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ABSTRACT

The area of cluster-level energy management has attraigeifi-s
cant research attention over the past few years. One classlof
niques to reduce the energy consumption of clusters is ¢atetly
power down nodes during periods of low utilization to in@ea&n-
ergy efficiency. One can think of a number of ways of selebtive
powering down nodes, each with varying impact on the wordloa
response time and overall energy consumption. Since theRligtap
duce framework is becoming “ubiquitous”, the focus of thigper

is on developing a framework for systematically considgnari-
ous MapReduce node power down strategies, and their impact o
the overall energy consumption and workload response time.

We closely examine two extreme techniques that can be accom-
modated in this framework. The first is based on a recently pro
posed technique called “Covering Set” (CS) that keeps osiyall
fraction of the nodes powered up during periods of low Lilian.

At the other extreme is a technique that we propose in thigmpap
called the All-In Strategy (AIS). AIS uses all the nodes ia thus-
ter to run a workload and then powers down the entire clustsy.
ing both actual evaluation and analytical modeling we bdagthe
differences between these two extreme techniques and staiw t
AIS is often the right energy saving strategy.

1. INTRODUCTION

Direct monthly energy costs for data centers make up around
23% of the total amortized monthly operating costs [17].sTdost
does not include functionally related energy costs suchoagep
distribution and cooling infrastructure, which Hamiltorates will
increase the energy costs to 42% of the total monthly operati
costs. If we also consider that server costs are consigtiadlihg,
then it is estimated that this year, the three year cost aftridéy
per server will exceed the initial cost of the server its8]f [Trends
show that processor performance doubles (in number of teres
ery 18 months while the performance per Watt only doublesyeve
two years [6]. Thus, it should be no surprise that an early EPA
study estimates that servers will make up 3% of the totalggner
consumption in the U.S. in 2011 [4].

One reason contributing to the high server energy costsais th
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server nodes in cluster environments are typically only3296 uti-
lized, and energy efficiency in this range is under 50% [5]isTh
suggests that 42% of the total monthly operating cost stemmpmi
from power [17] can be reduced if we increase energy effigi@fic
the cluster nodes during low utilization periods.

This paper aims to improve the energy efficiency of the pop-
ular MapReduce (MR) clusters to exploit low utilization joeis.
Our methods can easily be generalized to other cluster neanag
ment strategies, such as for Dryad, but to keep the disqué$sio
cused and better connected to prior work, we cast the digguss
within the MapReduce framework.

Recently, the Covering Set (CS) method was proposed for clus
ter energy management [22]. The CS strategy exploits thie rep
cation that is provided by a distributed file systems (DFS)jiciv
keeps multiple copies of each data block spread across notles
cluster. The CS strategy designates some nodes in the sgstem
special nodes, called the CS nodes, and keeps at least opefcop
each unique data block on these nodes. Thus, by alteringatiae d
placement policy of the underlying DFS, during periods of lati-
lization, some or all of the non-CS nodes can now be powereado
to save energy. For example, if 33% of the nodes are CS nduss, t
at 33% utilization only the CS nodes are online. CS is geraarell
allows the CS nodes to be an arbitrary fraction of the totaleso
and also allows for part of the non-CS nodes to stay online.

With CS, the workloads take longer to run when the cluster is
partially powered down, as fewer nodes are available to hen t
workload. Other downsides to CS include significant overpro
sioning of space on the CS nodes as well as requiring codefimodi
cations in the underlying DFS software (see Section 4.5).

In this paper, we propose an alternative cluster energy gena
ment strategy, called the All-In Strategy (AIS). In AlS,hat than
increasing the response time of a workload as in the CS gtrate
we run the workload (or a batch of workloads) on all the nodes
in the cluster. Then, when we are in a low utilization periodl a
the cluster is idle, the cluster is transitioned to a low pogtate.
Thus, in AlS, rather than selectively powering down the rsode
in CS, the cluster essentially wakes up, runs as fast as jtazah
then powers down again. One advantage of AlS is that there is a
very predictable degradation in the workload response.tifrtgs
degradation is based on the time it takes for the hardwaretand
OS to power up and down nodes from deep power saving modes,
and efforts such as [24] are pushing to reduce this cost dieafis

In fact, both AIS and CS can be thought of as two ends in a
range of solutions for selectively powering down/up MR rette
deal with low utilization periods. In this paper we preseffiizane-
work for this general mechanism, and explore the effect ohsa
mechanism on the workload response time and overall clester
ergy consumption.



Using our framework we expose two key parameters that con-
tribute to the effectiveness of the MR energy management- sol
tions. These parameters are: a) The response time degnadét
workload when running with fewer resources, and b) The (e
time it takes to transition servers to and from deep poweingav
modes, compared to the time it takes to run the workload.

Our experimental results show that in many cases, AlS esult
lower energy consumption than CS. For example, runningSaenta
on a relatively small 77GB dataset on a 24 node cluster at 33%
utilization is always 11% more energy efficient with AIS thaith

Nitotal # nodes in the cluster T [total transitioning time iny
nf# online nodes running the job 73, |workload runtime
n|N-n, # offline nodes P,-|laverage transitioning
during job processing power
m/# online nodes PI™on/off-line
in the idle period workload power
m|N-m, # offline nodes T;aielidle time
during the idle period P ™on/off-line idle power

Table 1: List of Variables in our Framework

CS, and 60% more efficient than an unmanaged cluster. Perhaps

more importantly, CS also incurs a 3.6X increase in resptinse
while AIS suffers only a 12% response time degradation. With
larger complex workloads, we show these energy gains of A& o
CS improve rapidly, and factors of 2X improvement in energy
more over CS are easily possible.

The key contributions of this paper are:

e We present a framework for designing and evaluating meth-
ods that selectively power down MR nodes to save energy.
Within this framework, we focus on two extreme techniques
— a recently proposed technique called Covering Set (CS),
and a new technique called All-In Strategy (AIS).

0]

Using our framework, we systematically explore factord tha
benefit each approach, and show that the (simpler) AlS tech-
nique is often more effective than the CS technique in reduc-
ing energy consumption. During long and computationally
complex MR jobs, AIS overcomes its high cluster transition-

ing costs and provides better response time and energy sav-

ings than CS. AIS also does not require storage overprovi-
sioning as is needed for CS, or require modifying the DFS
code, and hence can directly be used with existing systems.

