Towards Cost-Effective Storage Provisioning for DBMSs
(Extended Version)

Ning Zhang #1, Junichi Tatemura *2, Jignesh M. Patel #3, Hakan Hacigumus *4

Computer Sciences Department, University of Wisconsin-Madison, USA
1 nzhang@cs.wisc.edu 3 jignesh@cs.wisc.edu
2 tatemura@sv.nec-labs.com 4 hakan@sv.nec-labs.com

ABSTRACT

Data center operators face a bewildering set of choices when considering how to provision resources on machines with complex I/O subsystems. Modern I/O subsystems often have a rich mix of fast, high performing, but expensive SSDs sitting alongside with cheaper but relatively slower (for random accesses) traditional hard disk drives. The data center operators need to determine how to provision the I/O resources for specific workloads so as to abide by existing Service Level Agreements (SLAs), while minimizing the total operating cost (TOC) of running the workload, where the TOC includes the amortized hardware costs and the run time energy costs. The focus of this paper is on introducing this new problem of TOC-based storage allocation, cast in a framework that is compatible with traditional DBMS query optimization and query processing architecture. We also present a heuristic-based solution to this problem, called DOT. We have implemented DOT in PostgreSQL, and experiments using TPC-H and TPC-C demonstrate significant TOC reduction by DOT in various settings.

1. INTRODUCTION

The move towards cloud computing for data intensive computing presents unique opportunities and challenges for data center (DC) operators. One key challenge that DC operators now face is how to provision resources in the DC for specific customer workloads. The focus of this paper is on one aspect of this vast problem – namely how to provision resources in the I/O subsystem. We note that I/O subsystems are often the most expensive components of high-end data processing systems. For example, in the current highest performing Oracle TPC-C configuration [2], the cost of the storage subsystem is $23.9 million compared to $5.2 million for the remaining server. (We acknowledge that looking beyond the I/O subsystem is important, but that is beyond the scope of this paper.)

To fully understand the challenge, consider the dilemma of a modern DC operator, again only focusing on the I/O subsystem. I/O subsystems have gotten incredibly complicated over the last few years primarily due to the disruptive introduction of flash solid state drives (SSDs). Thus it is common for DCs to have servers that have a rich I/O subsystem with a mix of traditional hard disk drives (HDDs) typically in some RAID configuration, and some SSDs. To make matters worse, since the price and the performance characteristics of these I/O devices vary widely, it is not uncommon to find server configurations that have a diverse I/O subsystems with various types of storage devices. For example, a server may have a RAID HDD subsystem, and a high-end fast but expensive SSD (e.g. Fusion IO), and a low-end slow but cheaper SSD (e.g. a Crucial or Intel SSD). DC operators have to make the decision to purchase the server boxes right upfront, and later have to deal with provisioning these resources on (ever changing) workloads. In addition, multiple different workloads may share resources on the same physical box and provisioning the workload requires taking into account physical constraints such as storage capacity constraints. One dilemma that the DC operator faces in this setting is what resources to provision for specific workloads given this rich (I/O) ecosystem.

The problem that we define and address in this paper is as follows: The DC has a cluster of servers each with a rich I/O subsystem on which a set of customer workloads must be provisioned. Service Level Agreements (SLAs) between the DC provider and the customers provide a contract in terms of what each customer can expect. Typical SLAs describe characteristics such as expected performance [12] and expected data availability (e.g. SQL Azure’s SLA [1]). Given the SLAs, the goal of the DC provider is to provision enough resources to meet the SLAs, while minimizing the total operating cost, so as to maximize their profit.

Notice that the objective here is to minimize the total operating cost (TOC). In this paper, we consider the TOC to include the amortized hardware cost (incurred during the initial purchase and amortized over the expected lifespan of that hardware), and the run-time energy costs incurred in powering that hardware when running the workload. We recognize that there are other other components to TOC, including the amortized cost of the actual DC facility and other fixed equipment costs [10]. In this paper we ignore these costs since these costs vary widely based on how the DC is operated and setup. However, it is fairly straightforward to incorporate these costs in our framework.

Now consider the impact of heterogeneous I/O hardware on the TOC. Different I/O devices have different initial costs, storage capacities, performance, and run-time energy costs. SSDs generally run cooler than HDDs (the energy savings is often an order of magnitude more with SSDs), but cost more (often more than 10X for the same storage). SSDs have far better random I/O performance. However,

1We recognize that the term SLA is a broader contractual concept, and that individual components, such as performance targets, are specified in the SLAs as Service Level Objectives (SLOs). However, for simplicity we use the broader term SLA in this paper.
Table 1: The Cost and I/O profiles of different storage classes under 1 and 300 degree of concurrency: (1) The first row lists five different storage types/classes that we use in our experiments. These storage types are discussed in more detail in Section 4.1. L-SSD stands for Low-end SSD, H-SSD stands for High-end SSD. (2) The second row shows the storage cost in terms of cents per GB per hour, calculated using the method described in Section 2.1. (3) The remaining four rows show the performance of the storage types on four typical I/O access patterns. In each cell, the boldfaced number is for a workload with a single DB thread, whereas the number in the parentheses is the I/O performance with 300 concurrent DB threads. See Section 3.5 for details about the concurrency parameter.

<table>
<thead>
<tr>
<th></th>
<th>HDD</th>
<th>HDD Raid 0</th>
<th>L-SSD</th>
<th>L-SSD Raid 0</th>
<th>H-SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC/GB/hour (cents)</td>
<td>3.47 × 10⁻⁴</td>
<td>4.49 × 10⁻⁴</td>
<td>7.65 × 10⁻⁴</td>
<td>9.29 × 10⁻⁴</td>
<td>1.69 × 10⁻⁴</td>
</tr>
<tr>
<td>Sequential Read (ms/IO)</td>
<td>0.072 (0.174)</td>
<td>0.049 (0.096)</td>
<td>0.036 (0.053)</td>
<td>0.021 (0.037)</td>
<td>0.016 (0.013)</td>
</tr>
<tr>
<td>Random Read (ms/IO)</td>
<td>13.32 (8.903)</td>
<td>12.19 (2.712)</td>
<td>1.759 (1.468)</td>
<td>1.570 (0.826)</td>
<td>0.991 (0.024)</td>
</tr>
<tr>
<td>Sequential Write (ms/row)</td>
<td>0.012 (0.039)</td>
<td>0.011 (0.034)</td>
<td>0.020 (0.341)</td>
<td>0.013 (0.082)</td>
<td>0.009 (0.025)</td>
</tr>
<tr>
<td>Random Write (ms/row)</td>
<td>10.15 (8.124)</td>
<td>11.55 (3.770)</td>
<td>62.01 (37.45)</td>
<td>21.14 (17.71)</td>
<td>0.928 (0.986)</td>
</tr>
</tbody>
</table>

Our method for computing the data layout is described in Section 3 and Section 4 contains experimental results. Discussions about several possible extensions to this work are included in Section 5. Related work is presented in Section 6 and Section 7 contains our conclusions and points to directions for future work.

2. PROBLEM DEFINITION

To illustrate the problem of TOC-based storage provisioning, consider the following motivating scenario: Given a data center with many database workloads, a data center administrator needs to build a database server configuration that consists of various storage devices. A critical question is how to choose the storage devices and how to place data on these devices for each workload. Although it is said that a high-end SSD performs much better than a hard disk drive (HDD), the administrator is not sure if it pays off in terms of the (TOC) cost. The administrator wants to achieve better cost-performance while the performance (e.g., response time) meets the given requirements as set by individual SLAs.

