CS564

BitWeaving: Fast Scans for
Main Memory Data Processing

Yinan L1 and Jignesh M. Patel

University of Wisconsin-Madison

o

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

The Problem

* Need interactive analysis (complex SQL
queries) run on large volumes of data

 New world 1n which business decisions
are made by analytical engines

— Speed is king

A common approach

* Disks are slow (yes — even flash 1s slow), but
memory 1s fast

 Memory densities are increasing and price 1s
dropping

Crucialmemory -16 GB: 2 x 8 GB - SO DIMM 204-pin - DDR3

Mfg. Part: CT2KIT102464BF160B | CDW Part: 2530098 | UNSPSC: 43201402

1 8. 6.8 & §F

Read 1 review = Write a review

crucial

Availability: 2-4 days
I t will ship within 4
. e Memory
e 16GB:2x8GB 1 $161.99
& & / e SO DIMM 204-pin Advertised Price
o DDR3
e / e 1600 MHz / PC3-12800 Add To Cart

e CL11
e 135V
e unbuffered

Hence the rise of “in-memory” data
processing fo alytics

Research Problem

 We know that for data analytics, using
column stores 1s faster.

* But, can we go even faster than
traditional column stores?

* Insights: Need to think about how the
CPU sees the “data” and run data
operations at the speed of the CPU

— Recall CPU is the fastest component in the system

Column-store scans:

Naive method
 An example SQL scan query:

S COUNT (*)
BREMSEC U S -omer
WHERE age BETWEEN 20 AND 24

 An naive implementation:

@elinite = 0
EEeRFZECH vealue v 1n column age
IR0 <= v and v <= 24)
@I o=

Complexity: O(n). Need to run O(n) CPU instructions.

Better method?

Encoded column values

 Domain size of column 1s typically small
— Gender: Male / Female SIS

— Age: 0-122 KD
— States: 50 states Lo

« DBMSs converts native column values to
codes.

* Codes only use as many bits as are
needed for fixed-length encoding.

WISCONSIN ;

NNNNNNNNNNNNNNNNNNNNN -MADISON

Motivation

SlEEEE count (*)
BREMNECuUsStomer
WHERE age BETWEEN 20 AND 24 m

et = 0;
BEESAEH value v 1n column age
IR —— v and v <= 24)
CHORCT otk s

CPU register

Code Code Code Code Code Code

SIMD word size: 256 bits Word size: A4 bits Code size: 7 bits
Intra-cycle parallelism!
Whwsconsiy L 7

Column-store scans:
BitWeaving method

 An example SQL scan query:

S COUNT (*)
BREMSEC U S -omer
WHERE age BETWEEN 20 AND 24

 An BitWeaving implementation:

@eunt. = 0;

BeESRTACHN i rolUp Of codes v 1n column age
gz=lEtiatse 20 <= v <= 24 in parallel
Meeeate count;

 Complexity: O(n/w). w: gourp size.

WISCONSIN :

NNNNNNNNNNNNNNNNNNNNN -MADISON

BitWeaving

* In this lecture, we introduce BitWeaving
— A fast scan method
— for column stores

* Fully exploits intra-cycle parallelism

 How: By “gainfully” using every bit in
every processor word.

WISCONSIN :

IIIIIIIIIIIIIIIIIIIII -MADISON

BitWeaving: Two Flavors

BitWeaving/H (Horizontal bit organization)

0

0

1

0

1

0

1

0

0

A

BitWeaving/V (Vertical bit organization)

0 110 0 1 1 0 1 1 /<
O 0O 1, 0 0|0 1 1,00 /<
1 O 01/ 0|0 1 0O 0 O /<

@WISCONSIN

NNNNNNNNNNNNNNNNNNNNN -MADISON

10

Framework

 Targets single-table scans

* Column-scalar scan: scan on a single column

— produce a result bit vector, with one bit for each
input tuple to indicate the matching tuples

 Complex predicates in the scan: logical AND
and OR operations on these result bit vectors

WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON 1 1

Framework - Example

SIEEERGTENCOUNT () FROM Customer
WHERE age BETWEEN 20 AND 24
AND gender = Male

AND state = Wisconsin
Result bit vector
1
*
Result bit vector [AND J Result bit vector
T nnni
/ \
Result bit vector Result bit vector [state]
/ \
gender

WISCONSIN :

UNIVERSITY OF WISCONSIN-MADISON

Framework - Example

SEEECNERCOUNT () FROM Customer
WHERE age BETWEEN 20 AND 24
AND gender = Male
AND state = Wisconsin

Result bit vector

[11 |
*
Result bit vector [AND] Result bit vector

Result bit vector Result bit vector [state]
/ \ BitWeaving/V

gender

UNWE!S,SW(O;V%M%IIS\O! BitWeaving/V BitWeaving/V

Framework - Example

SIEEERGTENCOUNT () FROM Customer
WHERE age BETWEEN 20 AND 24
AND gender = Male
AND state = Wisconsin

Mixing of BitWeaving/V BitWeaving/H columns

Result bit vector

Il |

: 3
Result bit vector [AND J Result bit vector

.

