
LOGGING	AND	RECOVERY
[CH 18]

Spring	2017

5/2/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013 1

5/2/17 CS 764: Database Management Systems 2

Motivation
• Atomicity:	

– Transactions	may	abort	(“Rollback”).

• Durability:
– What	if	DBMS	stops	running?		(Causes?)

• Desired	Behavior	after	system	restarts:
– T1,	T2	&	T3	
should	be	durable.

– T4	&	T5 should	be
aborted

T1
T2
T3
T4
T5

crash

AB
CB

CB

B

B

5/2/17 CS 764: Database Management Systems 3

Buffer	Pool:	Sharing	&	Writing

No Force
n Crash before a page is flushed to disk
n Soln: Force a short summary @ commit

(logs). Use this to REDO

Force
n Poor response time, but durable

Fo
rc

e

Steal
Ye

s
N

o

No Yes

Steal
n Page being stolen (and flushed) was modified by an

uncommitted Xact T
n If T aborts, how is atomicity enforced?
n Soln: Remember old value (logs). Use this to UNDO

No Steal
Poor throughput,

but works

Desired

Trivial

5/2/17 CS 764: Database Management Systems 4

Basic	Idea:	Logging
• Record	information,	for	every	change,	in	a	log.

– Sequential	writes	to	log	(put	it	on	a	separate	disk).

– Stored	in	stable	storage	to	survive	system	crash
• disk	mirroring

– Each	record	has	a	log	sequence	number	(LSN)

– Log	record	contains:	

• <prevLSN,	XID,	type,	…	>
• and	additional	control	info	(which	we’ll	see	soon)

• Note:	the	log	records	for	a	transaction	are	chained	by	prevLSN

5/2/17 CS 764: Database Management Systems 5

Write-Ahead	Logging	(WAL)
• The	Write-Ahead	Logging Protocol:

1. Must	force the	log	record for	an	update	before the	
corresponding	data	page gets	to	disk.

2. Must	write	all	log	records for	a	Xact before commit.

• #1	guarantees	Atomicity.
• #2	guarantees	Durability.
• Exactly	how	is	logging	(and	recovery!)	done?

– We’ll	study	the	ARIES	algorithms
• breakthrough	in	recovery	algorithms!	
• repeating	history	paradigm
• fine-granularity	locking	and	logical	logging

5/2/17 CS 764: Database Management Systems 6

WAL	&	the	Log
• Log	Sequence	Number	(LSN).

– Unique	and	always	increasing.
• Each	data	page	contains	a pageLSN.

– The	LSN	of	the	most	recent	log	record																																													
that	updated	the	page

• System	keeps	track	of	flushedLSN.
– The	max	LSN	flushed	so	far.

• WAL:		Before a	page	is	written,
– pageLSN £ flushedLSN

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM

5/2/17 CS 764: Database Management Systems 7

Log	Records Possible	log	record	types:
• Update
• Commit
• Abort
• End	(end	of	commit	or	abort)
• Compensation	Log	Rec.	(CLRs)

– For	UNDO	actions.	When?

– Contains	undoNextLSN

• Reverse	chain	of	update	logs

– Contains	before-image

prevLSN
XID
type

length
pageID

offset
before-image
after-image
…

LogRecord fields:

update
records
only

A3A2A1 CLR3 CLR2 CLR1

5/2/17 CS 764: Database Management Systems 8

Other	Log-Related	State
• Transaction	Table:	One	entry	per	active	Xact.

– Contains	
• XID:	Transaction	identifier

• status:	running/commited/aborted

• lastLSN:	LSN	of	the	most	recent	log	rec.	for	this	Xact.

• Dirty	Page	Table:	One	entry	per	dirty	page	in	BP
– Contains	recLSN:- LSN	of	the	log	record	that	first caused	the	
page	to	be	dirty.

• Starting	point	for	REDO

5/2/17 CS 764: Database Management Systems 9

Checkpointing
• Checkpoint: Snapshot	of	the	database

– Minimize	recovery	time

• Write	to	log:
– begin_checkpoint record:		Indicates	when	chkpt began.

– end_checkpoint record:
• Record	Xact table	and	D.P.T.

• Tables	accurate	only	as	of	the	time	of	the	begin_checkpoint record

• No	attempt	to	force	dirty	pages	to	disk

• This	is	a	fuzzy	checkpoint

– Store	LSN	of	chkpt record	in	a	safe	place	(master record).

5/2/17 CS 764: Database Management Systems 10

Normal	Execution	of	an	Xact
• Series	of	reads	&	writes,	followed	by	commit	or	abort.

– Updates	are	“in	place”:	i.e.,	data	on	disk	is	overwritten

– We	will	assume	that	write	is	atomic	on	disk.

• In	practice,	additional	details	to	deal	with	non-atomic	writes.

• Strict	2PL.	
• STEAL,	NO-FORCE	buffer	management,	with	Write-Ahead	
Logging.

5/2/17 CS 764: Database Management Systems 11

The	Big	Picture:	What’s	Stored	Where

DB

Data pages
each
with a
pageLSN

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

LOG

master record

5/2/17 CS 764: Database Management Systems 12

Crash	Recovery:	Big	Picture
Ø Start from a checkpoint (found via

master record).

Ø Three phases:
– Analysis: Since checkpoint, find

§ Xacts that must be aborted (losers)

§ dirty pages at time of crash
(conservative estimate)

– REDO all actions.

