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ABSTRACT
Data center operators face a bewildering set of choices when
considering how to provision resources on machines with
complex I/O subsystems. Modern I/O subsystems often
have a rich mix of fast, high performing, but expensive SSDs
sitting alongside with cheaper but relatively slower (for ran-
dom accesses) traditional hard disk drives. The data center
operators need to determine how to provision the I/O re-
sources for specific workloads so as to abide by existing Ser-
vice Level Agreements (SLAs), while minimizing the total
operating cost (TOC) of running the workload, where the
TOC includes the amortized hardware costs and the run
time energy costs. The focus of this paper is on introduc-
ing this new problem of TOC-based storage allocation, cast
in a framework that is compatible with traditional DBMS
query optimization and query processing architecture. We
also present a heuristic-based solution to this problem, called
DOT. We have implemented DOT in PostgreSQL, and ex-
periments using TPC-H and TPC-C demonstrate significant
TOC reduction by DOT in various settings.

1. INTRODUCTION
The move towards cloud computing for data intensive

computing presents unique opportunities and challenges for
data center (DC) operators. One key challenge that DC op-
erators now face is how to provision resources in the DC for
specific customer workloads. The focus of this paper is on
one aspect of this vast problem – namely how to provision
resources in the I/O subsystem. We note that I/O subsys-
tems are often the most expensive components of high-end
data processing systems. For example, in the current high-
est performing Oracle TPC-C configuration [2], the cost of
the storage subsystem is $23.9 million compared to $5.2 mil-
lion for the remaining server. (We acknowledge that looking
beyond the I/O subsystem is important, but that is beyond
the scope of this paper.)
To fully understand the challenge, consider the dilemma

of a modern DC operator, again only focusing on the I/O
subsystem. I/O subsystems have gotten incredibly compli-
cated over the last few years primarily due to the disruptive
introduction of flash solid state drives (SSDs). Thus it is
common for DCs to have servers that have a rich I/O sub-
system with a mix of traditional hard disk drives (HDDs)
typically in some RAID configuration, and some SSDs. To
make matters worse, since the price and the performance
characteristics of these I/O devices vary widely, it is not
uncommon to find server configurations that have a diverse

I/O subsystems with various types of storage devices. For
example, a server may have a RAID HDD subsystem, and
a high-end fast but expensive SSD (e.g. Fusion IO), and a
low-end slow but cheaper SSD (e.g. a Crucial or Intel SSD).
DC operators have to make the decision to purchase the
server boxes right upfront, and later have to deal with pro-
visioning these resources on (ever changing) workloads. In
addition, multiple different workloads may share resources
on the same physical box and provisioning the workload re-
quires taking into account physical constraints such as stor-
age capacity constraints. One dilemma that the DC oper-
ator faces in this setting is what resources to provision for
specific workloads given this rich (I/O) ecosystem.

The problem that we define and address in this paper is
as follows: The DC has a cluster of servers each with a rich
I/O subsystem on which a set of customer workloads must
be provisioned. Service Level Agreements (SLAs) between
the DC provider and the customers provide a contract in
terms of what each customer can expect1. Typical SLAs
describe characteristics such as expected performance [14]
and expected data availability (e.g. SQL Azure’s SLA [4]).
Given the SLAs, the goal of the DC provider is to provision
enough resources to meet the SLAs, while minimizing the
total operating cost, so as to maximize their profit.

Notice that the objective here is to minimize the total
operating cost (TOC). In this paper, we consider the TOC
to include the amortized hardware cost (incurred during the
initial purchase and amortized over the expected lifespan of
that hardware), and the run-time energy costs incurred in
powering that hardware when running the workload. We
recognize that there are other other components to TOC,
including the amortized cost of the actual DC facility and
other fixed equipment costs [16]. In this paper we ignore
these costs since these costs vary widely based on how the
DC is operated and setup. However, it is fairly straight-
forward to incorporate these costs in our framework.

Now consider the impact of heterogeneous I/O hardware
on the TOC. Different I/O devices have different initial
costs, storage capacities, performance, and run-time energy
costs. SSDs generally run cooler than HDDs (the energy
savings is often an order of magnitude more with SSDs),
but cost more (often more than 10X for the same storage).
SSDs have far better random I/O performance. However,

1We recognize that the term SLA is a broader contractual
concept, and that individual components, such as perfor-
mance targets, are specified in the SLAs as Service Level Ob-
jectives (SLOs). However, for simplicity we use the broader
term SLA in this paper.
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HDD HDD Raid 0 L-SSD L-SSD Raid 0 H-SSD
TOC/GB/hour (cents) 3.47× 10−4 4.49× 10−4 7.65× 10−3 9.29× 10−3 1.69× 10−1

Sequential Read (ms/IO) 0.072 (0.174) 0.049 (0.096) 0.036 (0.053) 0.021 (0.037) 0.016 (0.013)
Random Read (ms/IO) 13.32 (8.903) 12.19 (2.712) 1.759 (1.468) 1.570 (0.826) 0.091 (0.024)
Sequential Write (ms/row) 0.012 (0.039) 0.011 (0.034) 0.020 (0.341) 0.013 (0.082) 0.009 (0.025)
Random Write (ms/row) 10.15 (8.124) 11.55 (3.770) 62.01 (37.45) 21.14 (17.71) 0.928 (0.986)

Table 1: The Cost and I/O profiles of different storage classes under 1 and 300 degree of concurrency: (1) The first

row lists five different storage types/classes that we use in our experiments. These storage types are discussed in

more detail in Section 4.1. L-SSD stands for Low-end SSD, H-SSD stands for High-end SSD. (2) The second row

shows the storage cost in terms of cents per GB per hour, calculated using the method described in Section 2.1. (3)

The remaining four rows show the performance of the storage types on four typical I/O access patterns. In each cell,

the boldfaced number is for a workload with a single DB thread, whereas the number in the parentheses is the I/O

performance with 300 concurrent DB threads. See Section 3.5 for details about the concurrency parameter.

the sequential I/O performance of SSDs is comparable to
HDDs (which are often setup in RAID configuration), or
could be lower than the sequential performance of HDDs
for the same cost [23]. Within the context of our problem
statement, if we measure the (TOC) for each byte of storage
for each unit time of usage, then different I/O devices have
different costs, as shown in the first row of Table 1.
Thus, provisioning the I/O storage subsystem to mini-

mize the TOC is an optimization problem that considers
the range of available I/O devices, examines the capacity
constraints for each device, and the performance character-
istics of each workload and the I/O devices, to compute
a data layout that minimizes the TOC, while meeting the
SLAs. In this paper, we propose, implement, and evaluate
a technique to address this problem.
The contributions of this paper are as follows:

1. To the best of our knowledge this is the first paper to
present this new problem of data placement to mini-
mize the TOC for cloud-hosted DBMSs.

2. We present a practical solution, called DOT, for the
data placement problem that can be incorporated in
existing DBMSs. The DOTmethod extends the DBMS
query optimizer’s cost estimation component to con-
sider the I/O speeds of various storage devices. DOT
then exploits the ability of most modern DBMSs to
output query plans (without actually executing the
plan) that are then fed its TOC optimizing compo-
nent. DOT’s TOC optimizing module uses a novel
heuristic to compute a desirable data placement.

3. Finally, we have implemented the DOT method in
PostgreSQL, and using TPC-H and TPC-C based work-
loads to verify its effectiveness, showing that in many
cases, the data layout recommended by DOT is up to
5X cost-effective than other simple layouts.

On a cautionary note, we acknowledge that in this ini-
tial paper, we only focus on a small part of the problem
of minimizing TOC in DCs. For example, we focus only
the I/O subsystem, we have focused on relatively simple
workloads, ignored multi-tenancy, and we do not consider
dynamic workload migration. The area of minimizing TOC
in DBMSs is fairly new, and there are many open unsolved
problems – we hope that this work seeds other work in this
area to examine and solve these many open problems.
The remainder of this paper is organized as follows: Sec-

tion 2 introduces our cost model and the problem definition.

Our method for computing the data layout is described in
Section 3, and Section 4 contains experimental results. Dis-
cussions about several possible extensions to this work are
included in Section 5. Related work is presented in Sec-
tion 6, and Section 7 contains our conclusions and points to
directions for future work.

2. PROBLEM DEFINITION
To illustrate the problem of TOC-based storage provision-

ing, consider the following motivating scenario: Given a
data center with many database workloads, a data center
administrator needs to build a database server configuration
that consists of various storage devices. A critical question
is how to choose the storage devices and how to place data
on these devices for each workload. Although it is said that
a high-end SSD performs much better than a hard disk drive
(HDD), the administrator is not sure if it pays off in terms of
the (TOC) cost. The administrator wants to achieve better
cost-performance while the performance (e.g., response time)
meets the given requirements as set by individual SLAs.