Our work explores the impact of powering down MR nodes

on the workload response time (which increases as nodes are

powered down). Our analysis brings out the effect of the in-
teraction between the total cluster energy consumptiam, th
computational complexity of the workload, and a key hard-
ware parameter — namely, the relative time it takes to power
up and down a server node with respect to the workload re-

sponse time. As a consequence, our framework points to the

More detailed models for capturing these can be pluggedanto
model. The workload characteristics model describes thelar-
acteristics, such as an expected resource consumptidarrpance
goals, computational complexity, etc. The hardware charestics
describes aspects such as the average power consumptiba of t
hardware when running the workload, time and energy reduie
power up/down nodes, etc.

When a job arrives, the cluster is in some state, which piatiént
includes having some nodes already in a powered down mode. Th
energy management technique may choose to power up or down
some nodes (based on the energy management policy and work-
load characteristics) to execute this workload. After trerkload
is done, if there is still idle time left in the window, it may power
down more nodes. To allow for iterative application of ourdab
the end state of the cluster in terms of the nodes that araen
the same as the starting state. (Extensions to relax thisrgsmon
are straight-forward, and omitted in the interest of space.

Thus, using the variables in Table 1, the total energy copsum
tion, denoted a#’(w, v, n), is:

E(w,v,n) = (PuTy) + (P + P Tw + (Plgie + Pije) Tiare (1)

The time components fdf (w, v, ) must sum ta, so:
v Tt’r + Tw + Tidle

@)

Finally, the workload characteristics may require thatjtiebe run

within some time limit;~. The cluster energy management problem

can then be cast as:
min(E(w,v,n)) | Tw<T

(©)

Based on this model, we can see that there are several aphpsac

tremendous benefits of research that can improve hardwareto reduce the cluster energy consumption. From Equationel, w

and software mechanisms to improve power up/down costs
(e.g., fast deep hibernation by using PCM [26] and/or build-
ing data centers using mobile/nettop computing hardware).

The remainder of this paper is organized as follows: Secion
presents our framework. Section 3 discusses CS and AlSItResu
evaluating CS and AIS are presented in Section 4. Relateld wor
and conclusions are discussed in Section 5 and Section 6.

2. ENERGY MANAGEMENT FRAMEWORK

This section describes a framework for cluster energy manag
ment. This framework targets techniques that turn off noes
reduce the energy consumption when the overall systenzaili
tion drops (and vice versa). The framework considers theachp
of workload characteristics, hardware characteristicgl perfor-
mance targets (e.g., response time goals) to bring out theaiy
tions between these factors and the cluster energy congumpt

We present a mathematical model for the energy consumption o
a MapReduce cluster during a specified time windgwhen run-
ning a workloadw using a cluster with hardware characteristics
For simplicity, the workload characteristias)and hardware char-
acteristics () are considered as abstract meta-models in our model.

see that one can reduce the energy consumption by redua@ng th
idle energy consumptiod P, + P, )Tiaie, by powering down
part of the cluster. But powering down part of the cluster lieg
that the job has fewer nodes/resources to run, which paignti
impacts the execution time of the worklodt,(). From Equation 1
this means that the energy cost to run the workload couldsgg,
increases. The rate of increase in the workload energy oopison

with fewer nodes will depend on the workload charactersstand
primarily the computational complexity of the workload.

From Equation 1, we also observe that the time to transition
nodes between powered up and down stdfgs) (can have a sig-
nificant impact on the energy consumption, especially winen t
workload energy component in Equation 1 is small; i.e., wten
workload execution time is small, schemes that require poge
up and down often will consume significant energy in transii

Finally, from Equation 1, we can see that reducing the power
drawn by online idle node®/7;, can have a big impact on energy
management schemes.

3. ENERGY MANAGEMENT STRATEGIES

In this section, we use the framework developed in Section 2
to consider two cluster energy management strategies. eTtes



strategies are: a) Covering Set (CS) — a recently propost da
placement and power down strategy to reduce the energy egmsu
tion of MapReduce clusters, and b) All-In Strategy (AIS) eelt-
nique that we propose in this paper.

First, we present an overview of CS and AIS (Section 3.1}, fol

the non-CS nodes randomly. It does not take into account ey o
cluster configuration (such as physical rack topology) dessithe
dichotomy of CS and non-CS, and is thus vulnerable to load im-
balances on the remaining online nodes. The Load Balancad st
egy we examined tries to minimize the maximum expected node

lowed by various extensions to CS that are needed to make it aload on each MR node in the cluster given a possible node power

practical solution (Section 3.2), followed by a discussibthe AlS
strategy (Section 3.3). We compare both techniques in @edti

3.1 Overview of CS and AIS

down. This method requires a good metric to determine the-max
imum expected node load to avoid load imbalances. Findlby, t
Round-Robin Random method, which we found to be both simple
and balanced, iteratively powers down one random node pé&r ra

The CS strategy powers down nodes to reduce the idle energyas the non-CS nodes are powered down.

consumption in Equation 1. In an ideal case, CS knows the-work
load perfectly ahead of time, and can power down just thetrigh
number of nodes at the start of the workload execution toaedu

idle energy consumption to zero. However, as discussed ¢a Se

Since we found the Round-Robin Random method to be both
effective and efficient, for the rest of this paper, CS disaus and
results imply using this power down/up strategy with CS.

tion 2, such powering down of nodes can increase the response3.3 All-In Strategy (AIS)

time of the workload, which in turn can increase the energy-co

The CS technique described in the previous section (Se8t)n

sumed during the workload execution. Thus, CS can only power has a few drawbacks. First, the CS strategy requires modjftfie

down nodes such that it still adheres to performance cangtra
(Equation 3). CS also changes the data placement policyeof th
DFS so that one copy of the data is always online. The original
CS work does not describe a strategy for powering down nddes.
Section 3.2 we discuss various node power down strategi€sSo
The AIS strategy is to trade idle energy consumption for-tran
sitioning energy consumption in Equation 1. It takes anesmg
view and toggles the entire cluster between “all-nodesao’ “all-
nodes-off” modes. It uses all the nodes in the system to ran th
workload as fast as it can (i.e., minimiZ€s Equation 1), and then
at the end of the workload execution, powers down all the adde
reduce the idle energy cost. The price AIS pays is a highitians
ing energy cost. The scale of this increase in transitiociosf is
determined by the powel%,-) and length of timeT},) of the clus-
ter transition. While this transitioning poweP(.) may be similar
to the power when the cluster is fully on and running a woréloa
T, is solely defined by the capabilities of the hardware and the
operating system.

