Spring 2017

TRANSACTION MANAGEMENT
[CH 16]

4/25/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013

Transaction Management

Bank Balance : $100

Read (A); You

Check (A > $25); (Read Balance: $100/
Pay ($25); Sufficient funds?
A=A-25 ... Yes(

Write = S (Pay $25 {::4?

~—

4/25/17 CS 564: Database Management Systems

Transaction Management

Read (A);

Check (A > $25);
Pay ($25);
A=A-25;
Write (A);

* Inconsistency

Bank Balance : $100

Your Significant Other

You ‘/\’
Read Balance: $100

Read Balance: $100

Q

Sufficient funds?

Sufficient funds?

)

Yes (

Pay $25

Pay $25

) Yes

C

New balance: $75

New balance: $75

)

* Bank Balance : $75!

.

— Interleaving actions of different user programs

— System crash/user abort/...

* Provide the users an illusion of a single-user system

— Could insist on admitting only one query into the system at any time

* lower utilization: CPU/IO overlap

* long running queries starve other queries

4/25/17

CS 564: Database Management Systems

What is a Transaction?

Collection of operations that form a single logical unit

— A sequence of many actions considered to be one atomic unit of work

Logical unit:
— begin transaction (SQL) end transaction
Operations:
— Read (X), Write (X): Assume R/W on tuples (can be relaxed)

— Special actions: begin, commit, abort

Desirable Property: Must leave the DB in a consistent state
— (DB is consistent when the transaction begins)
— Consistency: DBMS only enforces ICs specified by the user
— DBMS does not understand any other semantics of the data

4/25/17 CS 564: Database Management Systems

The ACID Properties

Atomicity: All actions in the Xact

O
o
o

Begin
Xact. Mgmt. happen, or none happen. Read (A);
(logging) A = A-25;
o o -® Consistency: Consistent DB + consistent ~ Write (A);
Xact = consistent DB Read (B);
B =B+ 25;
@ Write (B);
° ° -® |solation: Execution of one Xact is Commit

. .
882|gﬁlqr5§ncy ctr isolated from that of other Xacts.

£

© o .o Durability: If a Xact commits, its effects
Recovery Mgmt.

(WAL, .. persist.

4/25/17 CS 564: Database Management Systems 5

* Schedule: An interleaving of actions from

Schedules

a set of Xacts, where the actions of any
one Xact are in the original order.

— Actions of Xacts as seen by the DB

— Complete schedule : each Xact ends in

commit or abort

— Serial schedule : No interleaving of actions

from different Xacts.

Initial State + Schedule — Final State

4/25/17

CS 564: Database Management Systems

oWl

v

Tl T2
begin
R(A)
W(A)
begin
R(B)
W(B)
R(C)
W(C)
commit
abort

Acceptable Schedules

* One sensible “isolated, consistent” schedule:

— Run Xacts one at a time (serial schedule)

 Serializable schedules:

— Final state is what some complete serial schedule of
committed transactions would have produced.

— Can different serial schedules have different final states?
* Yes, all are “OK”!

— Aborted Xacts?
 ignore them for a little while (made to ‘disappear’ using logging)

— Other external actions (besides R/W to DB)

e e.g. print a computed value, fire a missile, ...

* Assume (for this class) these values are written to the DB, and can be
undone

e T1->T2:

Serializability Violations

e @Start (A,B) = (1000, 100)
— End (990, 210)

— (900, 200) = (990, 220)

e T2>T1:

— (1100, 110) - (1000, 210) L

= W-R conflict: Dirty read

= Could lead to a non-
serializable execution

s Also R-W and W-W conflicts

4/25/17

T1: Transfer T2: Add 10%
$100 from A to B | interestto A & B
begin

begin
R(A) /A -= 100
// R(A) /A *=1.1
'ﬁ
Database W(A) .
Inconsistent | R(B) /B *=1.1
W(B)
commit

R(B) /B += 100

W(B)

commit

CS 564: Database Management Systems

More Conflicts

 RW Conflicts (Unrepeatable Read)
— R»(X) > W+,(X), T1 overwrites what T2 read.
— R»(X) 2 W+,(X) 2 Rp,(X). T2 sees a different X value!