2.1 Cost Model
We note that coming up with a cost (price) model of a

storage device is a complex problem as it depends on various
factors, such as vendor agreements and volume discounts. In
this initial work in this area, we focus on a relatively simple
model that is defined as follows:

Storage price (cent/GB/hour): For each storage, the
amortized storage cost is calculated and amortized by space
and time (cent/GB/hour). Table 1 show our calculated stor-
age prices for five actual devices: (1) HDD, (2) HDD RAID
0, (3) L-SSD, (4) L-SSD RAID 0 and (5) H-SSD. In this cal-
culation, the purchase cost of the I/O device is distributed
over 36 months, and the energy cost is computed using a
cost of 0.07 per kWh of energy consumption [16].

We model the available storage classes asD = {d1, .., dM},
where each di is a specific storage class (e.g. HDDs in RAID
0 configuration). The price of dj is denoted by pj , and the
price vector P = {p1, .., pM}.

Layout cost (cent/hour): Assume that a database is laid
out on D, taking Sj GB space for each class dj (Sj ≥ 0).
Now, let L denote this particular layout. (We describe how
to compute the layout L in Section 3.4). Then, the cost
per hour for this layout L, denoted as C(L), is computed as
C(L) = Σdj∈D(pj ∗ Sj).

Workload cost (TOC) (cent/task): Assume that the
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Figure 1: Allocating objects to storage classes

database with layout L achieves a throughput T (L,W ) (mea-
sured in tasks/hour) for a given workload W . Then, the
workload cost is defined as C(L,W ) = C(L)/T (L,W ) (more
details are below in Section 2.3). In this paper, we refer to
this workload cost as TOC.
Our problem is to find a layout L over D that minimizes

C(L,W ) for a given workload W under the price model P
with constraints on storage capacity and workload perfor-
mance, as described in the remainder of this section.

2.2 Data Layout and Capacity Constraints
We assume that the storage system provides M different

classes of storage D = {d1, · · · , dM}. A storage could be an
individual device, or a RAID group, and we use cj to denote
the capacity of the storage class dj .
A database instance consists of a set of objects O =
{o1, · · · , oN}, such as individual tables, indices, temporary
spaces or logs, that must be placed on one of the storage
classes in D. We use si to denote the size of the data object
oi. (In this paper, we do not consider partitioning or repli-
cation of objects, which are important considerations and
promising directions for future research.)
A data layout L is defined as a mapping from O to

D, where L(o) indicates the storage mapping for object o.
Let Oj denote a set of objects laid out on dj , i.e., Oj =
{o|L(o) = dj , o ∈ O}. A valid data layout must conform to
the capacity constraint of each storage, i.e., Σoi∈Oj

si < cj
(j = 1, · · · ,M). Figure 1 illustrates a sample layout.

2.3 Workloads
We model a workload, W , as a set of query sequences,
{[q11 , · · · , q

1
n], · · · , [q

c
1, · · · , q

c
n]}, where each qji is a database

query, and c denotes the concurrency of the workload W .
Let t(L,W ) be the execution time of W under layout L.
Then, the workload cost (TOC) is C(L,W ) = C(L)∗t(L,W ).

2.4 Performance Constraints
In our model, we assume that there are performance re-

lated SLA constraints associated with the queries (so there
is some limit on the query performance degradation that
can be tolerated). These performance constraints T can be
modeled as the upper bound of each query execution time,
T = {tji}, where tji is the response time cap for query qji .
While the framework above uses query response time as

the performance metric, this framework can be adapted to
consider other performance metrics, such as throughput rate.
In fact, in Section 4, we use response time constraints for
individual queries for the TPC-H DSS workload, and use
throughput constraints for the TPC-C OLTP workload.

Figure 2: Overview of the DOT method

In this paper, rather than using an absolute performance
constraint, we define the performance constraint as a ratio
that is relative to the best performance (similar to the way
the measure degradation limit that was used in [26]). For
instance, the performance constraint 1/3 means that the
workload can be up to 3 times slower than the best case
(e.g., when all the objects are placed on a high-end SSD,
when a high-end SSD is one of the available storage classes).
Using this method of defining the performance constraint,
we can demonstrate various cases of cost-performance trade-
offs, and compare them to the “best” performing case.

We also note that our framework can be generalized to
allow a broader definition of performance constraints, in-
cluding capturing a general distribution of the performance
metric (e.g. must be faster than x seconds in 95% of the
cases, and faster than 1.5x seconds in 99% of the cases).
Such extensions are part of future work.

2.5 Problem Formulation
Our problem can be formally stated as follows:
Input: (1) Database objects O = {o1, · · · , oN}, (2) Stor-

age classes D = {d1, · · · , dM} with price (TOC/GB/hour)
P = {p1, · · · , pM} and capacity C = {c1, · · · , cM}, (3) Query
workload W = {[q11 , · · · , q

1
n], · · · , [q

c
1, · · · , q

c
n]} with perfor-

mance constraints T = {tji}.
Output: A layout L : O → D that minimizes the TOC

C(L,W ) = C(L) ∗ t(L,W ) for a given W where

C(L) = p1 ∗ (Σoi∈O1
si) + · · ·+ pM ∗ (Σoi∈OM

si)

under the capacity constraints, Σoi∈Oj
si < cj (j = 1, · · · ,M),

and performance constraints T = {tji}.

3. THE DOT METHOD
A straightforward way to solve the layout optimization

problem formulated above (in Section 2.5) is to explore the
space of all possible layouts, and then validate the perfor-
mance of each layout candidate. However, this naive ap-
proach is too expensive, since if we have M different storage
classes/devices and N data objects, then the number of all
possible data layouts is exponentially large, that is MN .

Our method to compute a Data layout Optimized to re-
duce the TOC, called DOT, is shown in Figure 2. There
are four steps/phases in our solution: profiling, optimiza-
tion, validation and refinement.

The technique starts by profiling the workloads on some
baseline layouts, L1, · · · , Lk, to generate a number of work-
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Procedure 1 Optimization Phase of DOT

Input:DOT input < O,D,P,C,W, T >, workload profile X
Output:Layout L∗

L← L0, L
∗ ← L

c∗ ← estimateTOC(W,L)
∆← enumerateMoves(O,D, P,X)
for i = 0→ |∆| do

m← ∆[i], Lnew ← m(L)
(c, T ′)← estimateTOC(W,Lnew)
if feasible({Lnew, C}, {T

′, T}) then
L← Lnew

if c < c∗ then
L∗ ← L, c∗ ← c

end if
end if

end for

load profiles that are then used in an optimization phase.
Briefly, a workload profile models the I/O behavior of the
workload when it runs on a baseline layout (e.g. for the
query select count(*) from Ai where id > A and id <

B, it estimates how many random and sequential read I/Os
are incurred on the table Ai when the table Ai and its indices
are placed using some specific layout.) We discuss the pro-
filing phase and the baseline layouts in detail in Section 3.4.
Then, in the optimization phase, we employ an heuristic

approach that makes use of the workload profiles and the
workload performance estimates from an extended DBMS
query optimizer to explore the space of possible data layouts.
This optimization phase outputs an recommended layout L∗

that satisfies all the constraints (See Section 2.5). We de-
scribe this heuristic optimization approach in Section 3.1.
The extended DBMS query optimizer has a new cost esti-
mation module that considers the different I/O speeds of
storage devices to give more precise estimates. We discuss
how to extend the query optimizer in Section 3.5.
The (heuristic) method used in the optimization phase is

not guaranteed to output a feasible layout, and rather than
returning a recommended layout, it may return an answer
marked as “infeasible,” which may mean that the process
missed a feasible layout that exists (i.e., false negative), or
that there is no feasible layout since the performance con-
straints are too strict. In either case, the performance con-
straints must be relaxed in order to compute a layout. The
third phase, namely the validation phase, checks if the rec-
ommended layout really confirms to the performance con-
straints through a test run of the workloads on the recom-
mended layout. If the test run “fails”, then the system goes
to the refinement phase. This refinement phase uses real
runtime statistics (such as the actual numbers of I/O in-
curred in the test run, buffer usage statistics, etc.), and uses
those as the input (instead of going to the profiling phase)
to redo the optimization phase. In the interest of space, we
do not discuss the refinement phase in detail in this paper.

3.1 The Heuristic Approach used in DOT
The pseudocode for the heuristic optimization module in

DOT is shown in Procedure 1. This procedure enumerates
the layout candidates and returns the layout, L∗, that has
the minimum estimated TOC (i.e., C(W,L)) amongst all
the candidates. The challenge here is how to enumerate a
promising subset of the possible layouts.

Our basic approach is to (1) start from a layout L0 that
places all the objects on the most expensive storage class
(say, d1) and (2) gradually move objects from d1 to other
less expensive storage classes as long as the new layout Lnew

and its estimated performance T ′ satisfies the capacity con-
straints C and the SLA constraints T (checked by procedure
feasible in the pseudocode). Notice that, in our approach,
the move candidates, ∆, are generated only once at the be-
ginning of the procedure and are applied one by one, yielding
|∆| layouts to be investigated.

