SCHEMA REFINEMENT AND NORMAL FORMS
[CH 19]
Database Design: The Story so Far

• Requirements Analysis
 • Data stored, operations, apps, ...

• Conceptual Database Design
 • Model high-level description of the data, constraints, ER model

• Logical Database Design
 • Choose a DBMS and design a database schema

• Schema Refinement
 • Normalize relations, avoid redundancy, anomalies ...

• Physical Database Design
 • Examine physical database structures like indices, restructure ...

• Security Design
Normalization

What is a good relational schema? How can we improve it?

• e.g.: Suppliers (name, item, desc, addr, price)

Redundancy Problems:

1. A supplier supplies two items: Redundant Storage
2. Change address of a supplier: Update Anomaly
3. Insert a supplier: Insertion Anomaly
 o What if the supplier does not supply any items (nulls?)
 o Record desc for an item that is not supplied by any supplier
4. Delete the only supplier tuple: Delete Anomaly
 o Use nulls?
 o Delete the last item tuple. Can’t make name null. Why?

Alternative:
Dealing with Redundancy

• Identify “bad” schemas
 – functional dependencies

• Main refinement technique: decomposition
 – replacing larger relation with smaller ones

• Decomposition should be used judiciously:
 – Is there a reason to decompose a relation?
 • Normal forms: guarantees against (some) redundancy
 – Does decomposition cause any problems?
 • Lossless join
 • Dependency preservation
 • Performance (must join decomposed relations)
Functional Dependencies (FDs)

- A form of IC
- **D:** \(X \rightarrow Y\) \(X\) and \(Y\) subsets of relation \(R\)’s attributes
 \(t_1 \in r, \ t_2 \in r, \ \pi_X(t_1) = \pi_X(t_2) \Rightarrow \pi_Y(t_1) = \pi_Y(t_2)\)
- An FD is a statement about all allowable relations.
 - Based only on application semantics, can’t deduce from instances
 - Can simply check if an instance violates FD (and other ICs)
- Consider, \((X,Y) \rightarrow Z\). Does this imply \((X,Y)\) is a key?

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>22</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>22</td>
<td>B</td>
</tr>
</tbody>
</table>

Primary Key IC is a special case of FD
Example: Constraints on Entity Set

- \(S(\text{name, item, desc, addr, price}) \)
- \(\text{FD: } \{n,i\} \rightarrow \{n,i,d,a,p\} \)
- \(\text{FD: } \{n\} \rightarrow \{a\} \)
- \(\text{FD: } \{i\} \rightarrow \{d\} \)
- Decompose to: NA, ID, INP

- \(\text{Spl(name, item, price)} \)
 - \(\text{FD: } \{n,i\} \rightarrow \{n, i, p\} \)
- \(\text{Sup(name, addr)} \)
 - \(\text{FD: } \{n\} \rightarrow \{n, a\} \)
- \(\text{Item (item, desc)} \)
 - \(\text{FD: } \{i\} \rightarrow \{i, d\} \)

ER design is subjective and can have many E + Rs
FDs: sanity checks + deeper understanding of schema

Same situation could happen with a relationship set
Refining an ER Diagram

- IS (item, name, desc, loc, price)
 S (name, addr)
- A supplier keeps all items in the same location
 FD: name \rightarrow loc
- Solution:
Inferring FD

- ename \rightarrow ejob, ejob \rightarrow esal; \Rightarrow ename \rightarrow esal

- Armstrong’s Axioms (X, Y, Z are sets of attributes):
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

- Additional rules (derivable):
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

- Set of all FD = closure of F, denoted as F^+

- AA sound: only generates FD in F^+

- AA complete: repeated application generates all FD in F^+
Decomposition

- Replace a relation with two or more relations
- Problems with decomposition
 1. Some queries become more expensive. (more joins)
 2. **Lossless Join**: Can we reconstruct the original relation from instances of the decomposed relations?
 3. **Dependency Preservation**: Checking some dependencies may require joining the instances of the decomposed relations.
Lossless Join Decompositions

- Relation R, FDs F: Decomposed to X, Y
- Lossless-Join decomposition if:
 \[\Pi_X(r) \bowtie \Pi_Y(r) = r \]
 for *every* instance r of R
- Note, \(r \subseteq \Pi_X(r) \bowtie \Pi_Y(r) \) is always true, not vice versa, unless the join is lossless
- Can generalize to three more relations
Lossless Join ...

- Relation R, FDs F: Decomposed to X, Y
 - Test: lossless-join w.r.t. F if and only if the closure of F contains:
 - $X \cap Y \rightarrow X$, or
 - $X \cap Y \rightarrow Y$

 i.e. attributes common to X and Y contain a key for either X or Y

- Also, given FD: $X \rightarrow Y$ and $X \cap Y = \emptyset$, the decomposition into $R-Y$ and XY is lossless

 - **X is a key in XY, and appears in both**
Dependency Preserving Decomposition

• R (sailor, boat, date) \{D \rightarrow S, D \rightarrow B\}
 \rightarrow X (sailor, boat)
 Y (boat, date) \{D \rightarrow B\}

• To check D \rightarrow S need to join R1 and R2 (expensive)

• Dependency preserving:
 – R \rightarrow X, Y \quad F^+ = (F_x \cup F_y)^+
 - Note: F not necessarily = F_x \cup F_y
Normal Forms

• Is any refinement is needed!
• Normal Forms: guarantees that certain kinds of problems won’t occur
 – 1 NF : Atomic values
 – 2 NF : Historical
 – 3 NF : ...
 – BCNF : Boyce-Codd Normal Form

Role of FDs in detecting redundancy:

- Relation R with 3 attributes, ABC.
 - No ICs (FDs) hold ⇒ no redundancy.
 - A → B ⇒ 2 or more tuples with the same A value, redundantly have the same B value!
Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if, for all $X \rightarrow A$ in F^+
 - $A \subseteq X$ (trivial FD), or
 - X is a super key

i.e. all non-trivial FDs over R are key constraints.

- **No redundancy in R** (at least none that FDs detect)
- Most desirable normal form

Consider a relation in BCNF and FD: $X \rightarrow A$, two tuples have the same X value
 - Can the A values be the same (i.e. redundant)?
 - **NO!** X is a key, $\Rightarrow y_1 = y_2$. Not a set!
3NF

- Relation R with FDs F is in 3NF if, for all \(X \rightarrow A \) in \(F^+ \)
 - \(A \subseteq X \) or
 - \(X \) is a super key or
 - \(A \) is part of some key for R \((\text{prime attribute})\)
 - Minimality of a key (not superkey) is crucial!

- BCNF implies 3NF

- e.g.: Sailor (Sailor, Boat, Date, CreditCrd)
 - \(\text{SBD} \rightarrow \text{SBDC}, \text{S} \rightarrow \text{C} \) \((\text{not 3NF})\)
 - If \(\text{C} \rightarrow \text{S} \), then \(\text{CBD} \rightarrow \text{SBDC} \) (i.e. CBD is also a key). Now in 3NF!
 - Note redundancy in (S, C); 3NF permits this
 - Compromise used when BCNF not achievable, or perf. Consideration

- Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.