 WW Conflicts (Overwriting Uncommited Data)

— T2 overwrites what T1 wrote.
e E.g.:Students in the same group get the same project grade.
* Tp: W(X=A), W(Y=A) T1a: W(X=B), W (Y=B)
* Wy(X=A) 2> W, (X=B) > W.,(Y=B) > Wy(Y=A)
[Note: no reads]
— Usually occurs in conjunction with other anomalies.

* Unless you have “blind writes”.

4/25/17 CS 564: Database Management Systems

Now, Aborted Transactions

e Serializable schedule: Equivalent to a serial
schedule of committed Xacts.

— as if aborted Xacts never happened.

* Two Issues:
— How does one undo the effects of a Xact?
* We'll cover this in logging/recovery
— What if another Xact sees these effects??
* Must undo that Xact as well!

4/25/17 CS 564: Database Management Systems

10

: 11 12
Cascading Aborts eqin
 Abort of T1 requires abort of T2! R(A)
— Cascading Abort W(A) _

begin
R(A)
W(A)
commit

abort

4/25/17 CS 564: Database Management Systems

11

Cascading Aborts

 Abort of T1 requires abort of T2!

— Cascading Abort

s Consider commit of T2

= Can we undo T2?

s Recoverable schedule: Commit only after all
xacts that supply dirty data have committed.

4/25/17

CS 564: Database Management Systems

11 T2

begin

R(A)

W(A)
begin
R(A)
W(A)

commi

commit

12

: Ti | T2
Cascading Aborts begin
R(A)
= ACA (avoids cascading abort) schedule W(A)
= Transaction only reads committed data begin
= One in which cascading abort cannot arise. R(A)
= Schedule is also recoverable W(A)
T1 12 abort
begin
R(A) commit
W(A)
commit
begin
R(A)
W(A)

Commit

4/25/17 CS 564: Database Management Systems 13

Locking: A Technique for C. C.

* Concurrency control usually done via locking.

* Lock info maintained by a “lock manager”:
— Stores (XID, RID, Mode) triples.
* This is a simplistic view; suffices for now.
— Mode e {S,X}

-S| X
— Lock compatibility table:
, - |V |V
= If @ Xact can’t get a lock
. S|V |V
= Suspended on a wait queue
= When are locks acquired? A

« Buffer manager call!

4/25/17 CS 564: Database Management Systems

Two-Phase Locking (2PL)

e 2PL:

— If T wants to read (modify) an object, first obtains an S (X)
lock

— If T releases any lock, it can acquire no new locks!
— Gurantees serializability! Why? lock point

: growing phase .
s Strict 2PL: Shrinking

phase
s Hold all locks until end of Xact

= Guarantees serializability, and ACA
too!

= Note ACA schedules are always
recoverable

locks

Time

4/25/17 CS 564: Database Management Systems 15

Schedule with Locks

T1: Transfer T12: Add 10% T1 72
$100 from A to B | interestto A & B)
: begin
begin :
: begin
begin
X(A)
R(A) /A -= 100
R(A)
W(A)
W(A)
R(A) /A *=1.1 -
X(A) — Wait!
W(A)
X(B)
R(B) /B *= 1.1
W(B) R(B)
. W(B)
commit)
U,(A), U, (B)/commit
R(B) /B += 100
R(A)
W(B)
. W(A)
commit

4/25/17 CS 564: Database Management Systems 16

Deadlocks
XT’I(B)v XTZ(A)v ST1 (A)’ STZ(B)

Deadlocks can cause the system to wait forever.
Need to detect deadlock and break, or prevent deadlocks
Simple mechanism: timeout and abort

More sophisticated methods exist

4/25/17 CS 564: Database Management Systems

17

Precedence Graph

* Precedence (or Serializability) graph:

— Nodes = Committed Xacts
— Conflicts = Arcs

= Conflict equivalent.
= Same sets of actions

= Conflicting actions in the same order
s Conflict serializable: Conflict equivalent to a

serial schedule

4/25/17

CS 564: Database Management Systems

T1: Xfer. T2: Add
$100 from 10%
AtoB interest
begin
begin
R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
commit
R(B)
W(B)

commit

18

Schedule with Locks

T1: Transfer
$100 from A to B

T2: Add 10%
interestto A & B

begin

begin
R(A) /A -= 100
W(A)
I R(A) /A *=1.1
| \@ R(B) /B *= 1.1
W(B)
commit

R(B) /B += 100

W(B)

commit

T1 T2
begin
begin
X(A)
R(A)
W(A)
X(A) — Wait!
X(B) |
e ()
W(B)
U,(A), U, (B)/commit
R(A)
W(A)

4/25/17

CS 564: Database Management Systems

19

Conflict Serializability & Graphs

Theorem: A schedule is conflict serializable iff
its precedence graph is acyclic

Theorem: 2PL ensures that the precedence
graph will be acyclic

* Why Strict 2PL?