3.2 Covering Set (CS)

The Covering Set (CS) strategy, proposed recently by Lekeri
and Kozyrakis [22] aims to reduce the energy consumptiorusfc

DFS code to alter the data placement strategy. As a resiglnat a
broad generic solution and it is tied to the specific repiamastrate-
gies used by the DFS. (It also makes it harder to use in caseewh
a single system may have different data sets with varyinticep
tion factors.) Second, CS does not explicitly consider thpact
on response time. As we will see for workloads like distréslit
Grep that have linear computation complexity, this is maadde,
but for workloads that have worse than linear complexitys i
problematic as running on fewer nodes can result in rapigaese
time degradation, which may not be acceptable. This meats th
to use CS, one would need a detailed workload run time esomat
technique for all the cluster configurations that CS mighnsition
to. Finally, CS requires good workload prediction as theteys
has to determine how many nodes to power down, and for how
long. Compared to CS, AIS does not require modifying the data
placement strategy or a detailed node power down strategwy, a
can trivially calculate the workload response time degtiada

The strength of CS is that it maintains data availabilityo(thh
not in the presence of updates/appends, as in the geneea$uels
operations require that all the nodes in the system to bexenli
However, one needs to make an important distinction betwla&m
availability because of node failures (which is why we haspli

ters by changing the data placement policy in a DFS. The main cation), and data unavailability caused by powering dowdeso
idea is that in a DFS, such as GFS [14, 15] and HDFS [8], every The latter can simply be reversed by powering up the offlingeso

data block is replicated three times. The cluster energp@ap-

Thus, one can think of a relaxed, or “eventual data avaitgthin

tion can be reduced if the server powers down some nodes. But,which data becomes available eventually when the node Wwéh t
powering down some nodes can make some data unavailable. Tocopy of the data is powered up (from a low power state).

avoid this case, CS changes the data placement policy sorikat

We exploit this idea of eventual data availability and depel

copy of every data block is kept on a set of nodes. These nodesa new scheme for cluster energy management that addresses th

constitute the Covering Set nodes and are never powered. dawn

shortcomings of CS outlined above. This new strategy isedall

reduce energy consumption, non-CS nodes can be powered downthe All-In Strategy (AlS). The AIS mechanism is simply to rilre

The CS nodes can be any arbitrary fraction of the total nauései
system. For example, the CS nodes could be 25% of the totaknod
in the system, which implies that up to 75% of the nodes coeld b
powered down when running a workload.

MapReduce job on all the nodes in the system and power down
the entire system when there is no work. (Here we could have a
mechanism to transition the entire system which could ihelev-
erything — the compute nodes, rack power supply, other pswer

The CS method proposed in [22] does not include any strategy plies, routers, etc., to and from a low power state. Or, wédthave

to determine which nodes to power down when the overall gyste
utilization drops. To use CS practically, one needs such thade
which we briefly describe below (see Appendix A for more dsjai

a mechanism to transition selected parts of the entire syste.,
only the compute nodes. The benefits are larger if more ané mor
power hungry components provide mechanisms for quick trans

Also, to use CS in practice one also needs a power up method,tions to and from power savings mode. AIS provides one more

which is the reverse of the power down method, and omitteten t
interest of space.

We have developed and examined three power down strategies
for CS, namely: Random, Load Balanced, and Round-Robin Ran-

dom. A random power down strategy for CS simply powers down

argument for building data centers out of traditionallyt faansi-
tioning mobile parts.)

In cases where there is a consistent low utilization perid&,
would batch the MR jobs in a queue, and periodically power up
the entire system and run the entire batch of jobs on theeslust



“Down” means idle statel(14W) transitioning to offline state, “Up” is the reverse.
Statd Down Time(s] Down Cost(J)Up Time(s) Up Cost(J] State Cost(W)

Stopgran 1 114 1 114 112
Hibernate 11 1300 100 12900 10
Off 27 3200 156 20000 10

Table 2: Costs for different types of offline states availatg# on
our MR nodes. Hibernate and Shutdown draw 10W because
the motherboard/NIC is still powered on (for IPMI).

(and then power down). For instance, for the default FIFQugue
scheduler in Hadoop or the add-on Fair scheduler, AIS coatdh
intermittantly arriving jobs to then submit all the jobs metbatch
simultaneously. This idea mirrors the QED idea of energyieiffit
batching of database queries at a single node [19], andresqyui
techniques for making the decision of how long to batch ths jo
These decisions could be guided by the delays that the jototzmn

ate (see Equation 3), and other workload characteristicskMad
prediction models, such as [7], would be used to guide theggne
management framework. We leave such complex workload man-
agement as part of future work. (Note that CS would need such
techniques too, so there is a broader set of research agendates
veloping the decision making algorithms for system traoss.)

A crucial aspect for AIS is the cost to transition between low
power statesT., in Equation 1, Section 2) and the energy con-
sumed in the idle state. There are a number of choices foethes
parameters that are offered by modern hardware. Considxe Pa
where we preserll the available power up and down character-
istics of one of our cluster nodes (details are presentedeits S
tion 4.1). In this table, it is clear that the hibernate stat¢he
ideal energy efficient state to use; it is faster than fulltdbwn
and consumes much less in its “off” state cost than the saopgr

plugged into an APC Switched Rack PDU. AC current was mea-
sured at the APC PDU using Fluke i200s AC current clamps. & hre
Fluke clamps were connected to a National Instruments USES-6
Multifunction DAQ and collected using National Instrumenhiab-
View sampling at 1KHz. RMS current was calculated using @ sli
ing window of 20 sample points (1 period) given an AC frequenc
of 50Hz. The RMS voltage was measured at 116V. Our observed
power factor was 0.96 and we used this to calculate the reapo
from the apparent power (RMS current x RMS voltage). Finally
energy consumption was calculated by summing the timeetized
real power values over the length of the workload.