The key component of this procedure is to generate ∆,
a sequence of object moves. For each iteration, a move m
in ∆ is applied to a layout L, resulting in a new layout
m(L). Here, as a heuristic, we want to apply a more ben-
eficial move (i.e., larger TOC reduction) earlier. The sub-
procedure enumerateMoves should generate move candi-
dates in such a promising order (we provide the pseudocode
later in Procedure 2), which we achieve by using a heuris-
tic function (Section 3.3) to assign a priority score for each
move. This function considers the impact of a move that
comprises of a layout cost reduction and a workload perfor-
mance penalty. The performance penalty is estimated based
on the estimated I/O time over the objects. After sorting
the move candidates in terms of their priority scores, we
apply them in sequence to generate new candidate layouts.

A simple method to generate a set of move candidates is
to move an object o ∈ O to a storage class s ∈ D one by
one, as was done in [10]. In this case, the sub-procedure
enumerateMoves would generate M moves for each object.
By applying the moves one by one, DOT would investigate
O(MN) layouts. However, this approach has a serious lim-
itation as it ignores the interactions between the objects.
Since the move of one object can significantly change the
I/O access pattern of another object, by ignoring the inter-
action between the objects, this simple approach ignores the
change in performance (e.g. the amount of I/O time) and
indirectly affects the calculations of priority scores.

A notable example of such interaction between objects is
seen between a table and its index: Assume that a table has
an index (e.g. B+ tree) on its primary key, and a query
wants to retrieve records in a given range on its primary key
(e.g., select * from table A where A.id > 10 and A.id

< 1000). Now consider a placement of the index on either
an SSD or a HDD, and the following question: What is
the difference in terms of performance of the given workload
for these two different placements of index? The answer
to this question depends on where the table is placed. For
instance, when the table is on the HDD, the query planner
may choose to only use a sequential scan on the table to
execute the query. In this case, the placement of the index
has no impact to the I/O cost since it is not accessed at
all. However, if the table is placed on the SSD, placing the
index on the SSD may let the query planner choose an index
scan to access both table and index for greater performance
by leveraging the SSD’s faster random I/O speed. Thus, we
should not ignore the interaction between objects, e.g. a
table and its index.

Our heuristic approach is to put objects into groups, re-
ferred to as object groups, and consider interaction only
within a group: we put a table and its indices in a group
and consider all the combinations of their placements on dif-
ferent storage classes. For example, in the case of a table
with one index, and only two devices – an HDD and an SSD
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Procedure 2 enumerateMoves: Enumeration of moves
Input:< O,D, P,X >
Output:a list of moves ∆

G← grouping(O), ∆← φ, Σ← φ
for all g ∈ G do

for all p ∈ D|g| do
m← move(g, p)
s← score(m,X,D, P )
∆← append(∆,m), Σ← append(Σ, s)

end for
end for
∆← sort(∆,Σ)

– we consider (1) placing both the table and its index on
the HDD device; (2) placing the table on the SSD device
and the index on the HDD device; (3) placing the table on
an HDD device and the index on the SSD device, and (4)
placing both the table and its index on SSD device.
On the other hand, in our heuristic approach, we assume

independence between objects across different groups to re-
duce the search space.
Procedure 2 shows the pseudo code of enumerateMoves,

which employs the idea of object groups. The high-level
description of the procedure is as follows (see Section 3.2 for
details): Data objects O are classified into groups G. For
each group g in G, all the placement combinations of objects
in g over storage classes D are considered, and a move m is
generated for each combination. ∆ is a list of such moves
sorted in the order of priority.
Next, we describe how move candidates are enumerated

based on object groups (Section 3.2), the priority score of
move candidates (Section 3.3), and workload profiles that
are used to calculate the priority score (Section 3.4).

3.2 Object Groups
We divide the database objects in O into object groups

so that interactions between objects in a group is higher
for objects within a group than objects in different groups.
We assume that any performance gain (or loss) due to a
move (from one storage class to another) is independent
between objects in different groups. Let us represent a
group of objects as a vector g = (o1, · · · , oK). Then, the
placement of a group can also be represented as a vector
p = (d1, · · · , dK) ∈ DK . The number of possible placements
of a group is O(MK), where K is the size of the group.
The move of a group g to p is denoted as m(g, p). As

shown in Procedure 2, enumerateMoves considers all the
possible moves m(g, p). The size of ∆ is thus O(GMK)
where G is the number of groups and K is the size of a
group (N = GK).
While in the current version of DOT, a group consists

of the table and its indices, in general, we could introduce
other grouping to capture further interactions. However, we
need to carefully choose a grouping scheme so that the size
K does not become too large. Notice that, if we put all the
objects in one group to consider all interactions, our algo-
rithm becomes an exhaustive search method to enumerate
all the O(MN ) layouts.
In the current grouping scheme, G is the number of tables

and K is as large as the number of indices on each table.
Since in many practical cases K is likely to be far smaller
than G, so the number of layout candidates O(GMK) in

DOT is much smaller thanO(MKG) (i.e., exhaustive search).

3.3 Priority Score
In Procedure 2, a priority score s for a move m is cal-

culated using workload profile X and storage information
(D,P ). The priority score is derived from two components:
performance penalty and layout cost saving.

First, we describe the notion of a performance penalty that
estimates the impact of a move m relative to the workload
performance. The performance penalty is described using a
term called the I/O time share, which is the accumulated
I/O time over objects o in g.

We use the following four types of I/Os to model the typ-
ical DBMS query I/O access pattern [10]: sequential read
(SR), random read (RR), sequential write (SW) and ran-
dom write (RW). Now, let R denote the set of these I/O
types. As shown in Table 1, we are provided with the time
of one I/O operation τd

r for each type r ∈ R and storage
d ∈ D. From this information, we we need to estimate the
accumulated number of I/O operations on o.

We use the profiling phase to estimate the number of I/O
operations for each object (Section 3.4). As we have dis-
cussed above, the number of I/O operations on a specific
object can be very different depending on the placement of
not only this object but also other objects in the same group.
Thus, we estimate χp

r [o], the number of I/O of type r on o
when the group g is placed in a specific placement p.

Based on the workload profiles X = {χp
r [o]}, we estimate

the I/O time share of an object group g when it is placed
in p:

T
p[g] =

∑

o∈g

∑

r∈R

χp
r [o] ∗ τ

p[o]
r (1)

Here, p[o] is the storage class assigned by the placement p
for the object o.

Then, the performance penalty of a move m(g, p) from the
initial layout L0 can be defined as follows:

δtime[m] = T
p[g]− T

0[g] (2)

Now consider the component the layout cost saving, which
estimates the impact of a move m on the layout cost C(L).
Let m(L) be the layout given by applying m to L. Then,
the cost saving of a move m is:

δcost[m] = C(L0)− C(m(L0)) (3)

The definition of C(L) is given in Section 2.1.
Finally, the priority score of a move m, denoted as σ[m],

is defined by considering both the performance penalty and
the layout cost saving, and is calculated as:

σ[m] = δtime[m]/δcost[m] (4)

The procedure enumerateMoves sorts all possible moves
m(g, p) by their scores in the ascending order.

3.4 Workload Profiles
The objective of the profiling phase is to measure the I/O

behavior of the workload when an object group g is laid out
using the placement p. This phase produces several work-
load profiles, where each profile corresponds to a specific
placement. As discussed above, the placement p of an ob-
ject group can impact the optimizer’s choice of query plans,
resulting in very different I/O costs/profiles. Thus, when we
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profile the workload, we consider these object interactions
by enumerating all possible placements of an object group.
A lightweight method to enumerate all possible place-

ments of the object groups is to use a small set of layouts,
referred as baseline layouts. For instance, consider a case
where each table has only one index on the primary key.
Then we have a set of object groups of size 2 (i.e., K = 2).
For each group, we want to measure I/O profiles for all
the M2 placement patterns. To do this, we use the M2

baseline layouts {L(i,j) : 1 ≤ i, j ≤ M} defined as follows:
L(i,j) places all the tables on di and all the indices on dj .
That is, each group object has the same placement p, where
p = (di, dj). In general, we have O(MK) baseline layouts
whereK is the (maximum) size of an object group. Compare
to the number of all possible layouts that cover all the com-
binations amongst different groups (which is again O(MN )),
profiling the workloads on the baseline layouts has a lower
total complexity when K ≪ N . Notice that, by using only
the baseline layouts in this manner, we assume independence
of the placements across different groups, which is the same
assumption we made for our heuristics.
A workload profile on a baseline layout, Lp, consists of the

number of I/O in terms of the I/O types and the data ob-
jects. Here, χp

r [o] is given as the number of I/Os of type r on
object o when the workload is executed over Lp. The work-
load profiles can be calculated either through (a) an estimate
computed by our extended query optimizer as described in
Section 3.5, or (b) a sample test run of the workload on Lp.
(We see both cases in the results described in Sections 4.4
and 4.5 respectively.)
We also notice that there is an opportunity to prune the

baseline layouts that are being profiled. If we can infer that
the query optimizer will choose the same plans on layouts
Lp and Lq, we only need to profile one of these. In Section
4.5, we show a special case where only one layout is profiled.
A general pruning method, however, is an open issue.

