
SCHEMA	REFINEMENT	AND	NORMAL	
FORMS
[CH 19]

Spring	2017

4/23/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 1

4/23/17 CS 564: Database Management Systems 2

Database	Design:	The	Story	so	Far
• Requirements	Analysis

• Data	stored,	operations,	apps,	…	

• Conceptual	Database	Design
• Model	high-level	description	of	the	data,	constraints,	ER	model

• Logical	Database	Design
• Choose	a	DBMS	and	design	a	database	schema

• Schema	Refinement
• Normalize	relations,	avoid	redundancy,	anomalies	…

• Physical	Database	Design
• Examine	physical	database	structures	like	indices,	restructure	…

• Security	Design

4/23/17 CS 564: Database Management Systems 3

Normalization
What	is	a	good	relational	schema?	How	can	we	improve	it?
• e.g.:	Suppliers	(name,	item,	desc,	addr,	price)

Redundancy Problems:
1. A	supplier	supplies	two	items:	Redundant	Storage	
2. Change	address	of	a	supplier:	Update	Anomaly
3. Insert	a	supplier:	Insertion	Anomaly

o What	if	the	supplier	does	not	supply	any	items	(nulls?)
o Record	desc for	an	item	that	is	not	supplied	by	any	supplier

4. Delete	the	only	supplier	tuple:	Delete	Anomaly
o Use	nulls?
o Delete	the	last	item	tuple.	Can’t	make	name	null.	Why?

Alternative:

4/23/17 CS 564: Database Management Systems 4

Dealing	with	Redundancy
• Identify	“bad”	schemas

– functional	dependencies

• Main	refinement	technique:	decomposition
– replacing	larger	relation	with	smaller	ones

• Decomposition	should	be	used	judiciously:
– Is	there	a	reason	to	decompose	a	relation?

• Normal	forms:	guarantees	against	(some)	redundancy

– Does	decomposition	cause	any	problems?
• Lossless	join
• Dependency	preservation
• Performance	(must	join	decomposed	relations)

4/23/17 CS 564: Database Management Systems 5

Functional	Dependencies	(FDs)
• A	form	of	IC

• D:	X	→ Y			 X	and	Y	subsets	of	relation	R’s	attributes	
t1	∈ r,		t2	∈ r,	∏X	(t1)	=	∏X (t2)		⇒∏y	(t1)	=	∏y (t2)

• An	FD	is	a	statement	about	all	allowable	relations.
– Based	only	on	application	semantics,	can’t	deduce	from	instances

– Can	simply	check	if	an	instance	violates	FD	(and	other	ICs)

• Consider,	(X,Y)	→	Z.	Does	this	imply	(X,Y)	is	a	key?

Primary Key IC is a special case of FDX" Y" Z" K"
1" 1" 11" A"
1" 2" 12" A"
2" 2" 22" A"
2" 2" 22" B"

4/23/17 CS 564: Database Management Systems 6

Example:	Constraints	on	Entity	Set

• S(name,	item,	desc,	addr,	price)
• FD:	{n,i}	→ {n,i,d,a,p}
• FD:	{n}	→ {a}
• FD:	{i}	→ {d}
• Decompose	to:	NA,	ID,	INP

• Spl(name,	item,	price)
– FD:	{n,i}	→ {n,	i,	p}

• Sup(name,	addr)
– FD:	{n}	→ {n,	a}

• Item	(item,	desc)
– FD:	{i}	→ {i,	d}

Supplier ItemSupplies

pricename addr descitem

Supplier

pricename addr descitem

ER	design	is	subjective	and	can	have	many	E	+	Rs
FDs:	sanity	checks	+	deeper	understanding	of	schema
Same	situation	could	happen	with	a	relationship	set

4/23/17 CS 564: Database Management Systems 7

Refining	an	ER	Diagram

• IS	(item,	name,	desc,	loc,	price)
S	(name,	addr)

• A	supplier	keeps	all	items	in	the	same	location
FD:	name	→ loc

• Solution:

Supplier ItemSupplies

pricename addr descitem

loc

4/23/17 CS 564: Database Management Systems 8

Inferring	FD
• ename→ ejob,	ejob→ esal;	⇒ ename → esal
• Armstrong’s	Axioms	(X,	Y,	Z	are	sets	of	attributes):