§ repeat history

– UNDO effects of losers

Oldest log rec.
of Xact active at
crash

Smallest recLSN
in dirty page
table after
Analysis

Last chkpt

CRASH

A R U

5/2/17 CS 764: Database Management Systems 13

Recovery:	The	Analysis	Phase
• Compute	

– Set	of	dirty	pages	(conservative)	

– Uncommitted	transactions	at	the	crash	point

• Scan	log	forward	from	checkpoint.

– End	record:	Remove	Xact from	Xact table.

– Other	records:	Add	Xact to	Xact table,	set	lastLSN=LSN

– Commit	record:	change	Xact status	to	commit.

– Update	or	CLR	record:	If	P	not	in	Dirty	Page	Table,

• Add	P	to	D.P.T.,	set	its	recLSN=LSN.

5/2/17 CS 764: Database Management Systems 14

Recovery:	The	Analysis	Phase

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

prevLSNs

XACT LastLSN
T2 60
T3 50

Page recLSN
P1 50
P3 20
P5 10

Transaction Table

D. P. T.

5/2/17 CS 764: Database Management Systems 15

Recovery:	The	REDO	Phase
• Repeat	History to	reconstruct	state	at	crash:

– Reapply	all updates	(even	of	aborted	Xacts!),	redo	CLRs
– Bring	the	database	to	the	same	state	as	@	crash

• Scan	forward	from	log	record	containing	smallest	recLSN
in	D.P.T.	
For	each	update	log	record	or	CLR,	REDO the	action	unless	we	can	
verify	that	the	change	has	already	been	written	to	disk:
– Affected	page	is	not	in	the	Dirty	Page	Table,	or
– Affected	page	is	in	D.P.T.,	but	LSN	<	recLSN,	or

•
– LSN	£ pageLSN (in	DB)

•• requires fetching the page

• update was propagated to disk

5/2/17 CS 764: Database Management Systems 16

To	REDO	An	Action
• Reapply	logged	action.
• Set	pageLSN	to	LSN.		No	additional	logging!
• Use	of	CLRs	ensures	that	no	change	is	ever	carried	out	
twice	on	the	disk	copy	of	an	object.
– For	every	“DO”	there	is	one	and	only	one	“UNDO”

• At	the	end	of	REDO
– Write	END	log	recs	for	all	commited	Xacts.
– Remove	committed	Xacts	from	the	Xact	table.

5/2/17 CS 764: Database Management Systems 17

Recovery:	The	REDO	Phase

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

XACT LastLSN
T2 60
T3 50

Page recLSN
P1 50
P3 20
P5 10

Transaction Table

D. P. T.

5/2/17 CS 764: Database Management Systems 18

Recovery:	The	UNDO	Phase
ToUndo =	{lastLSNs of	all	“loser”	Xact}
Repeat:

– Choose	largest	LSN	among	ToUndo.
– If	this	LSN	is	a	CLR	and	undonextLSN==NULL

• Write	an	End	record	for	this	Xact.
– If	this	LSN	is	a	CLR,	and	undonextLSN !=	NULL

• Add	undonextLSN to	ToUndo
– Else	this	LSN	is	an	update.		Undo	the	update,	write	a	
CLR,	add	prevLSN to	ToUndo.

Until	ToUndo is	empty.

Abort: special
case of UNDO

5/2/17 CS 764: Database Management Systems 19

Recovery:	The	UNDO	Phase

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

XACT LastLSN
T2 60
T3 50

Page recLSN
P1 50
P3 20
P5 10

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)
85 T3 End
90 CLR: Undo T2, LSN 20, (null)
95 T2 End

5/2/17 CS 764: Database Management Systems 20

Example:	Crash	During	Restart!
begin_checkpoint, end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART
CLR: Undo T2 LSN 60
CLR: Undo T3 LSN 50, T3 end
CRASH, RESTART

LSN LOG
00,05

10
20
30

40,45
50
60

70
80,85

undonextLSN

XACT LastLSN
T2 70

Page recLSN
P1 50
P3 20
P5 10

REDO: 10 to 85
UNDO:
• Undo 70, CLR
• Undo 20
• Take a ckpt

CLR: Undo T2 LSN 20, T2 end90

5/2/17 CS 764: Database Management Systems 21

Additional	Crash	Issues
• How	do	you	limit	the	amount	of	work	in	REDO?

– Flush	asynchronously	in	the	background.
– Watch	“hot	spots”!

• How	do	you	limit	the	amount	of	work	in	UNDO?
– Avoid	long-running	Xacts.

5/2/17 CS 764: Database Management Systems 22

Media	Recovery

• Used	for	disaster	recovery.
• Based	on	periodically	making	a	copy	of	the	
database
– similar	to	a	fuzzy	checkpoint

• Apply	logs	to	the	copy	of	the	object	in	the	media	
to	bring	it	up-to-date

5/2/17 CS 764: Database Management Systems 23

Summary	of	Logging/Recovery
• Atomicity	&	Durability.
• WAL	to	allow	STEAL/NO-FORCE	
• Checkpointing:		A	quick	way	to	limit	the	amount	of	log	to	scan	on	

recovery.	
• Recovery	works	in	3	phases:

– Analysis:	Forward	from	checkpoint.
– Redo:	Forward	from	oldest	recLSN.
– Undo:	Backward	from	end	to	first	LSN	of	oldest	Xact alive	at	crash.

• Upon	Undo,	write	CLRs.
• Redo	“repeats	history”:	Simplifies	the	logic!
• Interested	in	the	history	of	ARIES:

– http://www.sigmod.org/publications/ds-collection/discs-
new/2000.1/out/slides/vldb/repeatinghistorc/index.pdf