3.5 Extended Query Optimizer
The heuristic step in DOT (described above in Section 3.1)

estimates the TOC and then checks the performance con-
straint for a candidate layout by calling the query opti-
mizer’s estimation module to estimate the performance of
the workload for that layout. To enable this check, the query
optimizer should support, or has to be extended to support:
(1) query plan optimization that is aware of the I/O profiles
of different storage classes; (2) execution time estimation of
the derived query plan. In this paper, we have extended the
open source RDBMS, PortgreSQL, to accommodate these
requirements of the DOT framework.
A typical RDBMS such as PostgreSQL does not consider

different I/O performances for heterogeneous storage classes.
However, as we have discussed, the best query plan can de-
pend on the specific data layout. For example, the choice
between a nested-loop join using an index (indexed NLJ)
and hash join (HJ) given specific selectivities depends on
the random versus the sequential I/O performance charac-
teristics of the different storage classes. In other words, if
we change the data layout, the cheapest query plan may
also change, and we need make the optimizer aware of this
interaction. To do that, we incorporate I/O profiles (as seen
in Table 1) into the query plan cost estimation module.
Next, we introduce a module that estimates the query re-

sponse time. The PostgreSQL optimizer can output a query

HDD L-SSD H-SSD
Brand & WD Caviar Imation Fusion IO
model Black M-Class 2.5” ioDrive
Flash type N/A MLC SLC
Capacity 500GB 128GB 80GB
Interface SATA II SATA II PCI-Express
RPM 7200 N/A N/A
Cache Size 32MB 64MB N/A
Purchase cost $33 $253 $3550
Power 8.3 Watts 2.5 Watts 10.5 Watts

Table 2: Storage Class Specifications

plan without actually executing the query. This plan in-
cludes statistics, such as the query plan cost, the number of
I/Os for a scan and the number of rows processed by query
operators (e.g., hashing or sorting). We utilize these statis-
tics to estimate the I/O time associated with executing a
query, and use the CPU time estimates already provided by
the query optimizer to approximate the query response time
as the sum of these two components. Methods for estimat-
ing the CPU time in this setting are well known [26], and
here we only focus on estimating the I/O time.

For simplicity, we do not analyze the effect of cached data
in the buffer pool, which can significantly reduce the num-
ber of actual I/O in the query. We also ignore the cost of
actually outputting the results.

Instead of using the I/O performance numbers of the de-
vices published by the manufacturer or as seen from the OS
level, we benchmark the effective I/O performance of each
I/O request as observed by the DBMS, since: (1) with this
approach, various overheads (e.g. latch overhead) and ben-
efits (e.g. DB buffers) are incorporated. (2) we can model
the influence of concurrent DB queries on I/O performance.

Here we use the term degree of concurrency to refer to
the number of concurrent DBMS query processing threads/
processes, and use this concept to model how the I/O sub-
system behaves when there are concurrent queries.

3.5.1 Benchmarking the I/O Characteristics
In general, our method of benchmarking the storage classes

follows the profiling method used in [10]. However, we gener-
alize their method for benchmarking the storage class under
certain concurrency: we concurrently run K threads that
issue queries over their own tables, i.e., thread i issues a
query to table Ai. Each table has a primary key id which
is indexed with a B+ Tree.

Read I/O: For read queries, we use the count(*) query
so as to minimize the costs associated with producing the
output. We make sure each read request is served from the
disk and the results of queries are not from the existing
statistics in DMBS (e.g. catalogs). Each thread can issue
the following queries:

• Sequential Read (SR): To measure the SR perfor-
mance, each thread issues the following query: select
count(*) from Ai.

• Random Read (RR): To measure the RR speed,
each thread issues a sequence of queries, using the
template: select count(*) from Ai where id = ?,
with randomly selected id values.

The time for each I/O is calculated by dividing the total
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elapsed time of running all queries by the total number of
read I/O requests.
More details about how we benchmarked the SR I/O and

RR I/O patterns are as follow.
SR I/O: In PostgreSQL, two internal views, namely

pg statio user tables and pg statio user indexes, main-
tain statistics on each table and index respectively. One
of these statistics is to count how many pages of a table
or an index are read from the disk (e.g. heap blks read,
idx blks read) during the query execution. Before we ran
the SR queries (i.e. select count(*) from Ai), we reset all
the statistics to 0. After the SR queries finished, we use the
value of the heap blks read statistic on Ai as an estimate
of the number of disk I/Os that were incurred on the table
Ai. If the query results came from the catalog or index-only
scan without many physical reads from the disk, then the
value of the heap blks read variable would be close to 0,
which wasn’t the case. Also, iostat revealed that indeed
the queries were incurring disk I/Os.
RR I/O: When we ran the RR I/O queries, the disk I/Os

originates from both the table and the index. So, we use the
sum of the heap blks read statistic and the idx blks read

statistic as the total number of disk I/Os. We also checked
that the values of the statistic variables heap blks read and
idx blks read to ensure that a realistic number of I/Os were
incurred to the disk, instead of being serviced from the buffer
pool.
Write I/O: Estimating the write I/O performance is

trickier due to the optimizations in the OS and the DBMS.
(e.g. delayed writes for better performance). Thus, instead
of estimating the performance of each I/O request, we esti-
mated the write performance per row, which is more conve-
nient and robust for the query optimizer to use. For write
the I/O benchmark queries, we do not batch the commits
and all DB logs are directed to a separate disk, to minimize
the overhead associated with logging.
The write I/O characteristics are benchmarked as follows:

• Sequential Write (SW): The SW performance is
measured by having each thread issue a large number
of insertion queries, where each query inserts a single
row using the template: insert....into Ai.

• Random Write (RW): To measure the RW perfor-
mance, each thread issues a sequence of update queries
using the template update Ai set a = ? where id

= ? with randomly selected id values. Notice that
an update query consists of random read and random
write. To estimate RW from update queries, we sub-
tract the RR I/O time (as estimated above) from the
total RW execution time as follows: First, we run the
same number of RR queries with the same buffer pool
size and concurrency as we run the RW queries. After
the RR queries finish, we measure their total elapsed
time and deduct it from the total elapsed time
of running the RW queries. After this deduction,
the remaining time is the total time for all RW I/Os
without the RR I/O component. Then, we compute
each RW I/O time by dividing the remaining time by
the number of RW queries.

Table 1 shows the results from running this benchmark
on each storage class that we use in our evaluation (below),
with degree of concurrency values of 1 and 300. In our ex-
periments described below, we use values with concurrency

Figure 3: The original TPC-H workload with rela-
tive SLA = 0.5. The number in parenthesis associ-
ated with each label indicates the PSR value (%).

1 for the DSS workloads and 300 for the OLTP workloads.
Finally, we note that our DOT framework simply needs

some method to characterize the I/O devices. The method
described above is simply what we used in our evaluation in
this paper, and can be substituted with any other method
without impacting the generality of our DOT framework.

4. EXPERIMENTAL RESULTS
In this section, we experimentally evaluate our layout

technique using an implementation of DOT in PostgreSQL,
and demonstrate the effectiveness of our methods using both
the TPC-H benchmark (to represent a DSS workload) and
the TPC-C benchmark (to represent an OLTP workload).

4.1 Hardware and Software Specifications
Our experimental platform is a server system with a 2.26GHz

Intel(R) Xeon CPU E5520 with 8 cores and 64GB ECC
memory. To allow experiments in parallel and to avoid hav-
ing to swap I/O devices for each experiment, we actually
used two machines that were identical (same CPU, mother-
board, memory, etc.), but had separate storage subsystems.
These two storage subsystems are:

• Box 1: one HDD RAID 0, one L-SSD and one H-SSD.

• Box 2: one HDD, one L-SSD RAID 0, and one H-SSD.

DOT is performed for each box individually, resulting in
two separate recommendations. For instance, DOT on Box1
recommends a layout given the 3 storage classes HDD RAID
0, L-SSD, and H-SSD as part of the input.

The specifications of the HDD, the L-SSD and the H-SSD
is shown in Table 2. RAID 0 is implemented using two iden-
tical storage devices and a Dell SAS6/iR RAID controller.
This controller costs $110 and has a 256MB onboard cache.

The storage price for these storage classes, shown earlier
in Table 1, is calculated from the amortized cost (over 36
months) of its purchase cost (including the RAID controller
if needed) and the $0.07kWh data center energy cost [16].
The power dissipation in Table 2 is derived from the average
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(a) Box 1

(b) Box 2

Figure 4: The advised data layouts with relative
SLA = 0.5 and the original TPC-H workload.

values for read and write operations for each storage device.
Also, the power surcharge of the RAID controller is 8.25W.
The server runs CentOS (Linux kernel 2.6.18) and Post-

greSQL 9.0.1, with our extended query optimizer (as dis-
cussed in Section 3.5) and the I/O profiling table shown
in the Tables 1. We set the PostgreSQL shared buffer to
4GB. In addition to the storage subsystems described above,
each machine had an additional 500GB disk that holds the
OS, DBMS binaries, and the database log files. Finally, OS
caching is turned off for both the log files and the data disks.

4.2 Simple Layouts
We use the following “simple” layouts to compare with

the layouts that are recommended by DOT:

• All H-SSD: All objects placed in the H-SSD (i.e., L0)

• All L-SSD RAID 0: All objects placed in the L-SSD
RAID 0

• All L-SSD: All objects placed in the L-SSD

• All HDD RAID 0: All objects placed in the HDD
RAID 0

• All HDD: All objects placed in the HDD

• Index H-SSD Data L-SSD: Indexes in the H-SSD
and Data in the L-SSD.

