
Declarative Querying for Biological Sequences

Sandeep Tata� Jignesh M. Patel� James S. Friedman� Anand Swaroop���

Departments of �Electrical Engineering and Computer Science,
�Ophthalmology and Visual Science, and �Human Genetics

University of Michigan, Ann Arbor, MI 48109, USA
�tatas,jignesh,jfriedmn,swaroop�@umich.edu

Abstract

The ongoing revolution in life sciences research is pro-
ducing vast amounts of genetic and proteomic sequence
data. Scientists want to pose increasingly complex queries
on this data, but current methods for querying biological
sequences are primitive and largely procedural. This lim-
its the ease with which complex queries can be posed, and
often results in very inefficient query plans. There is a grow-
ing and urgent need for declarative and efficient methods
for querying biological sequence data. In this paper, we in-
troduce a system called Periscope/SQ which addresses this
need. Queries in our system are based on a well-defined
extension of relational algebra. We introduce new physi-
cal operators and support for novel indexes in the database.
As part of the optimization framework, we describe a new
technique for selectivity estimation of string pattern match-
ing predicates that is more accurate than previous methods.
We also describe a simple, yet highly effective algorithm to
optimize sequence queries. Finally, using a real-world ap-
plication in eye genetics, we show how Periscope/SQ can be
used to achieve a speedup of two orders of magnitude over
existing procedural methods!

1 Introduction

The life sciences community today faces the same prob-
lem that the business world faced over 25 years ago. They
are generating increasingly large volumes of data that they
want to manage and query in sophisticated ways. However,
existing querying techniques employ procedural methods,
with life sciences laboratories around the world using cus-
tom Perl, Python, or JAVA programs for posing and eval-
uating complex queries. The perils of using a procedural
querying paradigm are well known to a database audience,
namely a) severely limiting the ability of the scientist to
rapidly express complex queries, and b) often resulting in
very inefficient query plans as sophisticated query optimiza-

tion and evaluation methods are not employed. However,
existing DBMSs do not have adequate support for sophisti-
cated querying on biological data sets. This is unfortunate as
new discoveries in modern life sciences are strongly driven
by analysis of biological datasets. Not surprisingly, there
is a growing and urgent need for a system that can sup-
port complex declarative and efficient querying on biolog-
ical datasets.

Sequence datasets, usually describing DNA and proteins,
are commonly used in biological applications. DNA datasets
are sequences over the nucleotide alphabet of size 4: A, C,
G, and T. Proteins can be represented as sequences over the
amino acid alphabet, which is of size 20. Proteins also have
a secondary structure which refers to the local geometric
folding. This too is represented as a sequence over the sec-
ondary structure alphabet of size 3: alpha helix, beta sheet,
and loops. These sequence datasets often store additional in-
formation such as gene annotations in the case of DNA, and
3-D structure and known functions in the case of proteins.

The sizes of several existing biological sequence datasets
are growing rapidly. For instance, GenBank, a repository
for genetic information has been doubling in size every
16 months [8] – a rate faster than Moore’s law! Protein
databases, such as PIR [17, 27], have also grown rapidly
in the last few years. The growing sizes of these databases
exacerbate the deficiencies of current (procedural) querying
methods.

Biologists analyze these databases in several complex
ways. Similarity search is an important operation that is of-
ten used for both protein and genetic databases, although the
way in which similarity search is used is different in each
case. When querying protein databases, the goal is often
to find proteins that are similar to the protein being studied.
Studying a similar protein can yield important information
about the role of the query protein in the cell. The compu-
tational criteria for specifying similarity is approximate, and
includes similarity based on the amino acid sequence of the
protein, or on the geometrical structure of the protein, or a
combination of these. With genetic databases, scientists per-

form approximate similarity searches to identify regions of
interest such as genes, regulatory markers, repeating units,
etc. For any approximate matching query, the desired output
is an ordered list of results.

