
TRANSACTION	MANAGEMENT
[CH 16]

Spring	2017

4/25/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 1

4/25/17 CS 564: Database Management Systems 2

Transaction	Management
Bank Balance : $100

Sufficient funds?

New balance: $75

Bank Balance : $75!

Read Balance: $100
You

Pay $25
Yes

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

4/25/17 CS 564: Database Management Systems 3

Transaction	Management

• Inconsistency
– Interleaving	actions	of	different	user	programs
– System	crash/user	abort/…

• Provide	the	users	an	illusion	of	a	single-user	system
– Could	insist	on	admitting	only	one	query	into	the	system	at	any	time

• lower	utilization:	CPU/IO	overlap
• long	running	queries	starve	other	queries

Bank Balance : $100

Sufficient funds?Sufficient funds?

New balance: $75New balance: $75

Bank Balance : $75!

Read Balance: $100 Read Balance: $100
You Your Significant Other

Pay $25
Yes

Pay $25
Yes

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

4/25/17 CS 564: Database Management Systems 4

What	is	a	Transaction?
• Collection	of	operations	that	form	a	single	logical	unit

– A	sequence	of	many	actions	considered	to	be	one	atomic	unit	of	work

• Logical	unit:	
– begin	transaction		….	(SQL)	end	transaction	

• Operations:	
– Read	(X),	Write	(X):	Assume	R/W	on	tuples	(can	be	relaxed)
– Special	actions:	begin,	commit,	abort

• Desirable	Property:	Must	leave	the	DB	in	a	consistent	state
– (DB	is	consistent	when	the	transaction	begins)
– Consistency:	DBMS	only	enforces	ICs	specified	by	the	user
– DBMS	does	not	understand	any	other	semantics	of	the	data

4/25/17 CS 564: Database Management Systems 5

The	ACID Properties

User

TM
Xact. Mgmt.
(logging)

RM
Recovery Mgmt.
(WAL, …)

CC
Concurrency Ctrl.
(locking)

Begin
Read (A);
A = A – 25;
Write (A);
Read (B);
B = B + 25;
Write (B);

Commit

• Atomicity:	All	actions	in	the	Xact
happen,	or	none	happen.

• Consistency:	Consistent	DB	+	consistent	
Xact⇒ consistent	DB

• Isolation:	Execution	of	one	Xact is	
isolated	from	that	of	other	Xacts.

• Durability:	If	a	Xact commits,	its	effects	
persist.

4/25/17 CS 564: Database Management Systems 6

Schedules
• Schedule:	An	interleaving	of	actions	from	
a	set	of	Xacts,	where	the	actions	of	any	
one	Xact are	in	the	original	order.
– Actions	of	Xacts as	seen	by	the	DB
– Complete	schedule	:	each	Xact ends	in	
commit	or	abort

– Serial	schedule	:	No	interleaving	of	actions	
from	different	Xacts.

• Initial	State	+	Schedule	® Final	State

T1 T2
begin
R(A)
W(A)

begin
R(B)
W(B)

R(C)
W(C)

commit
abort

Tim
e

4/25/17 CS 564: Database Management Systems 7

Acceptable	Schedules
• One	sensible	“isolated,	consistent”	schedule:

– Run	Xacts one	at	a	time	(serial	schedule)

• Serializable schedules:
– Final	state	is	what	some complete serial	schedule	of	
committed transactions	would	have	produced.

– Can	different	serial	schedules	have	different	final	states?
• Yes,	all	are	“OK”!

– Aborted	Xacts?
• ignore	them	for	a	little	while	(made	to	‘disappear’	using	logging)

– Other	external	actions	(besides	R/W	to	DB)
• e.g.	print	a	computed	value,	fire	a	missile,	…
• Assume	(for	this	class)	these	values	are	written	to	the	DB,	and	can	be	
undone

4/25/17 CS 564: Database Management Systems 8

Serializability	Violations
• @Start	(A,B)	=	(1000,	100)

– End	(990,	210)

• T1→T2:	
– (900,	200)	→	(990,	220)

• T2→T1:	
– (1100,	110)	→	(1000,	210)

T1: Transfer
$100 from A to B

T2: Add 10%
interest to A & B

begin
begin

R(A) /A -= 100
W(A)

R(A) /A *= 1.1
W(A)
R(B) /B *= 1.1
W(B)
commit

R(B) /B += 100
W(B)
commit

n W-R conflict: Dirty read
n Could lead to a non-

serializable execution
n Also R-W and W-W conflicts

Database
Inconsistent

4/25/17 CS 564: Database Management Systems 9

More	Conflicts
• RW	Conflicts	(Unrepeatable	Read)

– RT2(X)	→	WT1(X), T1	overwrites	what	T2	read.
– RT2(X)	→	WT1(X)	→	RT2(X).		T2	sees	a	different	X	value!

• WW	Conflicts	(Overwriting	Uncommited Data)
– T2	overwrites	what	T1	wrote.