— Guarantees ACA
* read only committed values

— How? Write locks until EOT
* No WW or WR => on abort replace original value

4/25/17 CS 564: Database Management Systems 20

Deadlocks A
XT’I(B)’ XTZ(A)v ST1 (A)’ STZ(B) B

Deadlocks can cause the system to wait forever.
Need to detect deadlock and break, or prevent deadlocks

Detect deadlock
— Draw a lock graph. Cycles implies a deadlock

Alternative ways of dealing with deadlock

— Break Deadlock

* On each lock request “update the lock graph”. If a cycle is detected, abort
one of the transactions. The aborted transaction is restarted after waiting for
a time-out interval.

— Prevent deadlock

* Assign priorities to the transactions. If a transaction, T1, requests a lock that
is being held by another transaction, T2, with a lower priority, then T1
“snatches” the lock from T2 by aborting T2 (which frees up the lock on the
resource). T2 is then restarted again after a time-out.

4/25/17 CS 564: Database Management Systems 21

(not in the official course syllabus)

Transaction Support in SQL

* Transaction boundary
— Begin implicitly, or end by Commit work, Rollback work
— For long running transactions: Savepoint

* Transaction characteristics
— Diagnostic size: # error messages...
— Access mode: Read only, Read Write

— Isolation level
e Serializable: default (long-term R/W locks on phantoms too)
- Repeatable reads: (long-term R/W locks on real objects)
— Read only committed records

— Between two reads by the same Xact, no updates by another Xact
e Read committed (long-term W locks/short-term R locks)

— Read only committed records
e Read uncommitted (Read only, no R locks!)

4/25/17 CS 564: Database Management Systems 22

(not in the official course syllabus)

Phantom Problem

T1: Scan Sailors for the oldest sailor for ratings 1 and 2

— Assume that at the start the oldest sailor with rating 1 has age 80, oldest sailor with rating
2 has age 90, and the second oldest sailor with rating 2 is 85 years old

— T1 identifies pages with sailors having a rating 1, and locks these pages. It computes the
first tuple (rating = 1, oldest-age = 80)

— T1 then gets ready to lock pages with sailor tuples with rating 2. However, before it can
get started, T2 arrives

T2: Inserts a tuple with rating 1 and age 99, and deletes the oldest sailor with rating
2 (whose age is 90)

— The new tuple is inserted into a page that doesn’t have a sailor with rating 1 or 2, and is
not locked by T1

— T2 commits

T1 now resumes and completes looking at sailors with rating 2.

The final answer produced by T1 is (1,80) (2,85) does not correspond to either of the
two serial schedules:

- T1->T2 Answer: (1, 80), (2, 90)

- T2->T1 Answer: (1, 99), (2, 85)

4/25/17 CS 564: Database Management Systems 23

(not in the official course syllabus)

Transaction and Constraints

Create Table A (akey, bref, ...
(. o) Q: How to insert the first

Create Table B (bkey";. éff'ef,) tuple, either in A or B?

* Solution:
— Insert tuples in the same transaction
— Defer the constraint checking

* SQL constraint modes

— DEFERRED: Check at commit time.
— IMMEDIATE: Check immediately

4/25/17 CS 564: Database Management Systems 24

The ACID Properties

- - -m Atomicity: All actions in the Xact
Xact. Mgmt. happen, or nhone happen.

(logging)
- . -m Consistency: Consistent DB +
consistent Xact = consistent DB

o .m |solation: Execution of one Xact is

882&%?“3’ Ctrl. isolated from that of other Xacts.

o - .m Durability: If a Xact commits, its

Recovery Mgmt. effects persist.
(WAL, ...)

4/25/17 CS 564: Database Management Systems

25