2.1 Cost Model

We note that coming up with a cost (price) model of a storage device is a complex problem as it depends on various factors, such as vendor agreements and volume discounts. In this initial work in this area, we focus on a relatively simple model that is defined as follows:

Storage price (cent/GB/hour): For each storage, the amortized storage cost is calculated and amortized by space and time (cent/GB/hour). Table 1 shows our calculated storage prices for five actual devices: (1) HDD, (2) HDD RAID 0, (3) L-SSD, (4) L-SSD RAID 0 and (5) H-SSD. In this calculation, the purchase cost of the I/O device is distributed over 36 months, and the energy cost is computed using a cost of 0.07 per kWh of energy consumption [16].

We model the available storage classes as $D = \{d_1, \ldots, d_M\}$, where each d_i is a specific storage class (e.g. HDDs in RAID 0 configuration). The price of d_i is denoted by p_i, and the price vector $P = \{p_1, \ldots, p_M\}$.

Layout cost (cent/task): Assume that a database is laid out on D, taking S_j GB space for each class d_j ($S_j \geq 0$). Now, let L denote this particular layout. (We describe how to compute the layout L in Section 3.4). Then, the cost per hour for this layout L, denoted as $C(L)$, is computed as $C(L) = \sum_{d_i \in L} (p_i \cdot S_i)$.

Workload cost (TOC) (cent/task): Assume that the
2.3 Workloads

Let d_j denote the capacity of the storage class d_j. A storage could be an individual device, or a RAID group, and we use c_j to denote the capacity of the storage class d_j.

A database instance consists of a set of objects $O = \{o_1, \ldots, o_N\}$, such as individual tables, indices, temporary spaces or logs, that must be placed on one of the storage classes in D. We use s_i to denote the size of the data object o_i. (In this paper, we do not consider partitioning or replication of objects, which are important considerations and promising directions for future research.)

A data layout L is defined as a mapping from O to D, where $L(o)$ indicates the storage mapping for object o. Let O_j denote a set of objects laid out on d_j, i.e., $O_j = \{o \in O | L(o) = d_j\}$. A valid data layout must conform to the capacity constraint of each storage, i.e., $\sum_{o \in O_j} s_i < c_j$ ($j = 1, \ldots, M$). Figure 1 illustrates a sample layout.

2.2 Data Layout and Capacity Constraints

We assume that the storage system provides M different classes of storage $D = \{d_1, \ldots, d_M\}$. A storage could be an individual device, or a RAID group, and we use c_j to denote the capacity of the storage class d_j.

A database instance consists of a set of objects $O = \{o_1, \ldots, o_N\}$, such as individual tables, indices, temporary spaces or logs, that must be placed on one of the storage classes in D. We use s_i to denote the size of the data object o_i. (In this paper, we do not consider partitioning or replication of objects, which are important considerations and promising directions for future research.)

A data layout L is defined as a mapping from O to D, where $L(o)$ indicates the storage mapping for object o. Let O_j denote a set of objects laid out on d_j, i.e., $O_j = \{o \in O | L(o) = d_j\}$. A valid data layout must conform to the capacity constraint of each storage, i.e., $\sum_{o \in O_j} s_i < c_j$ ($j = 1, \ldots, M$). Figure 1 illustrates a sample layout.

2.3 Workloads

We model a workload, W, as a set of query sequences, $[q_1, q_2, \ldots, q_n]$, where each q_i is a database query, and c denotes the concurrency of the workload W. Let $t(L, W)$ be the execution time of W under layout L. Then, the workload cost (TOC) is $C(L, W) = C(L) \cdot t(L, W)$.

2.4 Performance Constraints

In our model, we assume that there are performance related SLA constraints associated with the queries (so there is some limit on the query performance degradation that can be tolerated). These performance constraints T can be modeled as the upper bound of each query execution time, $T = \{t_i^*\}$, where t_i^* is the response time cap for query q_i.

While the framework above uses query response time as the performance metric, this framework can be adapted to consider other performance metrics, such as throughput rate. In fact, in Section 4, we use response time constraints for individual queries for the TPC-H DSS workload, and use throughput constraints for the TPC-C OLTP workload.

In this paper, rather than using an absolute performance constraint, we define the performance constraint as a ratio that is relative to the best performance (similar to the way the measure degradation limit that was used in [23]). For instance, the performance constraint 1/3 means that the workload can be up to 3 times slower than the best case (e.g., when all the objects are placed on a high-end SSD, when a high-end SSD is one of the available storage classes). Using this method of defining the performance constraint, we can demonstrate various cases of cost-performance trade-offs, and compare them to the “best” performing case.

We also note that our framework can be generalized to allow a broader definition of performance constraints, including capturing a general distribution of the performance metric (e.g., must be faster than x seconds in 95% of the cases, and faster than $1.5x$ seconds in 99% of the cases). Such extensions are part of future work.

2.5 Problem Formulation

Our problem can be formally stated as follows:

Input: (1) Database objects $O = \{o_1, \ldots, o_N\}$, (2) Storage classes $D = \{d_1, \ldots, d_M\}$ with price (TOC/GB/hour) $P = \{p_1, \ldots, p_M\}$ and capacity $C = \{c_1, \ldots, c_M\}$, (3) Query workload $W = \{[q_1^1, q_2^1, \ldots, q_n^1], \ldots, [q_1^N, q_2^N, \ldots, q_n^N]\}$ with performance constraints $T = \{t_i^*\}$.

Output: A layout $L : O \rightarrow D$ that minimizes the TOC $C(L, W) = C(L) \cdot t(L, W)$ for a given workload W

$C(L) = p_1 \cdot (\sum_{o \in O_1} s_i) + \cdots + p_M \cdot (\sum_{o \in O_M} s_i)$

under the capacity constraints, $\sum_{o \in O_j} s_i < c_j$ ($j = 1, \ldots, M$), and performance constraints $T = \{t_i^*\}$.

3. THE DOT METHOD

A straightforward way to solve the layout optimization problem formulated above (in Section 2.5) is to explore the space of all possible layouts, and then validate the performance of each layout candidate. However, this naive approach is too expensive, since if we have M different storage classes/devices and N data objects, then the number of all possible data layouts is exponentially large, that is M^N.

Our method to compute a Data layout Optimized to reduce the TOC, called DOT, is shown in Figure 2. There are four steps/phases in our solution: profiling, optimization, validation and refinement.

The technique starts by profiling the workloads on some baseline layouts, L_1, \ldots, L_k, to generate a number of work-
Our basic approach is to (1) start from a layout L_0 that places all the objects on the most expensive storage class (say, d_1) and (2) gradually move objects from d_1 to other less expensive storage classes as long as the new layout L_{new} and its estimated performance T^* satisfies the capacity constraints C and the SLA constraints T (checked by procedure feasible in the pseudocode). Notice that, in our approach, the move candidates, Δ, are generated only once at the beginning of the procedure and are applied one by one, yielding $|\Delta|$ layouts to be investigated.

The key component of this procedure is to generate Δ, a sequence of object moves. For each iteration, a move m in Δ is applied to a layout L, resulting in a new layout $m(L)$. Here, as a heuristic, we want to apply a more beneficial move (i.e., larger TOC reduction) earlier. The sub-procedure enumerateMoves should generate move candidates in such a promising order (we provide the pseudocode later in Procedure 2), which we achieve by using a heuristic function (Section 3.3) to assign a priority score for each move. This function considers the impact of a move that comprises of a layout cost reduction and a workload performance penalty. The performance penalty is estimated based on the estimated I/O time over the objects. After sorting the move candidates in terms of their priority scores, we apply them in sequence to generate new candidate layouts.

A simple method to generate a set of move candidates is to move an object $o \in O$ to a storage class $s \in D$ one by one, as was done in [10]. In this case, the sub-procedure enumerateMoves would generate M moves for each object. By applying the moves one by one, DOT would investigate $O(MN)$ layouts. However, this approach has a serious limitation as it ignores the interactions between the objects. Since the move of one object can significantly change the I/O access pattern of another object, by ignoring the interaction between the objects, this simple approach ignores the change in performance (e.g., the amount of I/O time) and indirectly affects the calculations of priority scores.