We note that existing sequence search tools such as
BLAST [2] only provide a limited search functionality. With
BLAST one can only search for approximate hits to a single
query sequence. One cannot look for more complex matches
such as one pattern separated from another pattern by a cer-
tain distance, or a query sequence with additional constraints
on non-sequence attributes. For example, consider the fol-
lowing query: “Find all genes in the human genome that
are expressed in the liver and have a TTGGACAGGATC-
CGA (allowing for 1 or 2 mismatches) followed by GC-
CGCG within 40 symbols in a 4000 symbol stretch upstream
of the gene”. This is an instance of a relatively straightfor-
ward, yet important query that can be quite cumbersome to
express and evaluate with current methods. A procedural
evaluation of this query involves writing a script which first
performs a BLAST [2] or a Smith-Waterman [20] search to
locate all instances of the two query patterns on the human
genome. Then, the results of these matches are combined
to find all pairs that are within 40 symbols of each other.
Next, a gene database is consulted to check if this match is
in the region upstream of any known gene. Finally, another
database search is required to check if the gene is expressed
in the liver. Note that there are several other ways of evaluat-
ing this query, which may be more efficient. Current tools do
not permit expressing such queries declaratively, and force
the programmer to pick and encode a particular query plan.
Researchers frequently ask such questions and current pro-
cedural methods are cumbersome to use.

In this paper, we describe a system called Periscope/SQ,
which takes on the challenge of building a declarative and
efficient query processing tool for biological sequences. The
system makes it possible to declaratively pose queries such
as the one described above. We also describe techniques to
efficiently evaluate such queries, and using a real world ex-
ample, demonstrate that Periscope/SQ is faster than current
procedural techniques by over two orders of magnitude!

Periscope/SQ is part of the Periscope project which aims
to build a declarative and efficient query processing engine
for querying on all protein and genetic structures [16]. This
includes sequences, secondary structures, and 3D structures.
The SQ component stands for “Sequence Querying” and is
the focus of this paper.

The main contributions of this paper are as follows:

� We present the design of the Periscope/SQ system, which
extends SQL to support complex declarative querying on
biological sequences.

� Fast and accurate selectivity estimation methods are es-
sential for optimizing complex queries, and in this paper
we present a novel technique for estimating the selectivity

of sequence pattern matching predicates based on a new
structure called the Symmetric Markovian Summary. We
show that this new summary structure is less expensive and
more accurate than existing methods.

� We also introduce novel query processing operators and
present an optimization framework that yields query plans
that are significantly faster (in some cases faster by two
orders of magnitude) than existing procedural querying
methods.

� We present a case study of an actual application in
eye genetics, which demonstrates the advantages of the
Periscope/SQ approach.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses our extensions to SQL. Our new sequence
selectivity estimation techniques are presented in Section 3,
and query optimization and evaluation methods are pre-
sented in Section 4. Section 5 contains the results of our
experimental evaluation, including an actual application in
eye genetics. Section 6 describes related work, and Section 7
contains our conclusions and directions for future work.

2 Extending a Relational DBMS

Biologists often pose queries that involve complex se-
quence similarity conditions as well as regular relational
operations (select, project, join, etc.). Consequently, rather
than build a stand-alone tool only for complex querying on
sequences, the best way to achieve this goal is to extend an
existing object-relational DBMS [23] to include support for
complex sequence processing. For the Periscope project, we
have chosen to extend the free open-source object-relational
DBMS Postgres [26].

Our query language, which extends the SQL query lan-
guage, is called called PiQL (pronounced as “pickle”). PiQL
incorporates the new data types and algebraic operations that
are described in our query algebra PiQA [25] 1.

The purpose of this section is to briefly describe the types
and operators in PiQL. Readers who are interested in the
algebraic properties of these extensions, and details of the
query language extensions may refer to [25].

Match Type: The Match type is used to define attributes
that store match information. A match is a set of triples (p, l,
s) which refer to the position, length, and score for each part
of the match. Operations on the match type are implemented
as user-defined functions. Query 1 in Figure 1 shows how to
create attributes of this type.