We have also implemented theObject Advisor (OA) [10]
method in PostgreSQL, as OA is the closest previously known
method to DOT. We note that OA optimizes only for work-
load performance and not the TOC.

4.3 Performance Metrics
As discussed in Section 2.4, following the methodology

in [26], as a performance measure we use a metric called the
“relative SLA”, which is the performance for a workload
with a given data layout compared to the performance of
that workload with all the data on the H-SSD (which is
typically the highest performing case). For instance, relative
SLA = 0.5 implies that the target performance SLA is half
of the performance with all the data on the H-SSD. For the
target performance metrics, we use the response time of each

Figure 5: The modified TPC-H workload with rela-
tive SLA = 0.5. The number in parenthesis associ-
ated with each label indicates the PSR value (%).

query for the TPC-H workload and the total throughput for
the TPC-C workload.

Notice that a simple layout, which is not aware of SLA,
can fail to meet the target performance. We need an overall
measure to indicate the degree of SLA violation of such a
layout. For the TPC-H workload, we measure the fraction
of the queries that don’t meet their relative SLA, using a
ratio called the performance satisfaction ratio (PSR). For
example, a PSR value of 75% means that 75% of queries in
the workload meet their relative SLAs and 25% of them do
not. For the TPC-C workload, we do not need an additional
measure since the throughput performance itself serves as
such an indicator.

4.4 TPC-H Experiments
For experiments on the DSS workloads, we used two fla-

vors of the TPC-H workloads. These workloads are:
The original TPC-H workload: Following the method-
ology in [22], we use 66 queries generated from the original
22 TPC-H query templates as this workload. Thus in this
workload, each TPC-H query occurs three times in the mix.
The workload is executed sequentially with the SR I/O as
the dominating I/O type.
A modified TPC-H workload: We use the exact five
TPC-H query templates (Query # 2, 5, 9, 11, 17) that were
used in [10]. These five queries are modified in the same
manner as in [10] to simulate an Operational Data Store
environment. The modifications to these queries is to add
more predicates (on the part key, order key and/or the
supplier key) to the “where” clause of the queries, so as to
reduce the number of rows that are returned. As a result,
this workload now has a mix of random and sequential read
I/O (Mixed I/O). This workload has a total of 5 query tem-
plates that are executed sequentially 20 times, to produce
a workload with a 100 queries. The actual queries that we
used in this experiment can be found in the Appendix A.

In these experiments, we vary the relative SLA (to values
of 0.5 and 0.25) without setting any capacity limits on the
storage classes.

In addition, we evaluate the heuristics in DOT by com-
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(a) Box 1

(b) Box 2

Figure 6: The advised data layouts with relative
SLA = 0.5 and the modified TPC-H workload.

paring it with an exhaustive search approach. For these ex-
periments, we use a smaller workload (for exhaustive search
to be tractable) and vary the capacity limits (to make it
more challenging for the DOT heuristics).
For all the TPC-H experiments, a 30GB TPC-H database

is generated (scale factor 20) and all the tables are randomly
reshuffled so that they are not clustered on the primary keys.

4.4.1 The original TPC-H workload
Figure 3 shows the cost/performance comparison amongst

the different layouts when the relative SLA is set to 0.5. The
response time is the time to complete the workload and the
cost is the measured TOC. The corresponding PSR values
are shown in parenthesis in the figure. So, for example, the
PSR value for the All L-SSD case is 95%.
From Figure 3, we make the following observations: First,

our heuristic layouts on Box 1 and Box 2 produce significant
savings — more than 3X — in terms of the TOC against the
All H-SSD layout. Second, our heuristic layouts outperform
the ones produced by OA, especially on Box 1. Looking
at the PSR values (shown in parenthesis in Figure 3), we
also notice that OA’s PSR is only 95% and 90% on Box 1
and Box 2 respectively, while DOT achieves a PSR of 100%
in both cases. Third, all the other simple layouts (except
the All H-SSD case) have a lower TOC, but lead to longer
response times. Finally, looking at the PSR numbers in Fig-
ure 3 (shown in the parenthesis) for these simple layouts, we
observe that these layout (except All H-SSD) have PSR val-
ues that are less than 100% – meaning that some queries in
these layouts don’t meet the required performance targets.
Figure 4 (a) and (b) shows our heuristic layouts for the

Box 1 and Box 2 configurations. In these figures, the pri-
mary index associated with a table is denoted by appending
the suffix “ pkey” to the table name (e.g. partsupp has an
primary index file called partsupp key).
From Figure 4, we observe that some table objects (e.g.

lineitem) that tend to be accessed frequently with the SR
I/O requests, are placed on the HDD RAID 0 in Box 1 and
on the L-SSD RAID 0 in Box 2. RAID 0 systems are very
cost-effective for SR I/O patterns as seen in Table 1: The
SSD RAID 0 achieves SR I/O performance comparable to

Figure 7: The modified TPC-H workload with rela-
tive SLA = 0.25. The number in parenthesis asso-
ciated with each label indicates the PSR value (%).

H-SSD (x1.3) with significantly lower storage cost (x0.055).
The HDD RAID 0 can be similarly compared with the L-
SSD (x1.36 faster at only x0.059 of the storage cost). DOT
leverages these RAID 0 systems to save on the TOC with
only a small (and acceptable) performance penalty.

Notice in Figure 4 that some tables (e.g. partsupp) and
their primary key indices are still placed on the H-SSD. In
fact, some queries (e.g., Query #2) involves RR I/O. Since
the performance gap between the H-SSD and the RAID 0
system is large for RR I/O, we still need to put these objects
on the H-SSD to meet the (relative) SLA requirements.

We have also repeated the experiment above with the rel-
ative SLA value set to 0.25. The heuristic layouts are similar
as the ones when the relative SLA is 0.5. and we omit these
results in the interest of space.

4.4.2 The modified TPC-H workload
Figure 5 shows the cost/performance comparison for the

different layouts on the modified TPC-H workload, when
the relative SLA is 0.5. From the PSR values in this figure
(shown in parenthesis in the figure), we observe that all the
simple layouts (except the ALL H-SSD case) fail to achieve
the target SLA, resulting in low PSR values.

Figure 6 illustrates the layout created by DOT when the
relative SLA is 0.5. Observe the difference from the origi-
nal TPC-H workload experiments (shown in Figure 4): now
DOT places most of the data objects on the H-SSD device
in both the Box 1 and 2 configurations. For this modified
workload we now have more selective predicates, and the
query optimizer has more opportunities to exploit the high-
performance RR I/O characteristics of the H-SSD device by
using indexed NLJ (INLJ). In fact, we have observed that
on the DOT layouts (across both box configurations), with
this modified TPC-H workload (and relative SLA = 0.5),
50% of the joins in the query plans for this workload are
INLJ, whereas only 11% of the joins in the original TPC-H
workload (discussed in Section 4.4.1) were INLJ.

Although DOT has to use mostly the H-SSD device to
meet the SLA, Figure 5 shows that DOT still saves on the
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(a) Box 1

(b) Box 2

Figure 8: The advised data layouts with relative
SLA = 0.25 and the modified TPC-H workload.

TOC compared to the All H-SSD layout.
Now, we relax the relative SLA to 0.25. The results for

this experiment are shown in Figure 7. From this figure, we
observe that the TOC with DOT is 5X lower than the TOC
with the All H-SSD layout, while achieving a 100% PSR.
The layouts that DOT recommends for this experiment

are shown in Figure 8. Compared to the case with relative
SLA = 0.5 (Figure 6), some bulk data (e.g. lineitem) are
now moved to the cheaper storage classes, such as the HDD
RAID 0 on Box 1, and L-SSD RAID 0 on Box 2.
Another interesting observation across the two different

relative SLAs of 0.5 and 0.25 above, comes from taking a
closer look at the ratio of Indexed NLJ (% INLJ) that are
used in each case with the DOT layouts on both box config-
urations. As noted above, with a relative SLA value of 0.5
about 50% of the join operations are INLJs. Looking at the
query plans for the case when the relative SLA value is 0.25,
we observe that only 33% of the query plans in the DOT con-
figurations (in both box configurations) are now INLJs. As
the SLA constraint loosens, DOT moved the data around
and switched query plans to use more hash join algorithms
(rather than INLJ) to achieve the target SLA. This observa-
tion demonstrates the need to consider query optimization
along with data layout optimization.