On our cluster we ran Hadoop version 0.20.0 and Java version
1.6.0. We used the standard 64MB block size and set the Stet bu
size to 768MB. The amount of memory given to the task tracker
child process was 1024MB. The sort spill percentage wasoset t
0.95. The data was triple replicated. Rack awareness wdsegha
in Hadoop and re-replication due to under-replication waalaled.

The master node that hosts the Namenode and the Jobtracker wa
run on a separate server (but on the same network). Finadlyaw
one mapper and one reducer per node.

We used the distributed Grep and the Terasort workload. We
chose these two workloads because of their striking diffees and
also because other studies [22, 28] have relied on thesdomoik
The distributed Grep workload is a map-only file scan job wah-
able selectivity and requires little additional space akdFor the
Grep workload, we ran a three character query against treg€er
dataset as was done in [28]. The Terasort workload stresstes b
map and reduce components of the MR framework. It needs tb rea
and write significant amounts of intermediate data and the cf
the output is equal to the size of input.

state. Technology on the horizon, such as phase change mem- The dataset we used for these two workloads was a 77GB Tera-

ory [26], and systems research, such as automaticallyiti@msg
hardware [24], will help reduce the transitioning costgtier.

The All-In Strategy is quite simple to fit into our framework.
The data placement module need not alter the respectivensyst
data partition placement rules since the cluster operates iall-
or-nothing manner which is not affected by data unavaiiigbiT he
runtime cluster node management simply keeps the entistetiu
powered up when data availability is needed and powers dben t
cluster otherwise.

4. EVALUATION

In this section, we compare CS and AIS using actual end-tb-en
response time and high resolution energy measurements ¢aka
Hadoop cluster. We used sort and scan jobs as was used ir8]22,2
This section largely focusing asingle-user latency-sensitieavi-
ronments. This type of environment can be found using Hadoop
On-Demand by Yahoo! that partitions user specific virtuaktgr
partitions of the physical cluster [1]. An evaluation olilti-user
throughput-sensitivenvironments is found in Section 4.3.2 and
Appendix C.

4.1 Experimental Background

sort dataset generated using the default Hadoop Teragdicapp
tion. With this size, each node stores on average 150 blagits (
triple replication). For CS, one entire rack was designatedhe
Covering Set. Thus, with CS we allowed powering down up to
66% of the nodes in the entire clusters.

We also ran the workloads on a 96 node cluster with a 4X larger
data set and measured the response time (though not the pewer
we did not have enough instruments to accurately measurerpow
for 96 nodes). The response time behavior on 96 nodes isssitail
the 24 node case, and both matched the analytical modeldfioun
Appendix B). In the interest of space we do not present anyltes
from the 96 node runs in this paper.

4.2 Workload-Only Evaluation

Now, consider a best-case scenario for both CS and AlS intwhic
the MR cluster already exists in the state that the strateggsi(see
Section 2). In other words, for CS, the system has alreadyepev
down the desired number of nodes. For AIS, the cluster iy full
powered up. Since our framework expects the cluster to bemed
to the state in which it originated, the best-case scenagans
that no transitioning costs are needed by either method lzere t
is no idle time (Equation 1 in Section 2). In other words, wéyon

For our evaluation we used a cluster with 24 nodes, each with a measured the actual time and energy consumed when runréng th

2.4 GHz Intel Core 2 Duo processor running 64-bit RHEL5 with
Linux kernel 2.6.18, 4GB of memory, and two 250GB SATA-I
hard disks. The cluster nodes were connected with CiscdyGata
3750E-48TD switches with gigabit Ethernet ports for eacdeno
and an internal switching fabric of 128Gbps. Switches wene-c
nected to 50 nodes and linked together with Cisco StackWise P
giving a 64Gbps ring between the switches.

Energy measurements were taken using the following sethe: T

actual workload (we relax this assumption in the next expernit).
Figures 1 (a) and (b) show our actual measured CS and AIS re-
sults for the Grep and Terasort workloads respectivelyalchefig-
ure, the workload energy consumption is plotted on the lefkig
and the response time on the right y-axis.
CSis very dependent on the workload complexity when it comes
to its response time degradation. This response time datjoad
typically translates to increased energy consumptionndunwork-

cluster is composed of 3 racks of 8 nodes each, and each rack wa load evaluation since the linear decrease in online nodestsein
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Figure 1. 77GB Grep and Terasort workload (no transition-
ing/idle) response time and energy consumption on a 24 node
cluster using CS and AlS.

(a) Grep

a non-linear increase in response time for non-linear jdlds.can
see this result in the response time curves of Figures 1 (hjl@n
Grep in Figure 1 (a) follows a response time degradationtéxac
proportional toM = N/(N — i) for an N node cluster withi
nodes powered down. Similarly, Terasort in Figure 1 (b) shaw
response time degradation proportionalMtin M consistent with
sort complexity (see analysis in Appendix A.4).

Our measured energy results show that CS steadily consumes

more energy to run the same workload with fewer online nodes.
Figure 1 (b) shows that this increase for Terasort is abott B8-
tweenperformance modéall nodes being powered up) and when
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Figure 2: Cluster energy consumption (transitioning and ide)
of Grep over a 1032s time window.
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Figure 3: Cluster energy consumption (transitioning and ide)

all the non-CS nodes are powered down. Since in this scenario Of Terasort over a 3197s time window.

AIS consumes the same amount of energy as performance mode

AIS is up to 39% more energy efficient than CS for Terasort. For
linear Grep, AlS is 17% more energy efficient than CS wherhall t

non-CS nodes are powered down (Figure 1 (a)). This is because

CS’ offline nodes still draw 10W (Table 2).

The main point is that AIS consumes less energy than CS in this

experiment.Further, if the workload is super-linear in complexity,
CS degrades very poorly in both runtime and energy c@éhile
these are best-case scenarios that assumes that bothistate
not make any transitions, the next section presents singiaits in
a more detailed setting that includes both transition aledddsts.

4.3 Workloads with Idle Periods

Next we evaluate CS and AIS with full idle and transitioning
costs factored in. We will present results for both latesepsitive
and (briefly) throughput-sensitive workloads.