Match Operator: The Match operator finds approximate

1PiQL stands for Protein Query Language – the full versions of both
PiQA and PiQL can be used to query sequences and protein geometrical
structures. Since DNA datasets do not typically include geometrical struc-
tures, querying on DNA only requires the subset of these methods that al-
lows for querying on biological sequences.

Example PiQL Queries
1.CREATE TABLE prot-matches (pid INT,

p STRING, match MATCH TYPE)

2. SELECT * FROM MATCH(R,p,“EEK”,EXACT,3)

3. SELECT AUGMENT(M1.match, M2.match, 0, 10) FROM

MATCH(prots.p,“VLLSTTSA”, MM(PAM30)) M1,

MATCH(prots.p,“REVWAYLL”, MM(PAM30)) M2

4. SELECT CONTAINS(AUGMENT(

M1.match, M2.match, 0,10),M3.match) AS resmatch

FROM

MATCH(prots.p,“VLLSTTSA”, MM(PAM60)) M1,

MATCH(prots.p,“REVWAYLL”, MM(PAM60) M2,

MATCH(prots.s,“LLLLL”, EXACT) M3

WHERE score(resmatch) � 15

Figure 1. Example PiQL Statements

matches to a query string. It is implemented as a table func-
tion which takes as input a string, an attribute name, a match
model (described later), and a cutoff score. The operator re-
turns a relation with the match attribute. As an example of
this operator, consider Query 2 shown in Figure 1 that finds
all instances of the string “EEK” in attribute � of relation �
(Table 1). The result of the PiQL query returns the relation
R with an additional match column as shown in Table 2. The
matching portions are shown in boldface in Table 1. These
are referred to by position, length, and score in the match
column of Table 2.

Since local similarity search is a crucial operation in
querying biological sequences, one needs to pay close at-
tention to the match-model. In practice, the commonly
used match models include exact match model, k-mismatch
model, and the substitution matrix based models. A k-
mismatch model allows for at most k differences (mis-
matches) between the query and the match sequence. The
general substitution matrix based models use a matrix that
specifies the precise score to be awarded when one sym-
bol in the query is matched with a different symbol in the
database . For a more detailed discussion of various match-
ing models, we refer the reader to [4].

While Periscope/SQ supports the three match models
listed above, in this paper, we focus on the exact match
model and the k-mismatch model. These are the most fre-
quently used models for querying DNA and RNA sequences.
The substitution matrix model is primarily used for protein
sequences.

Match Augmentation Operator: The augmentation opera-
tor computes the union of the matches of its operands if they
are within a specified distance. This operator is implemented
as a function that takes as arguments the two match fields,
and the minimum and maximum distances. As an example,
consider Query 3 in Figure 1, which will find all matches
that are the form “VLLSTTSA” followed by “REVWAYLL”

id p s
1 GQISDSIEEKRGHH HLLLLLLLLLHEE
2 EEKKGFEEKRAVW LLEEEEEHHHHHL
3 QDGGSEEKSTKEEK HHHHLLLEEEELLL

Table 1. Relation R

id p s match
1 GQI... HLL... �(8,3,3)�
2 EEK... LLE... �(1,3,3),(7,3,3)�
3 QDG... HHH... �(6,3,3),(12,3,3)�

Table 2. Match Results

with a gap of 0-10 symbols between them. Each compo-
nent is found using a match operator, and combined using
the augmentation operator.

Other Operators: Periscope supports many other operators
like nest, unnest, contains, not-contains, etc. In the interest
of space, we omit the details.

Complex Query Example: As an example of a complex
PiQL query consider the following query:

Find all proteins that match the string “VLLSTTSSA”
followed by a match of the string “REVWAYLL” such
that a hit to the second pattern is within 10 symbols of
a hit to the first pattern. The secondary structure of the
fragment should contain a loop of length 5. Only report
those matches that score over 15 points.

