manipulation	and	retrieval	of	data	from	a	database	
• Two	“pure”	types

– Declarative:	Tuple	Relational	Calculus	(TRC),	
Domain	Relational	Calculus	(DRC)

• Describe	what	a	user	wants,	rather	than	how	to	compute	it.
– Procedural	:	Relational	Algebra	(RA)

• Operational,	very	useful	for	representing	execution	plans.

• Commercial	Relational	QL	(SQL):	borrow	from	both.
• Query	Languages	!= programming	languages!

– QLs	not	expected	to	be	“Turing	complete”.
– QLs	not	intended	to	be	used	for	complex	calculations.
– QLs	support	easy,	efficient	access	to	large	data	sets.

Understanding	Algebra	&	Calculus	is	key	to	
understanding	SQL,	query	processing!

account-number

balance

ACCOUNT

branch-city

assets

BRANCH

branch-name

ACCOUNT-
BRANCH

DEPOSITOR LOAN-
BRANCH

CUSTOMER LOANBORROWER

customer-name

customer-citycid

amount

loan-number

4/4/17 3CS 564: Database Management Systems

bname acct# balance
Downtown A-101 500
Mainus A-215 700
Perryridge A-102 400
Round Hill A-305 350
Brighton A-201 900
Redwood A-222 700
Brighton A-217 750

bname bcity assets
Downtown Brooklyn 9000000
Redwood Palo Alto 2100000
Perryridge Horseneck 1700000
Mianus Horseneck 400000
Round Hill Horseneck 8000000
Pownal Bennington 300000
North Town Rye 3700000
Brighton Brooklyn 7100000

cid cname ccity
001 Jones Harrison
002 Smith Rye
003 Hayes Harrison
004 Curry Rye
005 Lindsay Pittsfield
006 Turner Stamford
007 Williams Princeton
008 Adams Pittsfield
009 Jones Palo Alto
010 Green Woodside
011 Brooks Brooklyn
012 Green Stamford

cid acct#
009 A-101
002 A-215
003 A-102
006 A-305
009 A-201
001 A-217
005 A-222

cid loan#
001 L-17
002 L-23
003 L-15
009 L-14
004 L-93
002 L-11
007 L-17
008 L-16

The account relation (A) The branch relation (B) The customer relation (C)

The depositor relation (D)
bname loan# amount

Downtown L-17 1000
Redwood L-23 2000
Perryridge L-15 1500
Downtown L-14 1500
Redwood L-93 500
Round Hill L-11 900
Perryridge L-16 1300

The loan relation (L) The borrower relation (Bw)

4/4/17 4CS 564: Database Management Systems

4/4/17 CS 564: Database Management Systems 5

Relational	Algebra	Preliminaries
• Query:	

– Input:	Relational	instances
– Output:	Relational	instances!
– Specified	using	the	schemas.	

• May	produce	different	results	for	different	instances.
• But	schema	of	the	result	is	fixed.	Determined	by	QL	constructs.

• Positional	vs.	named-field	notation:		
– Positional	notation	easier	for	formal	definitions,	named-field	

notation	more	readable.		
– Both	used	in	SQL

– C.cname	or	
– 2	(note	this	only	works	in	the	ORDER	BY	clause)

4/4/17 CS 564: Database Management Systems 6

Relational	Algebra
• Basic	operations:

– Selection ()		Selects	a	subset	of	rows	from	relation.
– Projection ()		Deletes	unwanted	columns	from	relation.
– Cross-product ()		Allows	us	to	combine	two	relations.
– Set-difference ()		Tuples in	reln.	1,	but	not	in	reln.	2.
– Union ()		Tuples in	reln.	1	and	in	reln.	2.

• Additional	operations:
– Intersection,	join,	division,	renaming

• Not	essential,	but	(very!)	useful.

• Operations	can	be	composed,	i.e.	algebra	is	closed.

σ

π

−

×

U

4/4/17 CS 564: Database Management Systems 7

Projection

• Deletes	attributes	that	are	not	in	projection	list.
• Schema of	result?
• Duplicates?	