• E.g.	:	Students	in	the	same	group	get	the	same	project	grade.
• TP:	W (X=A),	W (Y=A)	 TTA:	W (X=B),	W (Y=B)
• WP(X=A) →WTA(X=B) →WTA(Y=B) →WP(Y=A)
[Note:	no	reads]

– Usually	occurs	in	conjunction	with	other	anomalies.
• Unless	you	have	“blind	writes”.

4/25/17 CS 564: Database Management Systems 10

Now,	Aborted	Transactions
• Serializable schedule:	Equivalent	to	a	serial	
schedule	of	committed Xacts.
– as	if	aborted	Xacts never	happened.

• Two	Issues:
– How	does	one	undo	the	effects	of	a	Xact?

• We’ll	cover	this	in	logging/recovery
– What	if	another	Xact sees	these	effects??

• Must	undo	that	Xact as	well!

4/25/17 CS 564: Database Management Systems 11

Cascading	Aborts
• Abort	of	T1	requires	abort	of	T2!

– Cascading	Abort

T1 T2
begin
R(A)
W(A)

begin
R(A)
W(A)

abort commit
abort

4/25/17 CS 564: Database Management Systems 12

Cascading	Aborts
• Abort	of	T1	requires	abort	of	T2!

– Cascading	Abort

T1 T2
begin
R(A)
W(A)

begin
R(A)
W(A)

abort

n Consider commit of T2
n Can we undo T2?

n Recoverable schedule: Commit only after all
xacts that supply dirty data have committed.

commit
abort
commi
t

commit

4/25/17 CS 564: Database Management Systems 13

Cascading	Aborts T1 T2
begin
R(A)
W(A)

begin
R(A)
W(A)

abort commit
abort
commi
t

commit

n ACA (avoids cascading abort) schedule
n Transaction only reads committed data
n One in which cascading abort cannot arise.
n Schedule is also recoverable

abort

Commit

W(A)

commit

begin

R(A)

begin

W(A)

R(A)

T2T1

4/25/17 CS 564: Database Management Systems 14

Locking:	A	Technique	for	C.	C.
• Concurrency	control	usually	done	via	locking.
• Lock	info	maintained	by	a	“lock	manager”:

– Stores	(XID,	RID,	Mode)	triples.	
• This	is	a	simplistic	view;	suffices	for	now.

– Mode	Î {S,X}
– Lock	compatibility	table:

-- S X

--
S

X

√

√

√

√ √

√
n If a Xact can’t get a lock

n Suspended on a wait queue
n When are locks acquired?

n Buffer manager call!

4/25/17 CS 564: Database Management Systems 15

Two-Phase	Locking	(2PL)
• 2PL:

– If	T	wants	to	read	(modify)	an	object,	first	obtains	an	S	(X)	
lock

– If	T	releases	any	lock,	it	can	acquire	no	new	locks!
– Gurantees serializability!	Why?

n Strict 2PL:
n Hold all locks until end of Xact
n Guarantees serializability, and ACA

too!
n Note ACA schedules are always

recoverable Time

lo
ck

s

growing phase Shrinking
phase

lock point

4/25/17 CS 564: Database Management Systems 16

T1 T2

begin
begin

X(A)
R(A)
W(A)

Schedule	with	Locks
T1 T2

begin
begin

X(A)
R(A)
W(A)

X(A) – Wait!
X(B)
R(B)
W(B)
Ux(A), Ux(B)/commit

R(A)
W(A)
…

T1: Transfer
$100 from A to B

T2: Add 10%
interest to A & B

begin
begin

R(A) /A -= 100
W(A)

R(A) /A *= 1.1
W(A)
R(B) /B *= 1.1
W(B)
commit

R(B) /B += 100
W(B)
commit

4/25/17 CS 564: Database Management Systems 17

Deadlocks

• Deadlocks	can	cause	the	system	to	wait	forever.

• Need	to	detect	deadlock	and	break,	or	prevent	deadlocks

• Simple	mechanism:	timeout	and	abort

• More	sophisticated	methods	exist

XT1(B), XT2(A), ST1(A), ST2(B)
T1 T2

A

B

4/25/17 CS 564: Database Management Systems 18

Precedence	Graph
T1: Xfer.

$100 from
A to B

T2: Add
10%

interest
begin

begin
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
commit

R(B)
W(B)
commit

• Precedence (or	Serializability)	graph:
– Nodes	=	Committed	Xacts
– Conflicts	=	Arcs T1 T2

n Conflict equivalent:
n Same sets of actions
n Conflicting actions in the same order

n Conflict serializable: Conflict equivalent to a
serial schedule

4/25/17 CS 564: Database Management Systems 19

Schedule	with	Locks
T1 T2

begin
begin

X(A)
R(A)
W(A)

X(A) – Wait!
X(B)
R(B)
W(B)
Ux(A), Ux(B)/commit

R(A)
W(A)
…

T1: Transfer
$100 from A to B

T2: Add 10%
interest to A & B

begin
begin

R(A) /A -= 100
W(A)