Query 4 in Figure 1 is the PiQL query for this example. The
three MATCH clauses correspond to the match operators
that would be needed to search for each of the specified pat-
terns. The inner AUGMENT function in the SELECT clause
finds the patterns that have “VLLSTTSA” followed by the
“REVWAYLL”. The CONTAINS call makes sure that only
those matches that contain a loop of length 5 get selected.

3 Selectivity Estimation

To effectively optimize complex PiQL queries, which
contain sequence/string matching predicates, the optimizer
requires fast and accurate selectivity estimation methods.
In this section, we first present a new selectivity estimation
technique for exact match sequence predicates, and then de-
scribe extensions of this technique for the k-mismatch and
the substitution matrix models.

Our estimation method uses a novel structure called
the Symmetric Markovian Summary (SMS). SMS produces
more accurate estimates than the two currently known sum-
mary structures, namely: Markov tables [1], and pruned
count suffix trees [11, 12]. A Markov table stores the fre-
quencies of the most common q-grams. (A q-gram is simply
a string of length � that occurs in the database.) Pruned suf-
fix trees are derived from count suffix trees. A count suffix
tree is a suffix tree [13] where each node contains a count

of the number of leaves in the subtree rooted at that node.
This is equal to the number of occurrences of the string cor-
responding to that node. To find the number of occurrences
of the pattern “computer” using a count suffix tree, we sim-
ply traverse the edges of the tree until we locate the node
that is at the end of a path labeled “computer”, and return
the count value. The pruned count suffix tree uses a pruning
rule to store only a small portion (say, the first few levels,)
of the entire count suffix tree [11]. Observe that a pruned
count suffix tree in effect stores the frequencies of the most
commonly occurring patterns in the database.

Notice that in these previously proposed strategies, the
summary structures are biased towards recording the pat-
terns that occur frequently. The estimation algorithms then
typically assume a default frequency for patterns that are not
found in the summary. For instance, this could be the thresh-
old frequency used in pruning a count suffix tree. If a query
is composed mostly of frequently occurring patterns, then
this bias towards recording the frequent patterns is not an
issue. However, if the query tends to have a higher selectiv-
ity (i.e., matches very few tuples), such a summary can bias
the estimation algorithm towards greatly overestimating the
result size. As the experimental evaluation in Section 3.4
shows, these existing algorithms perform very poorly when
it comes to negative queries (where 0 tuples are selected)
and queries with high selectivity.

The key strength of SMS is that it captures both the
frequent and rare patterns. Our estimation algorithm that
uses SMS not only produces more accurate estimates for
the highly selective predicates (the “weak spot” of previous
methods), but also produces better estimates for predicates
with lower selectivities. In the following section, we now
describe our estimation algorithm, and the SMS structure.

3.1 Preliminaries

In a traditional database context, the selectivity of a string
predicate is the number of rows in which the query string
occurs. Alternately, we can define it as the number of occur-
rences of the query string in the database. Multiple occur-
rences in each row make these two metrics different. This
alternate definition is more useful in biological applications
where we are interested in finding all occurrences of a query
string even if they are in the same row (eg. same chromo-
some). In this paper, we use this more appropriate definition
of selectivity. (Our technique can also be adapted to return
the number of rows, and thereby be used for text queries.)

Most string datasets (English text or DNA or protein se-
quences) can be modeled quite accurately as a sequence
emitted by a Markov source. That is, we assume that the
source generates the text by emitting each symbol with a
probability that depends on the previous symbols emitted. If
this dependence is limited to k previous symbols, then we

Estimation Function StrEst(q, summary)
1. � = 1.0
2. For �= 1 to ���

3. � = ���������
4. If Prob(����) is stored in the summary, � = ��	
������
5. Else, � = ��	
�����

��,
where �� is the longest suffix of � such that Prob(�����)
is in the summary

6. � � �� �

7. End For
8. Return �������

Figure 2. Estimation Function StrEst

call this a Markovian source with memory k, or simply a � ��

order Markov source. In [11], the authors show that for most
real world data sets, this k is a fairly small number. We re-
fer to this property as the “short-memory” property, to mean
that most real world sequences do not have significant long
range correlations.