)(Ancebname,balap
bname balance

Downtown 500
Mainus 700
Perryridge 400
Round Hill 350
Brighton 900
Redwood 700
Brighton 750

)(Bbnamep

bname
Downtown
Mainus
Perryridge
Round Hill
Brighton
Redwood

)(Bbcityp
bcity

Palo Alto
Horseneck
Bennington

Rye
Brooklyn

)(1 BpOR

4/4/17 CS 564: Database Management Systems 8

Selection
• Selects	rows	that	satisfy	

selection	condition.
• Duplicates?
• Schema of	result?

)(1400 Lamount>s

))(1400(Lamountbname >
sp

bname loan# amount

Redwood L-23 2000

Perryridge L-15 1500

Downtown L-14 1500

bname

Redwood

Perryridge

Downtown

4/4/17 CS 564: Database Management Systems 9

Set	Operations:	Union	(∪∪)),	Intersection(∩∩)),	Set-
Difference	(-)

• Input:	two	union-compatible
relations:
– Same	number/types	of	

fields.	And	in	same	order.
• Field	names	of	result?
• Schema	of	result?

cid
001
002
003
004
005
006
007
008
009
010
011
012

cid
001
002
003
009
004
002
007
008

cid
005
006
010
011
012

- =

All customers with no loan

)()(BwC cidcid pp -

4/4/17 CS 564: Database Management Systems 10

(bname) loan# amount (bname) acct# balance

Downtown L-17 1000 Downtown A-101 500

Downtown L-17 1000 Mainus A-215 700

Downtown L-17 1000 Perryridge A-102 400

Downtown L-17 1000 Round Hill A-305 350

 …
.

L X A

Cross-Product
• Cartesian	Product
• Result	Schema

– One	field	from	both	relations,	names	inherited	if	possible	
• Both	L and	A have	a	field	called	bname.

– These	fields	are	un-named,	use	positions
– Rename	operator

b1 loan# amount b2 acct# balance

Downtown L-17 1000 Downtown A-101 500

Downtown L-17 1000 Mainus A-215 700

Downtown L-17 1000 Perryridge A-102 400

Downtown L-17 1000 Round Hill A-305 350

 …
.

ρ (C(1 → b1, 4 → b2)), L X A)

4/4/17 CS 564: Database Management Systems 11

Joins
• Condition	Join:

• Result	Schema?
• Fewer	tuples	than	cross-product,	

might	be	able	to	compute	more	efficiently
• Sometimes	called	a	theta-join.		

R cS = σ c (R×S)

Rewrite using X
and 𝛔𝛔?

)(L A.. ´
< balanceAamountLs

L  L.amount<A.balanceA

b1 loan# amount b2 acct# balance

Redwood L-93 500 Redwood A-215 700

Redwood L-93 500 Redwood A-201 900

Redwood L-93 500 Round Hill A-222 700

Redwood L-93 500 Perryridge A-217 750

4/4/17 CS 564: Database Management Systems 12

Joins
• Equi-Join:		Special	case	of	condition	join	where	the	condition	c

contains	only	equalities

• Result	schema	similar	to	cross-product,	but	only	one	copy	of	
fields	for	which	equality	is	specified.

• Natural	Join:		Equijoin	on	all common	fields.

D  cid Bw
cid acct# loan#

009 A-101 L-14

002 A-215 L-23

003 A-102 L-15

009 A-201 L-14

001 A-217 L-17

4/4/17 CS 564: Database Management Systems 13

Division
• Not	a	primitive	operator,	but	useful	for	queries	like:			

Find	customers	with	accounts in	all	the	branches	in	Brooklyn.