4.4.3 Heuristics Versus Exhaustive Search
In this section, we evaluate the effectiveness of the heuris-

tic introduced in Section 3.1. In this experiment, we com-
pare the heuristics with exhaustive search algorithms in terms
of the TOC and performance of the layouts that each method
recommends. The Exhaustive Search (ES) method explores
all possible layouts and evaluates each one of them using the
same TOC and performance estimation as DOT.
To allow the ES method to complete, we use a smaller

workload in this experiment. This workload consists of 33
TPC-H queries generated from the 11 TPC-H query tem-
plates, which are a subset of the original 22 TPC-H queries
template2. The reason why we use this subset of queries

2The queries in this subset include: Q1, Q3, Q4, Q6, Q12,
Q13, Q14, Q17, Q18, Q19, Q22

is that ES explores an exponential number (i.e., MN ) of
layouts. If we use the whole TPC-H data set (that con-
tains 16 objects), the number of all possible layout is 43
million, which we estimate would take about 3,500 hours
for ES to compute. To make the ES method run in a rea-
sonable amount of time, we use eight TPC-H data objects
(lineitem, orders, customer, part and their indices) and
a subset of TPC-H original queries for this experiment.

In this experiment, we fix the relative SLA to 0.5 and vary
the capacity limits on the storage classes to compare the
performance of DOT and ES. Adding capacity constraints
makes the feasible search space more challenging for the
greedy heuristics to explore.

We enforce capacity limits on the HDD RAID 0 and the
HDD storage devices. As shown in Section 4.4.1, the H-SSD
and the L-SSD devices (shown in Figure 4(a)) are not heav-
ily used in the original TPC-H queries, so adding capacity
limits on those storage devices is not very useful for this ex-
periment. We ran a test run of ES on both configurations
and found the space that it needs on the HDD Raid 0 device
in Box 1 and the HDD device in Box 2, which was 27GB
and 8.8GB respectively. Then, we set the capacity limits
for these devices to be around these limits, to 24GB and
8GB on Box 1 and Box 2 respectively, and then decrease
this limit by half each time.

The results for this experiment are shown in Figures 9
and 10. From these two figures, we find that in most cases,
DOT’s performance (both in terms of the TOC and the
response time) is comparable to that of ES. Thus, DOT is
an effective heuristic. As might be expected, DOT computes
the layouts orders of magnitude faster than ES taking about
9 seconds in each case, compared to 1,400 seconds for ES.

4.5 TPC-C Experiments
For the TPC-C experiments, we measured and compared

the performance of the different layouts on two metrics, the
New-Order transactions per minute(tpmC) and the TOC.
For this experiment, we used the Database Test Suite 2 [1]
(DBT2), which is a fair implementation of the TPC-C bench-
mark, and populated a 30GB (scale factor 300) TPC-C
database. DBT2 provides various workload parameters, such
as terminals/warehouse (term/W) and DB connections (DB
conn). In our experiment, we choose 300DB conn, 1 term/W,
set the measurement period of TPC-C workload to 1 hour,
and use two minutes to ramp-up the database.

4.5.1 Workload Profiling
We observed that most I/O patterns in the TPC-C work-

load are random accesses, even when all the data objects
are placed on the HDD. From this observation, we estimate
that the query plans will not change (from random access
to sequential access) even if the data objects are moved to
HDD. Thus, in this experiment, we only need one simple
layout: namely, the All H-SSD case.

To generate the workload profiles (see Section 3.4), we use
a test run instead of the estimates from the query optimizer,
since the TPC-C queries have short latencies, and the test
run can give actual I/O statistics. After a 5-minute test run,
our layout technique uses the workload profiles and the I/O
profiles (estimated under 300 degree of concurrency) to get
a TOC-effective layout.

4.5.2 Performance Results
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(a) No Limit (b) 24GB (c) 12GB (d) 6GB

Figure 9: ES versus DOT with different capacity limits on Box 1 for the TPC-H workload.

(a) No Limit (b) 8GB (c) 4GB (d) 2GB

Figure 10: ES versus DOT with different capacity limits Box 2 for the TPC-H workload.

SLA 0.5 SLA 0.25 SLA 0.125

HDD pk customer pk warehouse pk warehouse
RAID 0 pk district pk item,item i customer

item, pk item history new order
orders district pk customer
history i customer item, pk item

new order pk district orders
pk orders pk customer i orders

pk new order warehouse pk orders
pk warehouse pk order line history

i orders pk new order order line
orders pk new order

new order pk order line
i orders district

pk orders warehouse
pk district
customer

L-SSD i customer

H-SSD customer customer stock
pk stock, stock pk stock pk stock

warehouse order line
pk order line stock

order line
district

Table 3: DOT Layouts under different relative SLAs
on Box 1 for the TPC-C workload.

First, we evaluate the effect on the TOC when using DOT
with varying performance constraints. We ran the TPC-C
workload on both Box 1 and Box 2 with relative SLA values
of 0.5, 0.25, 0.125, without capacity limits on any of the
storage classes. Here, relative SLA = 0.5 means that the
observed tpmC should be higher half of the tpmC that can
be achieved with all the data on the H-SSD.
Figure 11 shows the effectiveness of each layout in terms

of the tpmC and the TOC. From this figure, we observe that

SLA 0.5 SLA 0.25 SLA 0.125

HDD pk warehouse pk warehouse pk warehouse
pk customer item, pk item item, pk item

orders pk orders pk customer
item, pk item pk district pk district

pk district history new order
pk orders pk customer pk new order
i orders new order orders

i orders pk orders
orders pk order line

pk new order i orders

L-SSD i customer i customer customer
RAID 0 i customer

H-SSD customer district warehouse
pk stock pk order line district

pk order line pk stock pk stock
district order line history

order line warehouse order line
warehouse customer stock

stock stock
history

new order
pk new order

Table 4: DOT Layouts under different relative SLAs
on Box 2 for the TPC-C workload.

the TOC with DOT decreases as the relative SLA is relaxed:
DOT on Box1 with the relative SLA = 0.125 has about 3X
smaller TOC compared to the All H-SSD case.

From the data layouts shown in Tables 3 and 4 we observe
that as the relative SLA is relaxed, more objects are shifted
from the expensive storage classes to the cheaper ones.

An interesting observation from Tables 3 and 4 is that
the L-SSD device in Box 1 is seldom used, since the L-SSD
device has poor random write (RW) performance, as seen
from Table 1. Even though the L-SSD device is faster than
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Figure 11: TPC-C Results

(a) No Limit (b) 21GB (rel. SLA 0.22)

Figure 12: ES vs DOT with different capacity limits
on Box 1 for the TPC-C workload.

the HDD RAID 0 device for RR I/O, the difference is not
big enough to overcome the L-SSD’s poor RW I/O and ex-
pensive TOC. Therefore, most objects are laid out on the
HDD RAID 0 and the H-SSD devices in Box 1. However, on
Box 2, the customer object is placed on the L-SSD RAID
0 device when the relative SLA = 0.125 even though it is
accessed frequently using RW I/O (Table 4). The reason for
this behavior is that the RAID 0 device can improve random
write performance by distributing the write evenly over the
two disks. Coupled with RAID 0, the L-SSD device can still
be utilized in the TPC-C workloads.
Overall, these results indicate that even with the TPC-C

like workload, DOT can produce TOC-efficient data layouts.

4.5.3 Heuristics Versus Exhaustive Search
We also compared the DOT heuristics introduced in Sec-

tion 3.1 to the Exhaustive Search (ES) for the TPC-C work-
load. In this experiment, we use the entire TPC-C bench-
mark, and set the relative SLA = 0.25. We also vary the
capacity constraints (as we did for the comparison with ES
in the TPC-H case described in Section 4.4.3). In this exper-
iment, we enforce capacity constraints only on the H-SSD,
since this device are often the most capacity constrained.
The specific capacity constraint values that we use for the
H-SSD are: No Limit and 21GB.
Notice that, given the stringent constraints both on the

capacity and the performance, there may be no feasible so-
lution. In such a case, we slightly relax the relative SLA

(a) No Limit (b) 21GB (rel. SLA 0.13)

Figure 13: ES vs DOT with different capacity limits
on Box 2 for the TPC-C workload.

and repeat the optimization as illustrated in Figure 2. This
process stops when ES finds a feasible solution.

The results for this experiment for Box 1 and 2 are shown
in Figures 12 and 13 respectively. Each graph is associated
with the capacity limit on the H-SSD device, and the final
relative SLA value. ES and DOT achieve almost same result
(tpmC and TOC). In this case, DOT computes the layouts
in 3 seconds compared to 800 seconds for ES.

We have also run the experiment above with relative SLA
values of 0.5 and 0.125 and capacity limits of 18GB, 15GB
and 12GB. The results presented above are representative
of the results in these other cases (with DOT and ES hav-
ing nearly the same TOC and tpmC performance); we omit
these additional results in the interest of space.

5. DISCUSSIONS
In this section, we discuss three possible extensions of this

work: namely, (1) other possible problem definitions, (2)
the discrete-sized storage cost model, and (3) a more com-
prehensive operation cost model. Finally, we run extensive
experiments to verify our DOT method can work well with
those extensions.

5.1 Other Problem Formulations
An interesting complementary problem to the one that

we use in this paper is to pick the “right” server hardware
from a range of options, for a pre-defined workload. In the
following, we formally define this problem. Then, we use ex-
perimental results to show that given some options about the
storage configurations, our DOT method is able to recom-
mend the TOC-efficient storage configuration and the data
layout, while guaranteeing the SLAs of the input workloads.
The details of the experiments are shown in Section 5.3.