A notable example of such interaction between objects is seen between a table and its index: Assume that a table has an index (e.g., B+ tree) on its primary key, and a query wants to retrieve records in a given range on its primary key (e.g., \texttt{select * from table A where A.id > 10 and A.id < 1000}). Now consider a placement of the index on either an SSD or a HDD, and the following question: What is the difference in terms of performance of the given workload for these two different placements of index? The answer to this question depends on where the table is placed. For instance, when the table is on the HDD, the query planner may choose to only use a sequential scan on the table to execute the query. In this case, the placement of the index has no impact to the I/O cost since it is not accessed at all. However, if the table is placed on the SSD, placing the index on the SSD may let the query planner choose an index scan to access both table and index for greater performance by leveraging the SSD’s faster random I/O speed. Thus, we should not ignore the interaction between objects, e.g., a table and its index.

Our heuristic approach is to put objects into groups, referred to as object groups, and consider interaction only within a group: we put a table and its indices in a group and consider all the combinations of their placements on different storage classes. For example, in the case of a table with one index, and only two devices – an HDD and an SSD.
Since in many practical cases and \(K\) is as large as the number of indices on each table. In the current grouping scheme, \(G\) is the number of tables and \(K\) is as large as the number of indices on each table. Since in many practical cases \(K\) is likely to be far smaller than \(G\), so the number of layout candidates \(O(GM^K)\) in DOT is much smaller than \(O(M^KG)\) (i.e., exhaustive search).

3.3 Priority Score

In Procedure 2, a priority score \(s\) for a move \(m\) is calculated using workload profile \(X\) and storage information \((D, P)\). The priority score is derived from two components: performance penalty and layout cost saving.

First, we describe the notion of a performance penalty that estimates the impact of a move \(m\) relative to the workload performance. The performance penalty is described using a term called the I/O time share, which is the accumulated I/O time over objects \(o\) in \(g\).

We use the following four types of I/Os to model the typical DBMS query I/O access pattern \(10:\) sequential read (SR), random read (RR), sequential write (SW) and random write (RW). Now, let \(R\) denote the set of these I/O types. As shown in Table 1 we are provided with the time of one I/O operation \(\tau_r\) for each type \(r\) \(\in R\) and storage \(d\) \(\in D\). From this information, we need to estimate the accumulated number of I/O operations on \(o\).

We use the profiling phase to estimate the number of I/O operations for each object (Section 3.4). As we have discussed above, the number of I/O operations on a specific object can be very different depending on the placement of not only this object but also other objects in the same group. Thus, we use \(\chi^p[o]\), the number of I/O of type \(r\) on \(o\) when the group \(g\) is placed in a specific placement \(p\).

Based on the workload profiles \(X = \{\chi^p[o]\}\), we estimate the I/O time share of an object group \(g\) when it is placed in \(p\):

\[
T^p[g] = \sum_{m \in g} \sum_{r \in R} \chi^p[o] \cdot \tau_r^{[p]} \tag{1}
\]

Here, \(p[o]\) is the storage class assigned by the placement \(p\) for the object \(o\).

Then, the performance penalty of a move \(m(g, p)\) from the initial layout \(L_0\) can be defined as follows:

\[
\delta_{\text{time}}[m] = T^p[g] - T^0[g] \tag{2}
\]

Now consider the component the layout cost saving, which estimates the impact of a move \(m\) on the layout cost \(C(L)\). Let \(m(L)\) be the layout given by applying \(m\) to \(L\). Then, the cost saving of a move \(m\) is:

\[
\delta_{\text{cost}}[m] = C(L_0) - C(m(L_0)) \tag{3}
\]

The definition of \(C(L)\) is given in Section 2.1.

Finally, the priority score of a move \(m\), denoted as \(\sigma[m]\), is defined by considering both the performance penalty and the layout cost saving, and is calculated as:

\[
\sigma[m] = \delta_{\text{time}}[m] / \delta_{\text{cost}}[m] \tag{4}
\]

The procedure enumerateMoves sorts all possible moves \(m(g, p)\) by their scores in the ascending order.

3.4 Workload Profiles

The objective of the profiling phase is to measure the I/O behavior of the workload when an object group \(g\) is laid out using the placement \(p\). This phase produces several workload profiles, where each profile corresponds to a specific placement. As discussed above, the placement \(p\) of an object group can impact the optimizer’s choice of query plans, resulting in very different I/O costs/profiles. Thus, when we

Procedure 2 enumerateMoves: Enumeration of moves

Input: \(< O, D, P, X >\)

Output: a list of moves \(\Delta\)

\[
G \leftarrow \text{grouping}(O), \Delta \leftarrow \phi, \Sigma \leftarrow \phi
\]

for all \(g \in G\) do

\[
m \leftarrow \text{move}(g, p) \quad s \leftarrow \text{score}(m, X, D, P) \quad \Delta \leftarrow \text{append}(\Delta, m), \Sigma \leftarrow \text{append}(\Sigma, s)
\]

end for

\[
\Delta \leftarrow \text{sort}(\Delta, \Sigma)
\]
A lightweight method to enumerate all possible placements of the object groups is to use a small set of layouts, referred to as baseline layouts. For instance, consider a case where each table has only one index on the primary key. Then we have a set of object groups of size 2 (i.e., $K = 2$). For each group, we want to measure I/O profiles for all the M^2 placement patterns. To do this, we use the M^2 baseline layouts $L_{(i,j)}$ such that $1 \leq i, j \leq M$ and define as follows: $L_{(i,j)}$ places all the tables on d_i and all the indices on d_j. That is, each group object has the same placement p, where $p = (d_i, d_j)$. In general, we have $O(M^N)$ baseline layouts where K is the (maximum) size of an object group. Compare to the number of all possible layouts that cover all the combinations amongst different groups (which is again $O(M^N)$), profiling the workloads on the baseline layouts has a lower total complexity when $K \ll N$. Notice that, by using only the baseline layouts in this manner, we assume independence of the placements across different groups, which is the same assumption we made for our heuristics.

A workload profile on a baseline layout, L_p, consists of the number of I/Os for a scan and the number of rows processed by query q. Here, $\chi^{(r)}[o]$ is given as the number of I/Os of type r on object o when the workload is executed over L_p. The workload profiles can be calculated either through (a) an estimate computed by our extended query optimizer as described in Section 3.1.3 or (b) a sample test run of the workload on L_p. (We see both cases in the results described in Sections 4.1 and 4.2 respectively.)

We also notice that there is an opportunity to prune the baseline layouts that are being profiled. If we can infer that the query optimizer will choose the same plans on layouts L_p and L_q, we only need to profile one of these. In Section 4.1.3 we show a special case where only one layout is profiled. A general pruning method, however, is an open issue.

3.5 Extended Query Optimizer

The heuristic step in DOT (described above in Section 3.1) estimates the TOC and then checks the performance constraint for a candidate layout by calling the query optimizer’s estimation module to estimate the performance of the workload for that layout. To enable this check, the query optimizer should support, or has to be extended to support:

1. Query plan optimization that is aware of the I/O profiles of different storage classes;
2. Execution time estimation of the derived query plan in this manner, we assume independence of the placements across different groups, which is the same assumption we made for our heuristics.

<table>
<thead>
<tr>
<th>Brand & model</th>
<th>HDD</th>
<th>L-SSD</th>
<th>H-SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD Caviar Black</td>
<td>500GB</td>
<td>M-Class 2.5" MLC</td>
<td>Fusion I/O ioDrive</td>
</tr>
<tr>
<td>WD Caviar Black</td>
<td>128GB</td>
<td>SLC</td>
<td>80GB</td>
</tr>
<tr>
<td>Interface</td>
<td>SATA II</td>
<td>SATA II</td>
<td>PCI-Express</td>
</tr>
<tr>
<td>RPM</td>
<td>7200 N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cache Size</td>
<td>32MB</td>
<td>64MB</td>
<td>N/A</td>
</tr>
<tr>
<td>Purchase cost</td>
<td>$33</td>
<td>$253</td>
<td>$3550</td>
</tr>
<tr>
<td>Power</td>
<td>8.3 Watts</td>
<td>2.5 Watts</td>
<td>10.5 Watts</td>
</tr>
</tbody>
</table>

Table 2: Storage Class Specifications

For simplicity, we do not analyze the effect of cached data in the buffer pool, which can significantly reduce the number of actual I/O in the query. We also ignore the cost of actually outputting the results.