4.3.1 Latency-sensitive Workloads

Now let us consider a scenario in which CS and AIS need to
transition nodes to minimize idle energy costs (114W/npdé)ch
would happen when the cluster is underutilized. Consided321
second window, which is the time it takes for CS to run the Grep
workload without idle cost, including powering down all r@%
nodes (11s), execute the workload (921s with 8 online nodes)
then powering up 16 nodes to return to performance mode J100s
If we can not power down 16 nodes (due to performance linoitesti
as discussed in Section 2), the workload will finish and thistelr
will consume idle energy. In performance mode, CS runs Gmep i

if CS powers down nodes prior to running Grep, Grep will take
longer to return and the idle costs diminish but transitiosts in-
crease (shown in Figure 2 where the black bars increase as mor
nodes are powered down). When 16 nodes are offline, there is no
idle energy cost.

Similarly, in Figure 3 we present the same analysis for Tatas
but over a 3197 second window where CS can run Terasort on 8
nodes (3086s) and perform all round-trip transitions (}1dger-
formance mode. Similarly, the energy consumption over tire w
dow decreases as we lengthen the workload running time to fill
3197 seconds and erase all idle time cost.

In Figures 2 and 3, the energy consumption of AIS during the
respective time windows includes the cost to power up theazién
cluster, run the workload, power it back down, and draw 10W pe
node (see Table 2) while they are powered down for the resteof t
time period. For Grep, AIS consumes less energy during tB24.0
window than CS most of the time until CS powers down 13 or
more nodes. Since AIS has the overhead of transitioning cibst
makes AIS less desirable for this short workload. Howeartlie
Terasort workload, we notice that AEBwvaysconsumes less energy
during the 3197s window. Due to the complexity of the worklpa
AIS’ overhead costs are less than the energy consumptioedses
of CS. Consequently, AlS saves 10% in energy over CS even’at CS
more efficient operating state.

Consider an example of a scenario where the response time per
formance requirements (Equation 3) cause CS to consume more
energy than AIS because it cannot power down sufficient ntales
eliminate idle cost. Let the tolerable level of Grep resgotime

318s and then it will have to idle 24 nodes for the rest of the pe degradation be 50%r(= 450s). Figure 2 shows that during this
riod which consumes tremendous amounts of energy as shown inunderutilized period, CS will consume 33%orethan AIS because
Figure 2 — see the bar corresponding to zero nodes powerend.dow CS can only power dow& nodes and draws idle power.
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age operating power is 150W for each online node.
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Figure 5: An analysis on the effect of workload complexity ad
relative T, on CS and AlS workload response time.

This problem is even worse with a super-linear complexity jo
such as Terasort. If acceptable response tirre 1300s (in Equa-
tion 3) is 1.5X the performance mode response time, then @S ca
only power dowr nodes (less than for Grep). Then Figure 3 shows
that CS consumes 80%orethan AlS!

Thus, the response time degradation with CS can make it un-
tenable in many operating environments, even with modigrate
ceptable response time degradation.

running a job (an average from our empirical results) anatthster
nodes have the hibernate transitioning characteristias &able 2.

For simplicity, in the following analysis, for CS, we assuthat
the cluster is already powered down appropriately, and dadd
any transition costs for CS. However, for AIS, we include thi¢
power up and power down that is required. For both, we do not
include any idle time cost.

Figure 4 shows the energy consumption and response time of
o CS and AIS for Terasort on this 2000 node cluster as we inereas
4.3.2 Throughput-sensitive Workloads the amount of data to be sorted. As the results in Figure 4 show

We have also evaluated AIS and CS on throughput-sensitivie-wo  the relative rather than the absolute transition time istigortant
loads, and observed that AIS can save significantly moreggner  factor since as we increase the workload length, AlS’ ti#orsing
than CS given a fixed level of throughput degradation. We ran a penalties will be overcome. Thus, the relative transitigriime is
heterogeneous workload of Grep and Terasort jobs (sinulE22]) a significant factor in determining the feasibility of AIS.A&h run-
and used CS and AIS to manage the cluster energy consumption.ning a 1TB sort job with half the nodes in the cluster, CS pulesi
In our results we found that when AIS batches jObS, it consume better energy efficiency and response time characterisizasAlS.
26% less energy than CS given a acceptable throughput degrad However, at this pointZ:, = 111s is about half of the perfor-

tion (3%). These results are not surprising, and follow tame mance mode response tin2(s). Now as the data size increases,
intuition from the evaluations in Section 4.3; CS resultsapid re- the workload response time increases whileFhefactor remains
sponse time degradation which impacts both the energy oamsu  constant. As this happens, the advantage of AIS becomesespa
tion and throughput. In the interest of space, addition#ditiecan — beyond a 2.8TB data set (1.4GB/node), AIS is both faster and
be found in Appendix C. more energy efficient than CS.

The results above show that the absolute valué&,pefis not im-
4.4  Effects of Workload and Hardware portant, but rather the important measure is the ratio betwe,

In this section, we analytically model the effects of wosddo and workload response time when run in the performance mode.
and hardware characteristics on CS and AIS to fully exploee t  Thus we call this measure thelative 7%,
pros and cons of these methods in diverse workload and hagdwa Figures 5 and 6 compares the response time and energy con-

settings. sumption characteristics respectively, of both methodsnfork-
The response time of any AIS job is simply the performance loads with varying computational complexity, as we inceeéise
mode (all nodes online) response time plus transitionimgtiSim- proportion of the cluster that is powered down by CS. In tHase
ilarly the energy cost for AIS is simply the performance maodst ures, we show four different cases for AIS, witlative T, val-
plus the transitioning costs. For CS, we have shown that th&-w ues of 1%, 5%, 10%, and20%. Since our observed transition-
load complexity determines the response time when nodgmare ing power (P in Equation 1) is approximately equal to workload
ered down (Section 4.2). Energy modeling for CS similarly re power (P,), the rel. T}, also translates to the relative increase in
quires incorporation of the workload complexity and alse ttan- AIS energy consumption.
sitioning costs. For space, the details and accuracy of adets In these figures, we have presented the proportional inereas
can be found in Appendix B. in response time and energy consumption for both CS and AIS
Given the results of Section 4.3, we have shown that the main over an “ideal” case in which the hardware is perfectly eperg
factor that affects AIS is the transitioning costs that it lta in- proportional, for three different classes of jobs with Bnesort,
cur. But the question is how does this transitioning cogt@fAIS’ and quadratic computation costs.
potential advantage over CS? From Figure 5, we observe that across all workloads, evelm wit
To explore this question, let us model the differences betwe the larges0% relative T}, AIS generally has a better workload
CS and AIS when we have powered dowd% of a 2000 node response time than CS. This is not surprising as AlS runs trg-w

cluster. Furthermore, we increase the amount of data thedsne  load in performance modeand its response time degradation is
to be processed given constant transitioning parametetsasithe based only on the transitioning overhead. AlS has worseoressp
node power up time. We assume that each node draws 150W whertime than CS only when the relati#.. is very large.
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relative T on CS and AlS workload energy consumption.