5.1.1 Definition of the Generalized Provisioning Prob-
lem

Input: (1) Database objects O = {o1, · · · , oN}, (2) Stor-
age Configurations Options F = {f1, · · · , fX}, where each
fi uses the storage classes Di = {di1, · · · , d

i
M} with price

(TOC/GB/hour) Pi = {pi1, · · · , p
i
M} and capacity Ci =

{ci1, · · · , c
i
M}, (3) Query workload W = {[q11 , · · · , q

1
n], · · · ,

[qc1, · · · , q
c
n]} with performance constraints T = {tji}.

Output: A storage configuration fk with the data layout
Lk on fk: O → Dk that minimizes the TOC C(Lk,W ) =
C(Lk) ∗ t(Lk,W ) for a given W where

C(Lk) = Σdk
j
∈Dk

(pkj ∗ S
k
j )

under the capacity constraints, Σoi∈Ok
j
si < ckj (j = 1, · · · ,M),
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(a) α = 1 (b) α = 0 (c) α = 0.8

Figure 14: Generalized Model of Layout Cost with Different Values of α.

and performance constraints T = {tji}.

5.2 Discrete sized Storage Cost Model
In Section 2.1, we define the layout cost as C(L) =

Σdj∈D(pj ∗ Sj), where C(L) is in linear relationship with
the actual space usage Sj on dj . However, the storage de-
vices are generally bought in discrete-sized units (e.g. 40GB,
80GB, 120GB) so C(L) may not vary linearly with Sj . To
adapt to this discrete-sized case, we generalize our layout
cost definition as follows.
Layout cost (cent/hour): Assume that a database is laid

out on D, taking Sj GB space for each storage class dj (Sj ≥
0). The price and capacity of dj are pj and cj respectively.
Now, let L denote this particular layout.Then, the cost per
hour for this layout L, denoted as C(L), is computed as
follows:

C(L) = Σdj∈D[α ∗ (pj ∗ cj) + (1− α) ∗ (Sj/cj) ∗ (pj ∗ cj)]

As seen from the above formula, the layout cost C(L) is
composed of two parts: (pj ∗ cj) and (Sj/cj) ∗ (pj ∗ cj). The
first part, namely (pj ∗ cj), is the discrete cost determined
by the number of identical devices in a certain storage class.
The discrete cost has to be paid no matter how much space
is used in that storage class. On the other hand, (Sj/cj) ∗
(pj ∗ cj) is the linear cost determined by the proportional
space usage. The variable α is a tunable parameter that can
adjust the weights between the discrete cost and the linear
cost.
When α = 1, as shown in Figure 14a, the layout cost

is static for a certain range of storage capacity, and only
increases when a new additional storage is used.
When α = 0, as shown in Figure 14b, the layout cost is

in linear relationship with the actual space used, and our
original layout cost definition (Section 2.1) follows this case.
For other values of α, the layout cost is determined by

both the discrete cost and the linear cost, as shown in Fig-
ure 14c.
Our experiments in Section 5.3 demonstrated that with

the discrete-sized cost model, our DOT method can find the
most TOC-efficient data layout. Now, we use additional
experiments to study the impact of different values of α on
the choice of the TOC-efficient storage configuration.

5.3 Experimental Evaluation of the General-
ized Problem and Cost Model

In this section, we experimentally verify that our DOT
method can solve the complementary problem defined in
Section 5.1 by using the generalized layout cost model (as
introduced in Section 5.2).

5.3.1 Hardware and Software Specifications
We employ the same servers used in Section 4.1 with the

same CPU and memory size, but have different storage con-
figurations as follow:

• Box 3: one L-SSD and one H-SSD.

• Box 4: one L-SSD RAID 0, and one H-SSD.

We used a 150GB TPC-H database (scale factor 100)
which is larger than a L-SSD’s capacity (e.g. 128GB) in
Box 3 to illustrate the capacity constraints do exist in solv-
ing the provisioning problem.

We kept the same DB and OS setups as in Section 4.1,
except that the DB buffer pool was increased from 4GB to
20GB because the database size increased from 30G to 150G.
In this experiment, we use the same original and modified
TPC-H workloads as used in Section 4.4.

In the following section (Section 5.3.2), (1) the SLA is
set to 0.25 by default, and we will also consider one case
when the SLA is set to a much lower value of 0.06. (2) in
the following experiments, the data layouts recommended
by DOT always satisfies the given SLAs, so we do not focus
on a discussion of performance satisfaction ratio. As for the
new model of layout cost, we first set α = 0.95 to represent a
scenario where the layout cost is dominated by the discrete
cost. Then, we change α to 0.1 to examine the impact of
changing the α’s values on the choice of the TOC-efficient
storage configuration.

5.3.2 Experimental Results on TPC-H Workloads
We use two TPC-H workloads, both the original and the

modified workloads, to consider the impact of changing work-
loads.

Figure 15 shows the cost/performance comparison between
the Box 3 and Box 4 configurations with the original TPC-
H workload. The layout cost (cents/h) of each box is also
shown in parenthesis in Figure 15. From this figure, we ob-
serve that Box 4 has a limited gain in terms of the response
time compared to Box 3, since the original TPC-H workload
contains some CPU-intensive queries that dilutes the bene-
fits of the L-SSD RAID 0 over the L-SSD. However, when
considering the cost, Box 3 is more TOC-efficient than Box
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Figure 15: The original TPC-H workload with rel-
ative SLA = 0.25 and α = 0.95. The number in the
parenthesis associated with each label indicates the
layout cost.

Figure 16: The modified TPC-H workload with rel-
ative SLA = 0.25 and α = 0.95. The number in the
parenthesis associated with each label indicates the
layout cost.

4, because the layout cost of Box 3 is cheaper than Box
4, and Box 4 only has a marginally faster response time
than Box 3, so the improvement in performance is not large
enough to offset the higher layout cost of Box 4. There-
fore, when α = 0.95 and dealing with CPU-intensive work-
loads (e.g. hashing, sorting), our DOT method recommends
choosing a storage configuration with a cheaper layout cost
(e.g. Box 3).
On the other hand, when we use the modified TPC-H

workload, the result is shown in Figure 16. Here we observe
that Box 4 has a significant gain in terms of the response
time over Box 3, because the modified TPC-H workload is
more data-intensive and the benefit of faster storage classes
does matter here. When looking at the costs, we notice that
Box 4 is much more TOC-efficient than Box 3. As a result,
our DOT method suggests choosing the storage configura-
tion with higher layout cost and faster storage classes.
To make the result in Figure 16 more interesting, we re-

duce the SLA from 0.25 to 0.06. Now with this looser SLA,
DOT generates a new data layout on Box 4 that moves all
the data items to the L-SSD RAID 0 without putting any

Figure 17: The original TPC-H workload with rel-
ative SLA = 0.25 and α = 0.1. The number in the
parenthesis associated with each label indicates the
layout cost.

data on H-SSD. In this case, we artificially create a modi-
fied storage configuration based on Box 4 by plugging out
the H-SSD and only keeping the L-SSD RAID 0. The result
of this new configuration is also shown in Figure 16, which
generates the lowest cost over Box 3 and Box 4.

From the experiments above, we conclude that given the
different storage configuration options and a generalized lay-
out cost, we can still apply the DOT framework to compute
the TOC-efficient storage configuration and data layout.

5.3.3 Impact ofα’s Values
In our new layout cost model (defined in Section 5.2), α

is a variable that defines the weights between the linear cost
and the discrete cost. In this section, we use α = 0.1, as
compared with α = 0.95 in the above experiments, to see
how the values of α affect the choice of the TOC-efficient
storage configuration.

Figure 17 shows the price/performance comparison be-
tween Box 3 and Box 4 under the original TPC-H workload.
With α = 0.1, Box 4 has a faster response time than Box 3,
which is the same observation as was made when α = 0.95.
However, in terms of the TOC, Box 4 is cheaper, which is
different from the conclusion when α = 0.95 (Figure 15).
The reason for this change is that when α = 0.1, the layout
cost model is actually dominated by the linear cost compo-
nent, so the layout cost of Box 4 is only marginally more
expensive than that of Box 3. The performance gain on Box
4 is able to offset the difference in layout cost so that Box 4
becomes more TOC-efficient when α = 0.1.

For completeness, we repeat the same experiment as the
one above with the modified TPC-H workload. As expected,
the choice of a TOC-efficient configuration is the same as the
one when α = 0.95.

5.4 More Comprehensive Operation Costs
In Section 2.1, we mention that a storage price includes

the purchase cost and energy cost. In general, other costs,
like facility cost and management cost, could also be added
into the calculation of the storage price. In this section, we
discuss the impact of adding the facility and management
costs into the storage price.