R(A) /A *= 1.1
W(A)
R(B) /B *= 1.1
W(B)
commit

R(B) /B += 100
W(B)
commit

T1 T2
T1 T2

4/25/17 CS 564: Database Management Systems 20

Conflict	Serializability	&	Graphs

• Why	Strict	2PL?
– Guarantees	ACA

• read	only	committed	values
– How?	 Write	locks	until	EOT

• No	WW	or	WR	=>	on	abort	replace	original	value

Theorem: A schedule is conflict serializable iff
its precedence graph is acyclic
Theorem: 2PL ensures that the precedence
graph will be acyclic

4/25/17 CS 564: Database Management Systems 21

Deadlocks

• Deadlocks	can	cause	the	system	to	wait	forever.
• Need	to	detect	deadlock	and	break,	or	prevent	deadlocks
• Detect	deadlock

– Draw	a	lock	graph.	Cycles	implies	a	deadlock
• Alternative	ways	of	dealing	with	deadlock

– Break	Deadlock
• On	each	lock	request	“update	the	lock	graph”.	If	a	cycle	is	detected,	abort	
one	of	the	transactions.	The	aborted	transaction	is	restarted	after	waiting	for	
a	time-out	interval.	

– Prevent	deadlock
• Assign	priorities	to	the	transactions.	If	a	transaction,	T1,	requests	a	lock	that	
is	being	held	by	another	transaction,	T2,	with	a	lower	priority,	then	T1	
“snatches”	the	lock	from	T2	by	aborting	T2	(which	frees	up	the	lock	on	the	
resource).	T2	is	then	restarted	again	after	a	time-out.

XT1(B), XT2(A), ST1(A), ST2(B)
T1 T2

A

B

4/25/17 CS 564: Database Management Systems 22

Transaction	Support	in	SQL
• Transaction	boundary

– Begin	implicitly,	or	end	by	Commit	work,	Rollback	work
– For	long	running	transactions:	Savepoint

• Transaction	characteristics
– Diagnostic	size:	#	error	messages…
– Access	mode:	Read	only,	Read	Write
– Isolation	level

• Serializable:	default	
• Repeatable	reads:

– Read	only	committed	records
– Between	two	reads	by	the	same	Xact,	no	updates	by	another	Xact

• Read	committed
– Read	only	committed	records

• Read	uncommitted

(long-term R/W locks on phantoms too)
(long-term R/W locks on real objects)

(long-term W locks/short-term R locks)

(Read only, no R locks!)

(not in the official course syllabus)

4/25/17 CS 564: Database Management Systems 23

Phantom	Problem
• T1:	Scan	Sailors	for	the	oldest	sailor	for	ratings	1	and	2

– Assume	that	at	the	start	the	oldest	sailor	with	rating	1	has	age	80,	oldest	sailor	with	rating	
2	has	age	90,	and	the	second	oldest	sailor	with	rating	2	is	85	years	old

– T1	identifies	pages	with	sailors	having	a	rating	1,	and	locks	these	pages.	It	computes	the	
first	tuple	(rating	=	1,	oldest-age	=	80)

– T1	then	gets	ready	to	lock	pages	with	sailor	tuples	with	rating	2.	However,	before	it	can	
get	started,	T2	arrives

• T2:	Inserts	a	tuple	with	rating	1	and	age	99,	and	deletes	the	oldest	sailor	with	rating	
2	(whose	age	is	90)

– The	new	tuple	is	inserted	into	a	page	that	doesn’t	have	a	sailor	with	rating	1	or	2,	and	is	
not	locked	by	T1

– T2	commits
• T1	now	resumes	and	completes	looking	at	sailors	with	rating	2.
• The	final	answer	produced	by	T1	is	(1,80)	(2,85)	does	not	correspond	to	either	of	the	

two	serial	schedules:
– T1	->	T2					 Answer:	(1,	80),	(2,	90)
– T2	->	T1 Answer:	(1,	99),	(2,	85)

(not in the official course syllabus)

4/25/17 CS 564: Database Management Systems 24

Transaction	and	Constraints	

• Solution:
– Insert	tuples	in	the	same	transaction	
– Defer	the	constraint	checking

• SQL	constraint	modes
– DEFERRED:	Check	at	commit	time.
– IMMEDIATE:	Check	immediately

Create Table A (akey, bref, …)

Create Table B (bkey, aref, …)
Q: How to insert the first
tuple, either in A or B?

(not in the official course syllabus)

4/25/17 CS 564: Database Management Systems 25

n Atomicity: All actions in the Xact
happen, or none happen.

n Consistency: Consistent DB +
consistent Xact ⇒ consistent DB

n Isolation: Execution of one Xact is
isolated from that of other Xacts.

n Durability: If a Xact commits, its
effects persist.

The	ACID Properties

User

TM
Xact. Mgmt.
(logging)

RM
Recovery Mgmt.
(WAL, …)

CC
Concurrency Ctrl.
(locking)