Looking at the energy consumption in Figure 6, we notice that
if the relativeTy. is large (e.g.20%), then AIS will consume too
much energy in transitioning, and will only be more effeetivith
large complex workloads, where the computational compfext
the workload is high (e.g., polynomial or worse). AlS’ engapn-
sumption drops rapidly as the relati¥&. decreases. For example,
with a relativeT:,- of 1%, AlS is the preferred strategy for all three
workloads. In this environment, for a sort workload, if tHaster
is powered down by 66% by CS, then AlS saves more than 30% in
energy consumption over CS.

These results also shows that if the transitioning cosigh (riel-
ative Ty, > 10%), then generally CS provides better efficiency
because the AIS energy cost of powering up the entire clostr
shadows any inefficiencies from operating CS with a smatken-c
mitment of resources.

Table 3 presents a two dimensional summary of the factots tha
affect the energy efficiency of AIS and CS. These factors lage t
computational complexity of the workload and efficiency ofle
transitioning {-). Table 3 shows that AIS is favoured when the
workload computational complexity is high. Furthermorehem
AIS and CS provide about the same benefits (linearfrgl.= 5%
and sort-rel. T3, = 10%), AlS is preferred when the fraction of
idle time is high and CS needs to power down a large propodfon
the nodes. Finally, when tHE,,. factor is small, AlS is preferred
even when the computational complexity is linear. Of coutisis
summary is caveated with the assumption that the CS respiomse
degradation is acceptable. As shown in Section 4.3, if thee=S
sponse time is unacceptable, AIS is the preferred method.

4.5 Discussion

In this section, we discuss various implications on impletne
ing and running AIS and CS. We also discuss other clusteiggner
management methods that fit in our framework.

45.1 Drawbacks of CS

There are three important drawbacks of CS which need to be
considered when deploying CS.

Storage Overprovisioning— CS requiresignificantoverprovi-
sioning of storage for the Covering Set nodes. Considergelar
five terabyte dataset on 100 nodes. With DFS triple repbecati
the nodes must collectively store 15TB of data. In additithre
output of Terasort takes another 15TB (assuming it is aliptetr
replicated). This means that in performance mode, each mocke
have 300GB of storage for this workload. But when CS powers
down all 66 non-Covering Set nodes, each Covering Set nod¢ mu
now have 600GB of storage. Essentially, the online nodes baus

RelativeT;-| O(N) O(NInN) O(N?)

1% AIS AIS AIS

5% CS/AIS AIS AIS
10% CS CS/AIS AIS
20% CS CS AIS

Table 3: Summary of the two main factors that discriminate
CS from AIS: Workload Complexity and Relative Transition-
ing Cost. This summary is based on the workload energy con-
sumption since the response time performance of AIS is bette
than that for CS in the vast majority of cases.

overprovisioned in storage, consuming eveareenergy. (This is
why our real workload results ran relatively small Teragobis.)

Response Time Degradation As discussed in Section 4.3, Fig-
ure 2 and 3 shows that CS can only save energy when it commits
exactly the right amount of resources such that all the idle in a
given time window is erased (Equation 1). However, this nexgu
that the workload is willing to tolerate a potentially langesponse
time penalty (constraint in Equation 3). If this response time
penalty is not acceptable and CS must commit more resounckes a
incur more idle energy, Figure 2 and 3 shows that AIS will con-
sume less energy than CS for the majority of the cases. Setio
shows that with an acceptable 50% increase in responseAit8e,
can save up to 80% of CS’ consumption.

DFS modification — The last drawback of CS is that it requires
modifying the data placement code in the DFS. These charages ¢
be complicated if one has to deal with creating new data when t
cluster is in power savings mode, and when the cluster hasdiet
geneous nodes.

4.5.2 Hybrid Approaches

The effectiveness of AIS for energy management improves as
the relativeT},. value drops, and the effectiveness of CS improves
as the workload computational complexity decreases. Asualtre
each method may have its sweet spot for a given hardware and
workload characteristics. However, it is possible to cambAIS
and CS to build a hybrid solution.

For example, if CS runs with a combination of CS and some non-
CS nodes up (e.g., to cap the response time degradation)atiee
running the workload, the non-CS nodes could be powered down
or all the nodes in the cluster could be powered down.

5. RELATED WORK

The problem of increasing energy consumption in largeescal
data processing environment has received consideraklatiatt in
the context of data center construction and operation [6,1117,
23,27]. All these efforts have resulted in dramatic improeats
in the energy efficiency of data centers, and can largely leel us
orthogonally to software methods to reduce energy consompt

A desired property for systems is energy proportionalititick
is currently lacking in modern servers [5]. Major comporgsuch
as CPU and disk, are now under high scrutiny for improvingrthe
energy characteristics under varying utilizations [5,36), Soft-
ware efforts such as the Tickless Kernel project, aim to ghahe
way the OS kernels operate when the server is idle [37]. Eftoy
the systems community to develop energy efficiency metaosoe
found in [2,18, 34, 35]. Recent work has examined how dird&t)C
power control mechanisms can effect energy savings andeaitk
response time [19] while single node database energy eftigie
was discussed in [40]. Chen et al. recently presented a study
MR operating variables [12].