– Reflexivity:		If		Y	⊆ X,		then	X	→ Y	

– Augmentation:		If		X	→ Y,		then	XZ	→YZ	for	any	Z

– Transitivity:		If		X	→ Y	and	Y	→ Z,	then	X	→ Z

• Additional	rules	(derivable):
– Union:		If	X	→ Y	and	X	→ Z,		then	X	→ YZ	

– Decomposition:	If		X	→ YZ,		then	X	→ Y	and	X	→ Z

• Set	of	all	FD	=	closure	of	F,	denoted	as	F+

• AA	sound:	only	generates	FD	in	F+

• AA	complete:	repeated	application	generates	all	FD	in	F+

4/23/17 CS 564: Database Management Systems 9

Decomposition
• Replace	a	relation	with	two	or	more	relations

• Problems	with	decomposition

1. Some	queries	become	more	expensive.	(more	joins)		

2. Lossless	Join:	Can	we	reconstruct	the	original	relation	
from	instances	of	the	decomposed	relations?	

3. Dependency	Preservation:	Checking	some	dependencies	
may	require	joining	the	instances	of	the	decomposed	
relations.

4/23/17 CS 564: Database Management Systems 10

Lossless	Join	Decompositions
• Relation	R,	FDs	F:	Decomposed	to	X,	Y
• Lossless-Join	decomposition	if:	

∏X(r)	⋈∏Y(r)	=	r											for	every instance	r	of	R
• Note,	r	⊆∏X(r)	⋈∏Y(r)	is	always	true,	

not	vice	versa,		unless	the	join	is	lossless
• Can	generalize	to	three	more	relations

4/23/17 CS 564: Database Management Systems 11

Lossless	Join	…
• Relation	R,	FDs F:	Decomposed	to	X,	Y

– Test:	lossless-join	w.r.t.	F	if	and	only	if	the	closure	of	F	contains:
• X	∩ Y	→ X,			or
• X	∩ Y	→ Y

i.e.	attributes	common	to	X	and	Y	contain	a	key	for	either	X	or	Y	
– Also,	given	FD:	X	→ Y	and	X	∩ Y	=	∅,	the	decomposition	into	R-Y	
and	XY	is	lossless

n X is a key in XY, and appears in both

4/23/17 CS 564: Database Management Systems 12

Dependency	Preserving	Decomposition

• R	(sailor,	boat,	date)				 {D	→ S,	D	→ B}
à X	(sailor,	boat)	

Y	(boat,	date) {D	→ B}
• To	check	D	→ S	need	to	join	R1	and	R2	(expensive)
• Dependency	preserving:
– R	à X,	Y		 F+ =	(Fx ⋃ Fy)+

n Note: F not necessarily = Fx ⋃ Fy

4/23/17 CS 564: Database Management Systems 13

Normal	Forms
• Is	any	refinement	is	needed!
• Normal	Forms:	guarantees	that	certain	kinds	of	
problems	won’t	occur
– 1	NF	:	Atomic	values
– 2	NF	:	Historical	
– 3	NF	:	…
– BCNF	:	Boyce-Codd Normal	Form

M
ore

Restrictive

n Role of FDs in detecting redundancy:
n Relation R with 3 attributes, ABC.

n No ICs (FDs) hold ⇒ no redundancy.
n A → B ⇒ 2 or more tuples with the same A value,

redundantly have the same B value!

4/23/17 CS 564: Database Management Systems 14

Boyce-Codd Normal	Form		(BCNF)
• Reln R	with	FDs	F	is	in	BCNF	if,	for	all	X	→ A	in	F+

– A	∈ X			(trivial	FD),	or
– X	is	a	super	key

i.e.	all	non-trivial	FDs	over	R	are	key	constraints.
• No	redundancy	in	R (at	least	none	that	FDs	detect)
• Most	desirable	normal	form X Y A

x y1 a
x y2 ?

n Consider a relation in BCNF and FD: X → A,
two tuples have the same X value
n Can the A values be the same (i.e. redundant)?
n NO! X is a key, ⇒ y1 = y2. Not a set!

4/23/17 CS 564: Database Management Systems 15

3NF
• Relation	R	with	FDs	F	is	in	3NF	if,	for	all	X	→ A	in	F+

– A	∈ X		or
– X	is	a	super	key	or
– A	is	part	of	some	key for	R									(prime	attribute)

-Minimality of	a	key	(not	superkey)	is	crucial!		

• BCNF	implies	3NF
• e.g.:	Sailor	(Sailor,	Boat,	Date,	CreditCrd)

– SBD	->	SBDC,	S	->	C– SBD	->	SBDC,	S	->	C			(not	3NF)
– If	C	->	S,	then	CBD	->	SBDC	(i.e.	CBD	is	also	a	key).	Now	in	3NF!
– Note	redundancy	in	(S,	C);	3NF	permits	this
– Compromise	used	when	BCNF	not	achievable,	or	perf.	Consideration

• Lossless-join,	dependency-preserving	decomposition	of	R	into	a	
collection	of	3NF	relations	always	possible.