Instead of using the I/O performance numbers of the devices published by the manufacturer or as seen from the OS level, we benchmark the effective I/O performance of each I/O request as observed by the DBMS, since: (1) with this approach, various overheads (e.g. latch overhead) and benefits (e.g. DB buffers) are incorporated. (2) we can model the influence of concurrent DB queries on I/O performance.

We use the term *degree of concurrency* to refer to the number of concurrent DB queries processing threads/processes, and use this concept to model how the I/O subsystem behaves when there are concurrent queries.

3.5.1 Benchmarking the I/O Characteristics

In general, our method of benchmarking the storage classes follows the profiling method used in [10]. However, we generalize their method for benchmarking the storage class under certain concurrency: we concurrently run K threads that issue queries over their own tables, i.e., thread i issues a query to table A_i. Each table has a primary key id which is indexed with a B+ Tree.

Read I/O: For read queries, we use the `count(*)` query so as to minimize the costs associated with producing the output. We make sure each read request is served from the disk and the results of queries are not from the existing statistics in DBMS (e.g. catalogs). Each thread can issue the following queries:

- **Sequential Read (SR):** To measure the SR performance, each thread issues the following query: select `count(*)` from A_i.
- **Random Read (RR):** To measure the RR speed, each thread issues a sequence of queries, using the template: select `count(*)` from A_i, where $id = ?$, with randomly selected id values.

The time for each I/O is calculated by dividing the total profile the workload, we consider these object interactions by enumerating all possible placements of an object group.
elapsed time of running all queries by the total number of read I/O requests.

More details about how we benchmarked the SR I/O and RR I/O patterns are as follow.

SR I/O: In PostgreSQL, two internal views, namely pg_stat_user_tables and pg_stat_user_indexes, maintain statistics on each table and index respectively. One of these statistics is to count how many pages of a table or an index are read from the disk (e.g. heap_blks_read, idx_blks_read) during the query execution. Before we ran the SR queries (i.e. select count(*) from A), we reset all the statistics to 0. After the SR queries finished, we use the value of the heap_blks_read statistic on A as an estimate of the number of disk I/Os that were incurred on the table A. If the query results came from the catalog or index-only scan without many physical reads from the disk, then the value of the heap_blks_read variable would be close to 0, which wasn’t the case. Also, iostat revealed that indeed the queries were incurring disk I/Os.

RR I/O: When we ran the RR I/O queries, the disk I/Os originates from both the table and the index. So, we use the sum of the heap_blks_read statistic and the idx_blks_read statistic as the total number of disk I/Os. We also checked that the values of the statistic variables heap_blks_read and idx_blks_read to ensure that a realistic number of I/Os were incurred to the disk, instead of being serviced from the buffer pool.

Write I/O: Estimating the write I/O performance is trickier due to the optimizations in the OS and the DBMS. (e.g. delayed writes for better performance). Thus, instead of estimating the performance of each I/O request, we estimated the write performance per row, which is more convenient and robust for the query optimizer to use. For write I/O benchmark queries, we do not batch the commits and all DB logs are directed to a separate disk, to minimize the overhead associated with logging.

The write I/O characteristics are benchmarked as follows:

- **Sequential Write (SW):** The SW performance is measured by having each thread issue a large number of insertion queries, where each query inserts a single row using the template: insert....into
- **Random Write (RW):** To measure the RW performance, each thread issues a sequence of update queries using the template update A set a = ? where id = ? with randomly selected id values. Notice that an update query consists of random read and random write. To estimate RW from update queries, we subtract the RR I/O time (as estimated above) from the total RR execution time as follows: First, we run the same number of RR queries with the same buffer pool size and concurrency as we run the RR queries. After the RR queries finish, we measure their total elapsed time and deduct it from the total elapsed time of running the RR queries. After this deduction, the remaining time is the total time for all WW I/Os without the RR I/O component. Then, we compute each WW I/O time by dividing the remaining time by the number of WW queries.

Table I shows the results from running this benchmark on each storage class that we use in our evaluation (below), with degree of concurrency values of 1 and 300. In our experiments described below, we use values with concurrency 1 for the DSS workloads and 300 for the OLTP workloads.

Finally, we note that our DOT framework simply needs some method to characterize the I/O devices. The method described above is simply what we used in our evaluation in this paper, and can be substituted with any other method without impacting the generality of our DOT framework.

4. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate our layout technique using an implementation of DOT in PostgreSQL, and demonstrate the effectiveness of our methods using both the TPC-H benchmark (to represent a DSS workload) and the TPC-C benchmark (to represent an OLTP workload).

4.1 Hardware and Software Specifications

Our experimental platform is a server system with a 2.26GHz Intel(R) Xeon CPU E5520 with 8 cores and 64GB ECC memory. To allow experiments in parallel and to avoid having to swap I/O devices for each experiment, we actually used two machines that were identical (same CPU, motherboard, memory, etc.), but had separate storage subsystems. These two storage subsystems are:

- **Box 1:** one HDD RAID 0, one L-SSD and one H-SSD.
- **Box 2:** one HDD, one L-SSD RAID 0, and one H-SSD.

DOT is performed for each box individually, resulting in two separate recommendations. For instance, DOT on Box1 recommends a layout given the 3 storage classes HDD RAID 0, L-SSD, and H-SSD as part of the input.

The specifications of the HDD, the L-SSD and the H-SSD is shown in Table 2. RAID 0 is implemented using two identical storage devices and a Dell SAS6/iR RAID controller. This controller costs $110 and has a 256MB onboard cache.

The storage price for these storage classes, shown earlier in Table 1, is calculated from the amortized cost (over 36 months) of its purchase cost (including the RAID controller if needed) and the $0.07/kWh data center energy cost [11].

The power dissipation in Table 2 is derived from the average

![Figure 3: The original TPC-H workload with relative SLA = 0.5. The number in parenthesis associated with each label indicates the PSR value (%).](image-url)
caching is turned off for both the log files and the data disks. The server runs CentOS (Linux kernel 2.6.18) and PostgreSQL 9.0.1, with our extended query optimizer (as discussed in Section 3.5) and the I/O profiling table shown in the Tables 1. We set the PostgreSQL shared buffer to 1GB. In addition to the storage subsystems described above, each machine had an additional 500GB disk that holds the OS, DBMS binaries, and the database log files. Finally, OS caching is turned off for both the log files and the data disks.

4.2 Simple Layouts

We use the following “simple” layouts to compare with the layouts that are recommended by DOT:

- All H-SSD: All objects placed in the H-SSD (i.e., Lo)
- All L-SSD RAID 0: All objects placed in the L-SSD RAID 0
- All L-SSD: All objects placed in the L-SSD
- All HDD RAID 0: All objects placed in the HDD RAID 0
- All HDD: All objects placed in the HDD
- Index H-SSD Data L-SSD: Indexes in the H-SSD and Data in the L-SSD

We have also implemented the Object Advisor (OA) [10] method in PostgreSQL, as OA is the closest previously known method to DOT. We note that OA optimizes only for workload performance and not the TOC.