To get a fair and accurate estimation of the facility costs,
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Components Costs
Servers $1,998,097
Networking Equipment $294,943
Power Distribution and Cooling $626,211
Power $474,208
Other Infrastructure $137,461
Overall $3,530,920

Management (3% of Overall) $105,927

Table 5: Monthly Costs of a Data Center with
46,000 Servers [3]. The last row was not included
in the original costs breakdown

we use the best publicly disclosed numbers about DC op-
erations that we know, which comes from James Hamilton.
His breakdown of a DC cost with 46,000 servers [3] is shown
in Table 5.
We are also aware that some readers may be concerned

about the administrative costs. Here is what Hamilton notes
about the administrative (or management) costs [3]: “Gen-
erally, at scale, admin costs round to zero. Even well run
medium-sized deployments get under 10% of overall costs
and I’ve seen them as low as 3%.”. Assuming that the man-
agement cost is 3% of the overall cost, this management cost
is shown as the last row of Table 5.
Now, to make our cost model more realistic, we include

the management cost and all other data center costs, except
the server cost and power cost (because we have included
storage purchase cost and power cost in our previous model).
These costs amortized to $911 per server for 36 months3.
Next, suppose that the servers used in the data center

are Dell PowerEdge R410 (which is what we have used in all
our experiments in this paper). This server has the following
storage bays and slots: each server has four SAS/SATA drive
bays and 1 PCIe storage slot and we assume that they are all
occupied (as what we did in our experiments – one H-SSD,
one RAID 0, one L-SSD or HDD and one OS disk). So, the
facility and management costs are further amortized over the
five disks, which adds $182 per disk for 36 months. Note
that we believe that the $182 of facility and management
costs per disk is an overestimate, because the facility and
management cost numbers listed in Table 5 are the costs for
46,000 servers. As a component in a server, I/O subsystems
should only be charged as a proportional share of those costs.
However, to stress the weight of facility and management
costs, we use $182 upfront as the facility and management
costs per disk for 36 months.
By adding these facility and management costs to our pre-

vious cost model, our new prices for the five storage classes
are shown in the first row of Table 6, and our previous cal-
culated prices are shown in the second row as a comparison.
By comparing the prices of the five storage classes, we

observe that price gaps between the different storage classes
(e.g. HDD RAID 0 and L-SSD) continue to be order of mag-

3In Table 5, we list some costs for each component in the
data center, and we consider and sum up the costs of Net-
working Equipment, Power Distribution and Cool-
ing, Other Infrastructure and Management, so the to-
tal of these costs is: 294,943+626,211+137,461+105,927 =
$1,164,542 per month for 46,000 servers. For each server
and 36 months: the cost is 1, 164, 542÷ 46, 000 ∗ 36 = $911
per server for 36 months.

nitudes, indicating that adding the facility and management
costs does not dilute the price differences. So, our problem
formulation and methodology are still valid when consider-
ing the facility and management costs. To further dig into
this aspect, we ran both the original and the modified TPC-
H workloads on Box 2 with the storage price including and
not including the two new costs (i.e. the facility and the
management costs). The summary of the results is that the
recommended data layouts under both storage prices are
identical, indicating that adding the facility and manage-
ment costs into the storage prices does not affect the recom-
mended data layouts. Hence, we believe that our method
works even when we consider a different cost scenario.

6. RELATED WORK
The problem of data placement involves assigning N data

objects to M storage devices with the objective of improving
the workload performance. A recent work on this topic by
Koltsidas et al. [18] examines the optimal data page place-
ment between a SSD and a traditional HDD. They propose
a family of online buffer pool replacement algorithm so that
pages are placed on the right devices for better workload
performance. Canim et al. [10] propose an Object Advisor
to place database objects (e.g. tables or indices) on either
SSDs or HDDs. Their method first collects the I/O statistics
of a workload and then uses a greedy algorithm to decide
the placement of the tables and indices. Our work differs
from this work in many aspects. First, their goal is to max-
imize the workload performance by using a limited capacity
on the SSDs, while our goal is to minimize the TOC that is
incurred when running that workload. Second, their query
optimizer is not aware of the specific characteristics of the
SSDs, so they miss the interactions between the query plans
and data layouts. In contrast, we design and employ an
extended query optimizer in Section 3.5 to make the query
optimizer aware of different storage classes, and our method
is able to update the cheapest query plan dynamically as
the data layout is changed.

Another objective of the data placement problem is to bal-
ance the loads across different storage classes and minimize
the interference between the workloads. Ozmen et al. [22]
formulate this data placement problem as a non-linear pro-
gramming problem (NLP) and use the I/O description as
input to an NLP solver. Their techniques leverages input
workload descriptions and storage target models to avoid
potential interference among co-located objects and ensure
that the recommended layout is balanced.

The virtual machine placement problem, as proposed in [7,
12,17], is to find the most suitable physical host for a virtual
machine that will be deployed. In making this placement de-
cision, hosts are evaluated based on their existing capacities
and the resource requirement of the virtual machine. The
goal of this problem is to manage the mapping of virtual ma-
chine to physical hosts for either better resource utilization
of individual hosts, lower operating costs, or load balancing
among hosts. The connection between the virtual machine
placement problem and our work is that the problem they
want to solve is to find a mapping of a virtual machine onto
physical hosts, while our problem is to find a mapping (or
data layout) between data objects and storage classes. The
commonality at a high level is that both consider perfor-
mance constraints (e.g. SLA) and that the naive solution
space size in both cases is exponential and impractical to
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TOC/GB/hour(cents) HDD HDD Raid 0 L-SSD L-SSD Raid 0 H-SSD
Costs with facility and admin. costs 1.72× 10−3 2.13× 10−3 1.28× 10−2 1.44× 10−2 1.75× 10−1

Costs with no facility and admin. costs 3.47× 10−4 4.49× 10−4 7.65× 10−3 9.29× 10−3 1.69× 10−1

Table 6: The costs of five storage classes with and without including the facility and admin. costs

explore all possible solutions. But besides that high-level
similarity, their problem and our problem are very different
in terms of the goal and solution.
Another branch of related work is index advisor, or alter-

natively, physical design tuning [6, 8, 9, 13]. The problems
in that space are usually described as follows: given the
workload of representative queries and storage space con-
straint, find a set of physical structures (e.g. indexes and
materialized views) to minimize the execution cost of the
queries in the workload. The only similarity between the
index advisor problem and our problem is we both consider
the impact of indexes on query execution within the storage
bounds. However, the differences between these two prob-
lems are significant. First, their problem statement is: given
all possible index selection choices, determine which indexes
should be selected to create. While our problem assumes
that the indexes are already selected and we consider which
storage class each index and data should be placed on. Other
important difference is that their objective is to maximize
the query/workload performance, while our goal is to min-
imize the total operation cost, while maintaining a certain
level of the query performance.
With the maturity of SSDs, substantial research has fo-

cused on improving the DBMS performance by using SSDs
including revisiting the five-minute rule based [15], examin-
ing methods for improving various DBMS internals such as
query processing techniques [25, 27], index structure [5, 21,
24], bufferpool extension [11], page layout [19] and tempo-
rary space [20]. These methods are complementary to our
work here, as these efforts allow the DBMS to use SSDs
more effectively – hence, these methods can be easily used
along with our method in a DBMS that is tuned for SSDs.

7. CONCLUSIONS AND FUTURE WORK
This paper has introduced a new problem of provisioning

I/O resources for a workload to minimize the total operating
cost that is incurred when running that workload. This pa-
per has also presented the design of a solution, called DOT,
for this problem. DOT extends the query optimization com-
ponents that are already present in a modern DBMS, and
hence is a practical solution. We have implemented DOT
in PostgreSQL, and have presented extensive evaluation of
DOT using various DSS and OLTP workloads. These results
demonstrate that DOT can produce significant reductions in
total operation costs, while meeting performance SLAs.
The DOT method is complementary to a number of cru-

cial problems encountered in cloud-oriented data centers.
For example, the DOT method could be used to help pur-
chasing and capacity planning decisions. It could be iter-
atively executed several times to determine the TOC and
SLA performance of different hardware configurations un-
der consideration. Another example is query scheduling on
heterogeneous machines, where the scheduler needs to know
where the data is actually stored, and the DOT method
can decide an optimal placement of database objects and its

replicas.
This work presents a new way of looking at DBMSs when

operating the DBMS in cloud-hosted environments, where
the data center operator is now forced to look beyond the
traditional goals of optimizing performance. There is a wide
range of future work that is possible here including exam-
ining every aspect of database query processing, database
query optimization, physical database design, etc., from the
new perspective of minimizing the total operating cost while
largely meeting traditional performance targets set in service
level agreements.
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APPENDIX

A. QUERY TEMPLATES AND EXAMPLES
Our query modification is to specify the predicates that

were added to the“where” clause and the details are outlined
in Table 7.

Query # 2 ? < ps partkey < ?
Query # 5 ? < o orderkey < ?
Query # 9 ? < p partkey <? and ? < s suppkey < ?,

? < l orderkey < ?
Query # 11 ? < ps partkey < ?
Query # 17 ? < l orderkey < ?

Table 7: Additional predicates added to the five
queries

To illustrate what the modified TPC-H query look like,
a query instance (Query # 11) is given below, by replacing
the regular expression“?” with real values.

SELECT ps partkey, sum(ps supplycost*ps availqty) AS value
FROM partsupp, supplier, nation
WHERE ps suppkey = s suppkey
AND n name = ’GERMANY’
AND s nationkey = n nationkey
AND ps partkey BETWEEN 105973 AND 593374
GROUP BY s partkey;
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