Studies into shutting down online web servers were disalisse
in [30, 32]. Shutting down a replicated parallel databaséren-



ment was analyzed in [20]. Other related methods [29, 3hkeit 8]
rely on learning request skew, specialized hardware, atal &

gration. Increasing utilization can be done by consol@atising a [91
virtual machine (VM) solution [3,13, 33, 39]. However, ugiMMs [10]
when running data intensive services, like the ones we densi

in this paper, is challenging for a number of reasons sucheas p  [11]
formance penalties from VM overhead, homogeneous perfocsa 2]
from heterogeneous hardware [25], and costs of VM migregdiah
overprovisioning. Weddle et al. [42] described a RAID-lthsgs- [13]

tem to turn off disks to save energy.
As we have mentioned in our discussions on reducing cluster [14]
node transitioning costs, recent discussions on fundaatigmew (15]
cluster server design are highly relevant to ideas such aan@S
AIS [17,21, 24, 41]. Hardware advances, such as low-powaf no
volatile Phase-Change Memory [26], solid state/flash mgnaord
large arrays of cheap low power processors such as IntetisAt
may be the key towards achieving cost-effective, enerfjgieft
servers that transition between online and offline stafésenftly.

[16]

[17]

[18]

6. CONCLUSIONS

In this paper we have presented a general framework for desig
ing and evaluating methods to reduce the energy consumpfion
MR clusters. We have also investigated the class of tecksithat
power down (and power up) MR nodes to save energy in periods
of low utilization. Using this framework, we closely exarathtwo
broad strategies for MR energy management — a recently peapo
strategy called CS, and a new strategy called AIS that wegs@p
in this paper. We also compared these two techniques wikign t
context of MR systems. Our results show that there are twaiaru
factors that affect the effectiveness of these two methand ¢en-
erally any energy management method that fits in our framiewor
These factors are the computational complexity of the voad]
and the time taken to transition nodes to and from a low power [26]
(deep hibernation) state to a high performance state. Weateal [27]
both CS and AIS on an actual cluster, and also developed an acc
rate and detailed analytical model for both methods. Ouuet@n
shows that CS is more effective than AIS only when the computa [28]
tional complexity of the workload is low (e.g., linear), atie time
it takes for the hardware to transition a node to and from a low g
power state is a relatively large fraction of the overall Woad
time (i.e., the workload execution time is small). In all etltases,
which tend to be the common cases for MR systems, the benkfits o

[19]
[20]
[21]
[22]

[23]

[24]

[25]

[30]

AIS over CS are significant — both in terms of energy savings an [y
response time performance.
[32]
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APPENDIX
A. CS POWER DOWN STRATEGIES

This section details some of the different power down sgjiate
for the CS approach. A CS power down strategy’s main goal is to
be simple and help maintain predictable response time datica.
As [22] did not detail a power down strategy, we first detait ou
observations of a purely random power down order.

A.1 Random Power Down

Consider powering down a cluster &f nodes where a dataset
is triply replicated and a MapReduce workload is run. Suppos
utilization drops and the system responds by powering ddven t
cluster one node at a time. (Extension to power down by more
than one node in each step is straight-forward.) In this,ctee
work at each remaining online node goes up at the rafé/gfv —

i), in an N node system fof nodes that are powered down. The
actual response time will also go up at this rate, if the caajanal
complexity of the workload is linear.

However, randomly selecting non-CS nodes for powering down
can result in suboptimal performance, as explained belovhegin
this discussion, consider a distributed Grep workload o4 adtle
Hadoop cluster. (More details about the system setup ankleaat
can be found in Section 4.1.) In this case, the system has the&s

that will result from powering down a node. The DFS file system
keeps metadata about the placement of each block and regqtida
this central metadata can be augmented to keep track of thesno
that are being powered down.

Then, when the energy management module needs to power down
a node, it looks at the metadata and calculates the expeatadbd
cal node load for each node. For instance, if nodes A, B, and C
store the same data bloék then the expected node load for all
three nodes because of blokks 1/3. (In other words there is a
3 in 1 chance for each node to be asked to process this bld€k.).
node C is powered down, then bloslkcontributes a node load of
1/2 at each node A and node B. If A, B, and C store two blocks
(instead of one above), and C is powered down, then A and B have
a node load each.

The “load balanced” power down strategy is simple: In resgon
to a request to select a node for powering down, it iteratesutih
each noded, in the system and computes for each remaining node,
u, the expected node load on the nadénoded is powered down.
A priority queue is maintained on thmaximum expectatbde load
measure, and the next node to power down is the node thatd&as th
smallest maximum expected node load increase.

This load balanced power down method has some drawbacks, as
the computation of the load increase can be expensive, iafipec
for large clusters. Next, we present a simpler algorithnt #iso

and each rack had 8 nodes. The CS set was set to the nodes in thgroduces balanced load, but requires less storage and tatiopu

third rack. (Similar issues as those described below hapipéme
CS nodes are spread across the racks.)

Now, consider selecting nodes at random for powering down
from the two non-CS racks. Figure 7 shows the effect on respon
time for the Grep workload as nodes are powered down. Also
plotted in this figure is the theoretical ideal response ttue/e
(N/(N — 1)) for Grep. As can be seen from this figure, there is a
significant degradation in response time when the 9th nopevis
ered down. The reason for this degradation is as followst, firs
recall that for each data block, HDFS keeps one replica ordea no

A.3 Round Robin
Power Down

This scheme simply goes through the non-CS racks in a round
robin fashion and selects a random node (that is not powexed)d
in each rack as the next “victim”. Thus, in the case above rete
have two non-CS racks (see Appendix A.1) this strategy wal fi
select, at random, a node from the first non-CS rack for poweri
down. In the next iteration, it will select a victim from thecond
non-CS rack, and in a subsequent iteration it will returnkbgc

Random (RRR)

on the same rack, and another replica on a node on another rackthe original first non-CS rack for victim selection, and so dine

Second, because of the HDFS replication policy, a naturgltea
produce a CS node set is to allocate an entire rack to the C&nod
(in our 3 rack case). Third, Hadoop tries to schedule Map agd R
duce jobs so that they work on the data that is local (calledd'd
local” tasks), but the Hadoop scheduler will assign taskedik on
remote blocks if some nodes have no additional unprocessadl |
blocks. These remote tasks incur additional overhead gsrler-
fere with the disk activity at the remote node (which is preably
running a data local task), and incurs additional delaysibge of
the network activity. Fourth, as non-CS nodes are powerathdo
the probability that nodes in the CS rack have the only copy of
the data increases. Finally, if by chance there is a disptiopate
number of nodes in one non-CS rack that are turned off, then th
chance that some node in the CS rack will end up with a dispro-
portionately larger number of single replica blocks inses This
node will then be the bottleneck as some blocks on that notle wi
probably have to be fetched remotely by other nodes for pce
ing. In fact, this is precisely what happens in Figure 7 whaen t
9th node is powered down and the fraction of non-data locdéso
increases rapidly over the previous case when the 8th node wa
turned off. Consequently, as can be seen in Figure 7, themssp
time degrades rapidly when the 9th node is taken down.