4.3 Performance Metrics

As discussed in Section 2.3 following the methodology in [24], as a performance measure we use a metric called the “relative SLA”, which is the performance for a workload with a given data layout compared to the performance of that workload with all the data on the H-SSD (which is typically the highest performing case). For instance, relative SLA = 0.5 implies that the target performance SLA is half of the performance with all the data on the H-SSD. For the target performance metrics, we use the response time of each query for the TPC-H workload and the total throughput for the TPC-C workload.

Notice that a simple layout, which is not aware of SLA, can fail to meet the target performance. We need an overall measure to indicate the degree of SLA violation of such a layout. For the TPC-H workload, we measure the fraction of the queries that don’t meet their relative SLA, using a ratio called the performance satisfaction ratio (PSR). For example, a PSR value of 75% means that 75% of queries in the workload meet their relative SLAs and 25% of them do not. For the TPC-C workload, we do not need an additional measure since the throughput performance itself serves as such an indicator.

4.4 TPC-H Experiments

For experiments on the DSS workloads, we used two flavors of the TPC-H workloads. These workloads are:

The original TPC-H workload: Following the methodology in [24], we use 66 queries generated from the original 22 TPC-H query templates as this workload. Thus in this workload, each TPC-H query occurs three times in the mix. The workload is executed sequentially with the SR I/O as the dominating I/O type.

A modified TPC-H workload: We use the exact five TPC-H query templates (Query # 2, 5, 9, 11, 17) that were used in [10]. These five queries are modified in the same manner as in [10] to simulate an Operational Data Store (ODS) environment. The modifications to these queries is to add more predicates (on the part key, order key and/or the supplier key) to the “where” clause of the queries, so as to reduce the number of rows that are returned. As a result, this workload now has a mix of random and sequential read I/O (Mixed I/O). This workload has a total of 5 query templates that are executed sequentially 20 times, to produce a workload with 100 queries. The actual queries that used in this experiment can be found in the Appendix A.

In these experiments, we vary the relative SLA (to values of 0.5 and 0.25) without setting any capacity limits on the storage classes.

In addition, we evaluate the heuristics in DOT by com-
paring it with an exhaustive search approach. For these experiments, we use a smaller workload (for exhaustive search to be tractable) and vary the capacity limits (to make it more challenging for the DOT heuristics).

For all the TPC-H experiments, a 30GB TPC-H database is generated (scale factor 20) and all the tables are randomly reshuffled so that they are not clustered on the primary keys.

4.4.1 The original TPC-H workload

Figure 3 shows the cost/performance comparison amongst the different layouts when the relative SLA is set to 0.5. The response time is the time to complete the workload and the cost is the measured TOC. The corresponding PSR values are shown in parenthesis in the figure. So, for example, the PSR value for the All L-SSD case is 95%.

From Figure 3, we make the following observations: First, our heuristic layouts on Box 1 and Box 2 produce significant savings — more than 3X — in terms of the TOC against the All H-SSD layout. Second, our heuristic layouts outperform the ones produced by OA, especially on Box 1. Looking at the PSR values (shown in parenthesis in Figure 3), we also notice that OA’s PSR is only 95% and 90% on Box 1 and Box 2 respectively, while DOT achieves a PSR of 100% in both cases. Third, all the other simple layouts (except the All H-SSD case) have a lower TOC, but lead to longer response times. Finally, looking at the PSR numbers in Figure 3 (shown in the parenthesis) for these simple layouts, we observe that these layout (except All H-SSD) have PSR values that are less than 100% — meaning that some queries in these layouts do not meet the required performance targets.

4.4.2 The modified TPC-H workload

Figure 5 shows the cost/performance comparison for the different layouts on the modified TPC-H workload, when the relative SLA is 0.5. From the PSR values in this figure (shown in parenthesis in the figure), we observe that all the simple layouts (except the ALL H-SSD case) fail to achieve the target SLA, resulting in low PSR values.

Figure 6 illustrates the layout created by DOT when the relative SLA is 0.5. Observe the difference from the original TPC-H workload experiments (shown in Figure 4): now DOT places most of the data objects on the H-SSD device in both the Box 1 and 2 configurations. For this modified workload we now have more selective predicates, and the query optimizer has more opportunities to exploit the high-performance RR I/O characteristics of the H-SSD device by using indexed NLJ (INLJ). In fact, we have observed that on the DOT layouts (across both box configurations), with this modified TPC-H workload (and relative SLA = 0.5), 50% of the joins in the query plans for this workload are INLJ, whereas only 11% of the joins in the original TPC-H workload (discussed in Section 4.4.1) were INLJ.

Although DOT has to use mostly the H-SSD device to meet the SLA, Figure 6 shows that DOT still saves on the H-SSD (x1.3) with significantly lower storage cost (x0.055). The HDD RAID 0 can be similarly compared with the L-SSD (x1.36 faster at only x0.059 of the storage cost). DOT leverages these RAID 0 systems to save on the TOC with only a small (and acceptable) performance penalty.

Notice in Figure 4 that some tables (e.g., partsupp) and their primary key indices are still placed on the H-SSD. In fact, some queries (e.g., Query #2) involves RR I/O. Since the performance gap between the H-SSD and the RAID 0 system is large for RR I/O, we still need to put these objects on the H-SSD to meet the (relative) SLA requirements.

We have also repeated the experiment above with the relative SLA value set to 0.25. The heuristic layouts are similar as the ones when the relative SLA is 0.5. and we omit these results in the interest of space.
Figure 8: The advised data layouts with relative SLA = 0.25 and the modified TPC-H workload.

TOC compared to the All H-SSD layout.

Now, we relax the relative SLA to 0.25. The results for this experiment are shown in Figure 7. From this figure, we observe that the TOC with DOT is 5X lower than the TOC with the All H-SSD layout, while achieving a 100% PSR.

The layouts that DOT recommends for this experiment are shown in Figure 8. Compared to the case with relative SLA = 0.5 (Figure 6), some bulk data (e.g., \texttt{lineitem}) are now moved to the cheaper storage classes, such as the HDD RAID 0 on Box 1, and L-SSD RAID 0 on Box 2.

Another interesting observation across the two different relative SLAs of 0.5 and 0.25 above, comes from taking a closer look at the ratio of Indexed NLJ (% INLJ) that are used in each case with the DOT layouts on both box configurations. As noted above, with a relative SLA value of 0.5 about 50% of the join operations are INLJs. Looking at the query plans for the case when the relative SLA value is 0.25, we observe that only 33% of the query plans in the DOT configurations (in both box configurations) are now INLJs. As the SLA constraint loosens, DOT moved the data around and switched query plans to use more hash join algorithms (rather than INLJ) to achieve the target SLA. This observation demonstrates the need to consider query optimization along with data layout optimization.

4.4.3 Heuristics Versus Exhaustive Search

In this section, we evaluate the effectiveness of the heuristic introduced in Section 4.3.1. In this experiment, we compare the heuristics with exhaustive search algorithms in terms of the TOC and performance of the layouts that each method recommends. The Exhaustive Search (ES) method explores all possible layouts and evaluates each one of them using the same TOC and performance estimation as DOT.

To allow the ES method to complete, we use a smaller test run of ES on both configurations and found the space that it needs on the HDD RAID 0 device in Box 1 and the HDD device in Box 2, which was 27GB and 8.8GB respectively. Then, we set the capacity limits for these devices to be around these limits, to 24GB and 8GB on Box 1 and Box 2 respectively, and then decrease this limit by half each time.

The results for this experiment are shown in Figures 8 and 12. From these two figures, we find that in most cases, DOT’s performance (both in terms of the TOC and the response time) is comparable to that of ES. Thus, DOT is an effective heuristic. As might be expected, DOT computes the layouts orders of magnitude faster than ES taking about 9 seconds in each case, compared to 1,400 seconds for ES.