Result bit vector Result bit vector state]
I]]]]]
BitWeaving/V

gender

WISCPNSIN BitWeaving/V BitWeaving/H

Outline

* BitWeaving/H
* BitWeaving/V
* Conclusion

WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

15

BitWeaving/H

* Storage layout
— Packs codes “horizontally” into processor words
— Uses an extra bit (delimiter bit) in each code
— Staggers codes across words 1inside a segment

* Column-scalar scan
— Parallel predicate evaluation on packed codes

WISCONSIN i

IIIIIIIIIIIIIIIIIIIII -MADISON

BitWeaving/H - Example

Code size: 3 + 1 bits (add an extra bit, called delimiter bit)

Segment 1

F ——————————

cl c2 c3 c4 c5 c6 c/ c8 9 | cl0| cl11 | c12 | c13 | c1l4 | c15| c16 | k17 | c18 | c19

_____ Predicate evaluation is done on the 4 codes in parallel

r
; Segment 1 I
word 1 1l | o c3|! <5? 1000100000001000
+—>
i
<57
Q word 2 o2 | 6 | c10| c14 : 5 1000000000000000
(g0)
3 |
(V]
> e <a5e? 0000100010001000
=) |word 3 3 | o7 fertfets il o 2
= I
Q | <57
<5+
= aral a | 8 | c1l 16 1000000000001000
I
e Y
:I, Y

Word size
UNlVE!SISTYgV%§1§AIDISON (1 6 b its) 17

BitWeaving/H Example: |
Less Than Predicate (< 5) @il

cl=1 CH=/ c9=6

X =(c,c564¢,;) || 0001 || 0111 || 0110 || 0010

Only use 3 instructions! QS

(Y+(X®©MI1))AM?2
MI=0111011101110111
M2 = 1000 1000 1000 1000

Works for arbitrary code sizes & word sizes!

18

BitWeaving/H — Example...

Segment 1

cl c2 c3 c4 c5 c6 c/ c8 9 | cl0| cl11 | c12 | c13 | c1l4 | c15| c16 | k17 | c18 | c19

word 1 ¢1|cs|c9 3|l <5? 1000100000001000 | >>0 1000100000001000

word 2 2 | 6 | c10 ! c14 1000000000000000 | >>1 0100000000000000

?
word 3 3| 7 | c11 | 15 <50 0000100010001000 | >>2 0000001000100010

o

1000000000001000 | >>3 0001000000000001

1101101000101011

Word size Efficient production of the result

(16 bits) bit vector with this layout ! 19

UNIVERSITY OF WISCONSIN-MADISON

o

Outline

 BitWeaving/V
* Conclusion

WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

20

BitWeaving/V

* Storage layout

— Bit-level columnar data organization, 1.e. its
like a bit-level columnar store.

e Column-scalar scan

— Predicate evaluation 1s converted to logical
computation on these “words of bits”

WISCONSIN 4

IIIIIIIIIIIIIIIIIIIII -MADISON

BitWeaving/V — Storage Layout

cl0 | c11 | c12 | c13 | cl1l4 | c15 | c16 | c17 | c18 | c19

glitc? ca3,c4, co (36 c/,c8
Codes M= 6,9, 7. 1, 0

____________________ The first (most significant) bits
:Wordl 111 olloll1llollo!lo of the 8 codes

Word 2 oll1/0ll1 0110l 0 The second bits of the 8 codes

o)
=
o
w

[= |
[EEY

| |
o

) | |
[HEY

) | |
=

) | |
o

) - |
=

- |
o

) - |
o

T |

The third bits of the 8 codes

The last (least significant) bits
of the 8 codes

ISCONSIN Segment 1 g

UNIVERSITY OF WISCONSIN-MADISON

BitWeaving/V — Column-scalar
Scan

Column codes: Constant
10,12, 3, 6, 9, 7, 1, 0 5 a<>5?

X xX?2?2 % ?2 2?27

XXv?RX?VV

XX vVRXX VvV

)
O
(q°)
-3
(%)
>
S
o
=
)
=

XX vVRXX VV

<

1
1
1
1
1
1
1
1
1
- o o o o O O O e e . .

Segment 1

The layout of the segment exactly matches the
ISCONSIN access pattern of column-scalar scans 5

BitWeaving/V — Early pruning

Column codes: Constant
Wiz 3 6. 9, 7.1, 0 = a<>5?

Xxx? 2?2?2222

XXV ?RR?VV

XX vVRXX VvV

R vV Vv

I
1
1
1
1
1
1
1
L
_— e o o o o o e e e e e .

Early Pruning: terminate the predicate evaluation on

a segment, when all results have been determined.

e Conclusions

WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

Outline

25

Conclusions

BitWeaving: A new method to use all the bits in a
processor word gainfully.

Two flavors: BitWeaving/H and BitWeaving/V.

BitWeaving are faster than state-of-the-art scan
methods, in some cases by an order of magnitude.

Resource

* Blog article:
— http://bigfastdata.blogspot.com/

* Paper:

BitWeaving: Fast Scans for Main Memory
Data Processing. In SIGMOD 2013.

WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

27