• Let	A have	2	fields,	x and	y ;	B have	only	field	y :

– A/B	=	{x |	∀ 〈y〉 ∈ B [∃ 〈x, y〉 ∈ A]}	

– A/B	contains	all	x tuples (customers)	such	that	for	every y tuple
(branches	in	Brooklyn)	in	B,	there	is	an	<x,y> tuple in	A

• In	general,	x	and	y	can	be	any	lists	of	fields;	y	is	the	list	of	fields	
in	B,	and	x				 y	is	the	list	of	fields	of	A.

∪

4/4/17 CS 564: Database Management Systems 14

Examples	of	Division	A/B
cid bname
c1 b1
c1 b2
c1 b3
c1 b4
c2 b1
c2 b2
c3 b2
c4 b2
c4 b4

A

bname
b2

B1

bname
b2
b4

 B2

bname
b1
b2
b4

 B3cid
c1
c2
c3
c4

A/B1 A/B2 A/B3

4/4/17 CS 564: Database Management Systems 15

Expressing	A/B	Using	Basic	Operators
• Division	is	a	useful	shorthand,	not	essential	op

– Also	true	of	joins

• Idea:		For	A/B,	compute	all	x	values	that	are	not	disqualified	by	
some	y	value	in	B.

– x	value	is	disqualified	if	by	attaching	y	value	from	B,	we	obtain	an	<x,y>	tuple	
that	is	not	in	A

Can	you	express	this	
operator	using	basic	

operators?

-)(AxpA/B:

Disqualified x values

-

Expressive	Power
• Codd’s Theorem: Every	RA	query	can	be	

expressed	as	a	safe	query	in	TRC/DRC;	the	
converse	is	also	true.	

• Relational	Completeness:		A	“relationally	
complete”	query	language	(e.g.,	SQL)	can	
express	every	query	that	is	expressible	in	
relational	algebra/calculus.	

• Limitation	of	RA:
– For	any	particular	instance	of	Edges,	there	is	an	R.A.	

expression	to	compute	transitive	closure.	(What	is	it?)
– There’s	no	R.A.	for	transitive	closure	of	an	arbitrary	

instance	of	Edges.	(Why?)

From To
a b
a c
c y
y z

Edges

a b

c y
z

4/4/17 16CS 564: Database Management Systems

4/4/17 CS 564: Database Management Systems 17

Find	names	of	sailors	
who’ve	reserved	boat	#103

Solution 2:

Solution 3:

Solution 1:

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color)

4/4/17 CS 564: Database Management Systems 18

Find	names	of	sailors	
who’ve	reserved	a	red	boat

• Join	relations?
– Sailor,	Reserves,	Boats	(for	color)

π sname((σcolor='red 'Boats) Reserves Sailors)

A more efficient solution:

A query optimizer can find the most efficient solution!

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color)

Find	sailors	who’ve	reserved	
a	red	or	a	green	boat

• Identify	all	red	or	green	boats,	then
• find	sailors	who’ve	reserved	one	of	these	boats:

ρ (Tempboats,(σcolor='red '∨color='green 'Boats))

π sname(Tempboats Reserves Sailors)

§ Can also define Tempboats using union! (How?)

§ What happens if is replaced by in this query?

∨

∧

4/4/17 19CS 564: Database Management Systems

Find	sailors	who’ve	reserved	
a	red	and a	green	boat

1. Identify	
– sailors	who’ve	reserved	red	boats
– sailors	who’ve	reserved	green	boats

2. Then	find	the	intersection	(sid is	a	key	for	Sailors):

ρ (Tempred,π sid((σcolor='red 'Boats) Reserves))

π sname((Tempred∩Tempgreen) Sailors)

ρ (Tempgreen,π sid((σcolor='green'Boats) Reserves))

4/4/17 20CS 564: Database Management Systems

4/4/17 CS 564: Database Management Systems 21

Find	the	names	of	sailors	
who’ve	reserved	all	boats

• Uses	division;	schemas	of	the	input	relations	to	/	must	be	
carefully	chosen:

ρ (Tempsids, (π sid,bidReserves) / (πbidBoats))

π sname(Tempsids Sailors)

§ To find sailors who’ve reserved all ‘470’ boats:

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color)