4.5 TPC-C Experiments

For the TPC-C experiments, we measured and compared the performance of the different layouts on two metrics, the New-Order transactions per minute (tpmC) and the TOC. For this experiment, we used the Database Test Suite 2 (DBT2), which is a fair implementation of the TPC-C benchmark, and populated a 30GB (scale factor 300) TPC-C database. DBT2 provides various workload parameters, such as \texttt{terminals/warehouse} (term/W), \texttt{DB connections} (DB conn.), and \texttt{DB connections} (DB conn.). In our experiment, we choose 300 \texttt{DB conn}, 1 term/W, set the measurement period of TPC-C workload to 1 hour, and use two minutes to ramp-up the database.

4.5.1 Workload Profiling

We observed that most I/O patterns in the TPC-C workload are random accesses, even when all the data objects are placed on the HDD. From this observation, we estimate that the query plans will not change (from random access to sequential access) even if the data objects are moved to HDD. Thus, in this experiment, we only need one simple layout: namely, the All H-SSD case.

To generate the workload profiles (see Section 3.4), we use a test run instead of the estimates from the query optimizer, since the TPC-C queries have short latencies, and the test run can give actual I/O statistics. After a 5-minute test run, our layout technique uses the workload profiles and the I/O profiles (estimated under 300 degree of concurrency) to get a TOC-effective layout.

4.5.2 Performance Results
First, we evaluate the effect on the TOC when using DOT with varying performance constraints. We ran the TPC-C workload on both Box 1 and Box 2 with relative SLA values of 0.5, 0.25, 0.125, without capacity limits on any of the storage classes. Here, relative SLA = 0.5 means that the observed tpmC should be higher half of the tpmC that can be achieved with all the data on the H-SSD.

Figure 11 shows the effectiveness of each layout in terms of the tpmC and the TOC. From this figure, we observe that the TOC with DOT decreases as the relative SLA is relaxed: DOT on Box1 with the relative SLA = 0.125 has about 3X smaller TOC compared to the All H-SSD case.

From the data layouts shown in Tables 3 and 4 we observe that as the relative SLA is relaxed, more objects are shifted from the expensive storage classes to the cheaper ones. An interesting observation from Tables 3 and 4 is that the L-SSD device in Box 1 is seldom used, since the L-SSD device has poor random write (RW) performance, as seen from Table 1. Even though the L-SSD device is faster than

Table 3: DOT Layouts under different relative SLAs on Box 1 for the TPC-C workload.

<table>
<thead>
<tr>
<th>SLA 0.5</th>
<th>SLA 0.25</th>
<th>SLA 0.125</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDD</td>
<td>pk_customer</td>
<td>pk_warehouse</td>
</tr>
<tr>
<td>RAID 0</td>
<td>pk_district</td>
<td>pk_item, pk_item</td>
</tr>
<tr>
<td></td>
<td>item, history</td>
<td>pk_item, history</td>
</tr>
<tr>
<td></td>
<td>new_order</td>
<td>pk_orders</td>
</tr>
<tr>
<td></td>
<td>pk_new_order</td>
<td>pk_new_order</td>
</tr>
<tr>
<td></td>
<td>pk_warehouse</td>
<td>pk_warehouse</td>
</tr>
<tr>
<td>L-SSD</td>
<td>i_customer</td>
<td>i_customer</td>
</tr>
<tr>
<td>H-SSD</td>
<td>customer</td>
<td>customer</td>
</tr>
<tr>
<td></td>
<td>pk_stock, stock</td>
<td>pk_stock, stock</td>
</tr>
<tr>
<td></td>
<td>warehouse</td>
<td>warehouse</td>
</tr>
<tr>
<td></td>
<td>pk_order_line, order_line</td>
<td>pk_order_line, order_line</td>
</tr>
<tr>
<td></td>
<td>district</td>
<td>district</td>
</tr>
</tbody>
</table>

Table 4: DOT Layouts under different relative SLAs on Box 2 for the TPC-C workload.

<table>
<thead>
<tr>
<th>SLA 0.5</th>
<th>SLA 0.25</th>
<th>SLA 0.125</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDD</td>
<td>pk_warehouse</td>
<td>pk_warehouse</td>
</tr>
<tr>
<td></td>
<td>pk_customer</td>
<td>pk_warehouse</td>
</tr>
<tr>
<td></td>
<td>item, pk_item</td>
<td>pk_orders</td>
</tr>
<tr>
<td></td>
<td>pk_district</td>
<td>pk_warehouse</td>
</tr>
<tr>
<td></td>
<td>pk_warehouse, history</td>
<td>pk_warehouse, history</td>
</tr>
<tr>
<td></td>
<td>new_order</td>
<td>pk_orders</td>
</tr>
<tr>
<td></td>
<td>pk_new_order</td>
<td>pk_new_order</td>
</tr>
<tr>
<td>L-SSD</td>
<td>i_customer</td>
<td>i_customer</td>
</tr>
<tr>
<td>H-SSD</td>
<td>customer</td>
<td>customer</td>
</tr>
<tr>
<td></td>
<td>pk_stock</td>
<td>pk_warehouse, order_line</td>
</tr>
<tr>
<td></td>
<td>district</td>
<td>district</td>
</tr>
<tr>
<td></td>
<td>warehouse</td>
<td>warehouse</td>
</tr>
<tr>
<td></td>
<td>pk_stock</td>
<td>pk_stock, order_line</td>
</tr>
<tr>
<td></td>
<td>history</td>
<td>history</td>
</tr>
<tr>
<td></td>
<td>new_order</td>
<td>new_order</td>
</tr>
<tr>
<td></td>
<td>pk_new_order</td>
<td>pk_new_order</td>
</tr>
</tbody>
</table>
the HDD RAID 0 device for RR I/O, the difference is not big enough to overcome the L-SSD's poor RW I/O and expensive TOC. Therefore, most objects are laid out on the HDD RAID 0 and the H-SSD devices in Box 1. However, on Box 2, the customer object is placed on the L-SSD RAID 0 device when the relative SLA = 0.125 even though it is accessed frequently using RW I/O (Table 3). The reason for this behavior is that the RAID 0 device can improve random write performance by distributing the write evenly over the two disks. Coupled with RAID 0, the L-SSD device can still be utilized in the TPC-C workloads.

Overall, these results indicate that even with the TPC-C like workload, DOT can produce TOC-efficient data layouts.

4.5.3 Heuristics Versus Exhaustive Search

We also compared the DOT heuristics introduced in Section 4.5.1 to the Exhaustive Search (ES) for the TPC-C workload. In this experiment, we use the entire TPC-C benchmark, and set the relative SLA = 0.25. We also vary the capacity constraints (as we did for the comparison with ES in the TPC-H case described in Section 4.4.3). In this experiment, we enforce capacity constraints only on the H-SSD, since this device are often the most capacity constrained. The specific capacity constraint values that we use for the H-SSD are: No Limit and 21GB.

Notice that, given the stringent constraints both on the capacity and the performance, there may be no feasible solution. In such a case, we slightly relax the relative SLA and repeat the optimization as illustrated in Figure 2. This process stops when ES finds a feasible solution.

The results for this experiment for Box 1 and 2 are shown in Figures 12 and 13 respectively. Each graph is associated with the capacity limit on the H-SSD device, and the final relative SLA value. ES and DOT achieve almost same result (tpmC and TOC). In this case, DOT computes the layouts in 3 seconds compared to 800 seconds for ES.

We have also run the experiment above with relative SLA values of 0.5 and 0.125 and capacity limits of 18GB, 15GB and 12GB. The results presented above are representative of the results in these other cases (with DOT and ES having nearly the same TOC and tpmC performance); we omit these additional results in the interest of space.

5. DISCUSSIONS

In this section, we discuss three possible extensions of this work: namely, (1) other possible problem definitions, (2) the discrete-sized storage cost model, and (3) a more comprehensive operation cost model. Finally, we run extensive experiments to verify our DOT method can work well with those extensions.