Thus, simple random powering down has the drawback of result
ing in surprising jumps in response time.

A.2 Load Balanced (LB) Power Down

The drawback of selecting a random node for powering down,
can be addressed by keeping a precise track of the load g&rea

difference between this strategy and a purely random glyate
that we do not allow any two physical racks to have their numbe
of powered down nodes to differ by more than one. In this wag, w
minimize the number of single replica blocks that are credig
each node power down.

This scheme is simple and requires minimal overhead to oper-
ate. We only need to keep track of the round robin sequendeeof t
racks, and which rack needs to be examined next.

A.4 Comparing the Power Down Schemes

Figure 8 shows the corresponding behavior of the load bethnc
(Appendix A.2) and the round-robin random (Appendix A.)smes
compared to the ideal behavior (as was shown in Figure 7).

Figure 8 shows two important points. First, the response tifn
both the Round-Robin Random (RRR) and the Load Balanced (LB)
schemes match the theoretical ideal case. Second, in $gsboth
the RRR and LB methods have nearly identical response tifme. T
simplicity of the RRR method (see Appendix A.3), impliesttha
is a better method for use with the Covering Set technique.

We have analyzed these three schemes for a 24 node Terasort
workload. Unlike Grep, the Terasort workload has@(WinN)
computational complexity. Figure 9 shows similar Terasesults
as in Figure 8. That is, RRR and LB provide similar response ti
degradation and very closely follow the ide€a{ NInN).

As we have seen here, the computational complexity models ar
good for modeling CS response time degradation. Furthewilie
need these response time models for modeling CS energyropasu
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O(N) degradation.

tion. This is discussed in Section 4.4 and Appendix B.

B. MODELING VALIDATION

Modeling AIS is simple. AIS only has two different operating
modes: performance mod@& which the entire cluster is always
powered up an@énergy savings moda which the cluster is pow-
ered off until it needs to be powered up to fulfill a job requesid
then powered back down. Thus, the response time modelirftgof t
energy savings mode simply requires adding the times asaci
with each of these components. Furthermore, energy cortsump
modeling can be similarly defined to be the sum of the perfocea

models just described. Any transitioning and idle costsaeeght-

forward to include as we just add them to the workload cost. Fo

simplicity, we do not include them in our modeled analysi€&.
Figure 10 shows a comparison of the observed and modeled en-

ergy consumption of the Grep and Terasort workloads usieg th

workload energy consumptioP + P;)T,, from Equation 1.

For this figure, we used the power data shown in Table 2, along

with using O(N) and O(NInN) complexities to model the respon

times of Grep and Terasort respectively. The results shovig-

ure 10 demonstrate that the models are quite accurate iicpred

the energy consumption of CS: an average error of 1% and 4% for

mode energy consumption, and the cost to power up and down the©rep and Terasort jobs respectively.

cluster nodes.

CS on the other hand, is more complex in its modeling of re-
sponse time and energy consumption. We have already peesent
results showing that the computational complexity of theklaads
can be used to accurately model the response time degnadxtio
CS as more nodes are powered down (Appendix A.4).

If we recall Equation 1 from Section 2, the workload energy
consumption isZ,, = (Pj + Pj)T., which considers the power
drawn by both the online and offline nodes during the actuakwo
load execution. The effect of CS powering down nodes is tnat t
idle energy shrinks, and eventually reduces to zero. As G& po
ers down more nodesP(}) decreases whileH) increases. Using

Equation 1, we can model the energy consumption of the wacklo
under CS when we substitufg, with the workload complexity

C. THROUGHPUT
WORKLOADS

In this section we discuss empirical results showing thétisi
of CS and AIS to handle a throughput-sensitive MapReducsearlu
Here we are trading throughput for energy efficiency instefatie
response time/energy efficiency trade-offs, as in Section 4

For AIS, the method that we employ is the batching method de-
scribed in Section 3.3. AIS keeps the MR cluster powered down
while jobs are batching [19, 38]. When enough MR jobs are col-
lected, AIS powers up the cluster and submits all the job® jdh
collection, or batching delay, effectively degrades tigtoout.

In contrast, CS runs the jobs as they arrive but can process th

SENSITIVE
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Figure 10: Comparing the observed and modeled energy consuystion of the Grep and Tera-
sort workloads for CS. The average error is 1% and 4% for the Grep and Terasort models
respectively.

with some MR cluster nodes powered down. However, as fewer Using CS, we can power down nodes, degrading throughput, and

nodes are available for the job, this also lowers throughput potentially saving energy. We found that if CS powers dow2d3/
Our throughput workload mimics that of [22] whereby sort and nodes, then its throughput degrades to 6984 seconds. Giien t

scan jobs are injected into the MR cluster. We use the sang Ter throughput, CS with 21 nodes powered up, consumes 18.8MJ of

sort and Grep jobs of Section 4 whereby each job runs on a 77GB energy for this eight job workload.

dataset. Now using AIS, if we delay jobs such that we can then sub-
We evaluate a heterogeneous job workload consisting ofsior mit two jobs in a batch to the system at a time, then our mea-

and four scan jobs, randomly ordered and individually sutedi sured throughput for eight jobs is 6962 seconds (which ohesu

to the 24 node cluster in 850 second intervals. Recall frolm Se all batching time). With this throughput, AIS will power dovall

tion 4.2, that the Grep job can run in about 300 seconds and thethe nodes while batching jobs and power the entire clusteioup

Terasort job can run in 850 seconds. execute the batch. The measured energy consumption forsAlS i
Given this normal operating environment, the cluster thhqut 13.9MJ (which includes all transitioning costs). Therefdor this

is essentially eight jobs in 6800 seconds with an energy abst  heterogeneous job workload, AIS saves 26% of CS’ energy con-

20.5MJ. Now, suppose we have a tolerable throughput detipada ~ Sumption when both have equal throughput rates.

of 3% which means we can accept eight jobs in 7000 seconds.