5.1 Other Problem Formulations

An interesting complementary problem to the one that we use in this paper is to pick the “right” server hardware from a range of options, for a pre-defined workload. In the following, we formally define this problem. Then, we use experimental results to show that given some options about the storage configurations, our DOT method is able to recommend the TOC-efficient storage configuration and the data layout, while guaranteeing the SLAs of the input workloads.

The details of the experiments are shown in Section 5.5.

5.1.1 Definition of the Generalized Provisioning Problem

Input: (1) Database objects $O = \{o_1, \ldots, o_N\}$, (2) Storage Configurations Options $F = \{f_1, \ldots, f_X\}$, where each f_i uses the storage classes $D_i = \{d^1_i, \ldots, d^M_i\}$ with price (TOC/GB/hour) $p_i = \{p^{1i}, \ldots, p^{Mi}\}$ and capacity $C_i = \{c^1_i, \ldots, c^M_i\}$, (3) Query workload $W = \{q^1, \ldots, q^N\}$, with performance constraints $T = \{t^i\}$.

Output: A storage configuration f_k with the data layout L_k on f_k: $O \rightarrow D_k$ that minimizes the TOC $C(L_k, W) = C(L_k) + t(L_k, W)$ for a given W where

$$C(L_k) = \sum_{o_j \in O} \left(\sum_{i=1}^{M} p^i_j + \frac{1}{t^i_j} \right)$$

under the capacity constraints, $\sum_{o_i \in o_j} c^i_j < c^i_j$ ($j = 1, \ldots, M$),
the actual space usage $S \in \{80\text{GB}, 120\text{GB}\}$ so devices are generally bought in discrete-sized units (e.g., 40GB, 50GB, 120GB) so $C(L)$ may not vary linearly with S_j. To adapt to this discrete-sized case, we generalize our layout cost definition as follows.

Layout cost (cents/hour): Assume that a database is laid out on D, taking S_j GB space for each storage class d_j ($S_j \geq 0$). The price and capacity of d_j are p_j and c_j respectively. Now, let L denote this particular layout. Then, the cost per hour for this layout L, denoted as $C(L)$, is computed as follows:

$$C(L) = \sum_{d_j \in D} [\alpha * (p_j * c_j) + (1 - \alpha) * (S_j/c_j) * (p_j * c_j)]$$

As seen from the above formula, the layout cost $C(L)$ is a sum of two parts: $(p_j * c_j)$ and $(S_j/c_j) * (p_j * c_j)$. The first part, namely $(p_j * c_j)$, is the discrete cost determined by the number of identical devices in a certain storage class. The discrete cost has to be paid no matter how much space is used in that storage class. On the other hand, $(S_j/c_j) * (p_j * c_j)$ is the linear cost determined by the proportional space usage. The variable α is a tunable parameter that can adjust the weights between the discrete cost and the linear cost.

When $\alpha = 1$, as shown in Figure 14a, the layout cost is static for a certain range of storage capacity, and only increases when a new additional storage is used. When $\alpha = 0$, as shown in Figure 14b, the layout cost is in linear relationship with the actual space used, and our original layout cost definition (Section 2.1) follows this case.

For other values of α, the layout cost is determined by both the discrete cost and the linear cost, as shown in Figure 14c.

Our experiments in Section 5.3 demonstrated that with the discrete-sized cost model, our DOT method can find the most TOC-efficient data layout. Now, we use additional experiments to study the impact of different values of α on the choice of the TOC-efficient storage configuration.

5.3 Experimental Evaluation of the Generalized Problem and Cost Model

In this section, we experimentally verify that our DOT method can solve the complementary problem defined in Section 5.1 by using the generalized layout cost model (as introduced in Section 5.2).

5.3.1 Hardware and Software Specifications

We employ the same servers used in Section 4.1 with the same CPU and memory size, but have different storage configurations as follow:

- **Box 3:** one L-SSD and one H-SSD.
- **Box 4:** one L-SSD RAID 0, and one H-SSD.

We used a 150GB TPC-H database (scale factor 100) which is larger than a L-SSD’s capacity (e.g., 128GB) in Box 3 to illustrate the capacity constraints do exist in solving the provisioning problem.

We kept the same DB and OS setups as in Section 4.1, except that the DB buffer pool was increased from 4GB to 20GB because the database size increased from 30G to 150G. In this experiment, we use the same original and modified TPC-H workloads as used in Section 4.3.

In the following section (Section 5.3.2), (1) the SLA is set to 0.25 by default, and we will also consider one case when the SLA is set to a much lower value of 0.06. (2) in the following experiments, the data layouts recommended by DOT always satisfies the given SLAs, so we do not focus on a discussion of performance satisfaction ratio. As for the new model of layout cost, we first set $\alpha = 0.95$ to represent a scenario where the layout cost is dominated by the discrete cost. Then, we change α to 0.1 to examine the impact of changing the α’s values on the choice of the TOC-efficient storage configuration.

5.3.2 Experimental Results on TPC-H Workloads

We use two TPC-H workloads, both the original and the modified workloads, to consider the impact of changing workloads.

Figure 15 shows the cost/performance comparison between the Box 3 and Box 4 configurations with the original TPC-H workload. The layout cost (cents/h) of each box is also shown in parenthesis in Figure 15. From this figure, we observe that Box 4 has a limited gain in the response time compared to Box 3, since the original TPC-H workload contains some CPU-intensive queries that dilutes the benefits of the L-SSD RAID 0 over the L-SSD. However, when considering the cost, Box 3 is more TOC-efficient than Box 4.
because the layout cost of Box 3 is cheaper than Box 4, and Box 4 only has a marginally faster response time than Box 3, so the improvement in performance is not large enough to offset the higher layout cost of Box 4. Therefore, when \(\alpha = 0.95 \) and dealing with CPU-intensive workloads (e.g., hashing, sorting), our DOT method recommends choosing a storage configuration with a cheaper layout cost (e.g., Box 3).

On the other hand, when we use the modified TPC-H workload, the result is shown in Figure 16. Here we observe that Box 4 has a significant gain in terms of the response time over Box 3, because the modified TPC-H workload is more data-intensive and the benefit of faster storage classes does matter here. When looking at the costs, we notice that Box 4 is much more TOC-efficient than Box 3. As a result, our DOT method suggests choosing the storage configuration with higher layout cost and faster storage classes.

To make the result in Figure 16 more interesting, we reduce the SLA from 0.25 to 0.06. Now with this looser SLA, DOT generates a new data layout on Box 4 that moves all the data items to the L-SSD RAID 0 without putting any data on H-SSD. In this case, we artificially create a modified storage configuration based on Box 4 by plugging out the H-SSD and only keeping the L-SSD RAID 0. The result of this new configuration is also shown in Figure 16, which generates the lowest cost over Box 3 and Box 4.

From the experiments above, we conclude that given the different storage configuration options and a generalized layout cost, we can still apply the DOT framework to compute the TOC-efficient storage configuration and data layout.

5.3.3 Impact of \(\alpha \)'s Values

In our new layout cost model (defined in Section 5.2), \(\alpha \) is a variable that defines the weights between the linear cost and the discrete cost. In this section, we use \(\alpha = 0.1 \), as compared with \(\alpha = 0.95 \) in the above experiments, to see how the values of \(\alpha \) affect the choice of the TOC-efficient storage configuration.

Figure 17 shows the price/performance comparison between Box 3 and Box 4 under the original TPC-H workload. With \(\alpha = 0.1 \), Box 4 has a faster response time than Box 3, which is the same observation as was made when \(\alpha = 0.95 \). However, in terms of the TOC, Box 4 is cheaper, which is different from the conclusion when \(\alpha = 0.95 \) (Figure 15). The reason for this change is that when \(\alpha = 0.1 \), the layout cost model is actually dominated by the linear cost component, so the layout cost of Box 4 is only marginally more expensive than that of Box 3. The performance gain on Box 4 is able to offset the difference in layout cost so that Box 4 becomes more TOC-efficient when \(\alpha = 0.1 \).

For completeness, we repeat the same experiment as the one above with the modified TPC-H workload. As expected, the choice of a TOC-efficient configuration is the same as the one when \(\alpha = 0.95 \).

5.4 More Comprehensive Operation Costs

In Section 2.3, we mention that a storage price includes the purchase cost and energy cost. In general, other costs, like facility cost and management cost, could also be added into the calculation of the storage price. In this section, we discuss the impact of adding the facility and management costs into the storage price.

To get a fair and accurate estimation of the facility costs,
By comparing the prices of the five storage classes, we observe that price gaps between the different storage classes (e.g. HDD RAID 0 and L-SSD) continue to be order of magnitude, indicating that adding the facility and management costs does not dilute the price differences. So, our problem formulation and methodology are still valid when considering the facility and management costs. To further dig into this aspect, we ran both the original and the modified TPC-H workloads on Box 2 with the storage price including and not including the two new costs (i.e. the facility and the management costs). The summary of the results is that the recommended data layouts under both storage prices are identical, indicating that adding the facility and management costs into the storage prices does not affect the recommended data layouts. Hence, we believe that our method works even when we consider a different cost scenario.

6. RELATED WORK

The problem of data placement involves assigning N data objects to M storage devices with the objective of improving the workload performance. A recent work on this topic by Koltsidas et al. [18] examines the optimal data page placement between a SSD and a traditional HDD. They propose a family of online buffer pool replacement algorithm so that pages are placed on the right devices for better workload performance. Canim et al. [10] propose an Object Advisor to place database objects (e.g. tables or indices) on either SSDs or HDDs. Their method first collects the I/O statistics of a workload and then uses a greedy algorithm to decide the placement of the tables and indices. Our work differs from this work in many aspects. First, their goal is to maximize the workload performance by using a limited capacity on the SSDs, while our goal is to minimize the TOC that is incurred when running that workload. Second, their query optimizer is not aware of the specific characteristics of the SSDs, so they miss the interactions between the query plans and data layouts. In contrast, we design and employ an extended query optimizer in Section 5.4 to make the query optimizer aware of different storage classes, and our method is able to update the cheapest query plan dynamically as the data layout is changed.

Another objective of the data placement problem is to balance the loads across different storage classes and minimize the interference between the workloads. Ozmen et al. [22] formulate this data placement problem as a non-linear programming problem (NLP) and use the I/O description as input to an NLP solver. Their techniques leverage input workload descriptions and storage target models to avoid potential interference among co-located objects and ensure that the recommended layout is balanced.

The virtual machine placement problem, as proposed in [12][17], is to find the most suitable physical host for a virtual machine that will be deployed. In making this placement decision, hosts are evaluated based on their existing capacities and the resource requirement of the virtual machine. The goal of this problem is to manage the mapping of virtual machine to physical hosts for either better resource utilization of individual hosts, lower operating costs, or load balancing among hosts. The connection between the virtual machine placement problem and our work is that the problem they want to solve is to find a mapping of a virtual machine onto physical hosts, while our problem is to find a mapping (or data layout) between data objects and storage classes. The commonality at a high level is that both consider performance constraints (e.g. SLA) and that the naive solution space size in both cases is exponential and impractical to

<table>
<thead>
<tr>
<th>Components</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servers</td>
<td>$1,998,097</td>
</tr>
<tr>
<td>Networking Equipment</td>
<td>$294,943</td>
</tr>
<tr>
<td>Power Distribution and Cooling</td>
<td>$626,211</td>
</tr>
<tr>
<td>Power</td>
<td>$474,208</td>
</tr>
<tr>
<td>Other Infrastructure</td>
<td>$137,461</td>
</tr>
<tr>
<td>Overall</td>
<td>$3,530,920</td>
</tr>
<tr>
<td>Management (3% of Overall)</td>
<td>$105,927</td>
</tr>
</tbody>
</table>

Table 5: Monthly Costs of a Data Center with 46,000 Servers [3]. The last row was not included in the original costs breakdown.

In Table 5, we list some costs for each component in the data center, and we consider and sum up the costs of Networking Equipment, Power Distribution and Cooling, Other Infrastructure and Management, so the total of these costs is: 294,943+626,211+137,461+105,927 = $1,164,542 per month for 46,000 servers. For each server and 36 months: the cost is 1,164,542 ÷ 46,000 = $911 per server for 36 months.
explore all possible solutions. But besides that high-level similarity, their problem and our problem are very different in terms of the goal and solution.

Another branch of related work is index advisor, or alternatively, physical design tuning [3][5][13]. The problems in that space are usually described as follows: given the workload of representative queries and storage space constraint, find a set of physical structures (e.g. indexes and materialized views) to minimize the execution cost of the queries in the workload. The only similarity between the index advisor problem and our problem is we both consider the impact of indexes on query execution within the storage bounds. However, the differences between these two problems are significant. First, their problem statement is: given all possible index selection choices, determine which indexes should be selected to create. While our problem assumes that the indexes are already selected and we consider which storage class each index and data should be placed on. Other important difference is that their objective is to maximize the query/workload performance, while our goal is to minimize the total operation cost, while maintaining a certain level of the query performance.

With the maturity of SSDs, substantial research has focused on improving the DBMS performance by using SSDs including revisiting the five-minute rule based indexes, examining methods for improving various DBMS internals such as query processing techniques [20][24], index structure [5][21], bufferpool extension [11], page layout [19] and temporary space [20]. These methods are complementary to our work here, as these efforts allow the DBMS to use SSDs more effectively – hence, these methods can be easily used along with our method in a DBMS that is tuned for SSDs.

7. CONCLUSIONS AND FUTURE WORK

This paper has introduced a new problem of provisioning I/O resources for a workload to minimize the total operating cost that is incurred when running that workload. This paper has also presented the design of a solution, called DOT, for this problem. DOT extends the query optimization components that are already present in a modern DBMS, and hence is a practical solution. We have implemented DOT in PostgreSQL, and have presented extensive evaluation of DOT using various DBS and OLTP workloads. These results demonstrate that DOT can produce significant reductions in total operation costs, while meeting performance SLAs.

The DOT method is complementary to a number of crucial problems encountered in workload-oriented environments. For example, the DOT method can be used to help purchasing and capacity planning decisions. It could be iteratively executed several times to determine the TOC and SLA performance of different hardware configurations under consideration. Another example is query scheduling on heterogeneous machines, where the scheduler needs to know where the data is actually stored, and the DOT method can decide an optimal placement of database objects and its replicas.

This work presents a new way of looking at DBMSs when operating the DBMS in cloud-hosted environments, where the data center operator is now forced to look beyond the traditional goals of optimizing performance. There is a wide range of future work that is possible here including examining every aspect of database query processing, database query optimization, physical database design, etc., from the new perspective of minimizing the total operating cost while largely meeting traditional performance targets set in service level agreements.

8. REFERENCES

Appendix

A. Query Templates and Examples

Our query modification is to specify the predicates that were added to the “where” clause and the details are outlined in Table 7.

Query # 2	? < ps_partkey < ?
Query # 5	? < o_orderkey < ?
Query # 9	? < p_partkey < ? and ? < s_suppkey < ?, ? < l_orderkey < ?
Query # 11	? < ps_partkey < ?
Query # 17	? < l_orderkey < ?

Table 7: Additional predicates added to the five queries

To illustrate what the modified TPC-H query look like, a query instance (Query # 11) is given below, by replacing the regular expression “?” with real values.

```sql
SELECT ps_partkey, sum(ps_supplycost*ps_availqty) AS value
FROM partsupp, supplier, nation
WHERE ps_suppkey = s_suppkey
AND n_name = 'GERMANY'
AND s_nationkey = n_nationkey
AND ps_partkey BETWEEN 105973 AND 593374
GROUP BY s_partkey;
```