3.2 The Estimation Algorithm

For a query � � �����������, the number of occurrences
of the string � in the database is the probability of finding an
occurrence of � times the size of the database. Equivalently,
this estimate is (the probability that the Markov source emits
�) � (the size of the database). If � ��� denotes the proba-
bility of the source emitting �, then:

� ��� � � ����� � �������� � ����������

���� � ��������������

� � �������
���� ��������������

We can exploit the short-memory assumption and use
the fact that � ���������� is the same as � ��������������,
where k is the memory of the Markovian source. Conse-
quently, the expression can now be rewritten as � ��� �
� ������

�
���� ���������������. The Symmetric Markovian

Summary (SMS) essentially provides a structure for record-
ing the � ��������������� values, which can be used to com-
pute � ���. One simple approach is to record each value,
but this approach has prohibitively large storage and com-
putation cost. The crux of our estimation algorithm is in
recoding only the most “significant” values, and using good
approximations for values that are not actually stored in the
summary structure.

Algorithm StrEst (shown in Figure 2) computes the esti-
mates using the equation described above. When retrieving
a probability from the summary, it first looks for � ���	 �. If
this value is not found, it searches the summary for � ���
�,
where 	 = �
 for some symbol �. It successively searches
for shorter suffixes of 	 , and if nothing else is found, it re-
turns � ���. This algorithm makes at most � � ��� probes of
the summary structure.

Other Match Models: For the k-mismatch model, we use a
simple estimation technique. For small values of k, we list
all possible strings that have at most k mismatches with the
query string. We compute their selectivities using the exact
match model, and add them up. For larger values of k, we
use a different approach. We compute a representative se-
lectivity �� for the set of strings (�) that have at most k dif-
ferences with the query string. The number of such strings
is: �� � �

��

��� ��� �� � �� � ���. � is the length of the
string and � is the alphabet size. (For an i-mismatch string,
you choose i symbols from the � and replace them with one
of �� � symbols for a mismatch.) We then compute the se-
lectivity as �� � �� �. An obvious choice for �� is the exact
match selectivity of the query string. A better choice is the
average selectivity of the set of strings with � mismatches,
where � is a small number like 1 or 2. Such an average will
effectively sample a larger subset of � and produce a bet-
ter estimate (as also supported by the experimental results
presented in Section 3.4.4).

For predicates using the general substitution matrix
model, a simple estimation method is to use a heuristic that
computes the selectivity of an equivalent k-mismatch predi-
cate by choosing an appropriate k. Another alternative is to
examine the properties of the substitution matrix to expand
the query string into a set of closely homologous strings and
to use existing estimation methods for each string. A de-
tailed exploration and evaluation of methods for this model
is part of future work.

3.3 The Symmetric Markovian Summary

The Symmetric Markovian Summary (SMS) is essen-
tially a lookup table that stores various probabilities of the
form � ���	 �, where � is a symbol in � (the alphabet,) and
	 is a string of length at most �. If we let �� denote the set
of all probabilities where 	 is exactly of length �, then ����
= ������. In the simplest case when � � �, this reduces
to storing the unconditional probability for each symbol in
the alphabet. Ideally, one would like to have the summary
� � ��

����� for some sufficiently large �.
The size of such a table grows exponentially with the

value of �, making it impractical especially for large alpha-
bets. Therefore, we need to choose a smaller subset of �
such that these probabilities provide an accurate estimate.
The basic idea behind SMS is to choose only the most im-
portant probabilities from �. A probability value is less im-
portant if we would incur only a small error if we didn’t
store it and approximated it with a different probability in-
stead (when using algorithm StrEst).

We present two algorithms H1 and H2 that use differ-
ent notions of the importance of a probability to construct
an SMS. These two methods differ in the manner in which
they compute the importance of an entry. Before describ-

Algorithm H1(String,k,B)
OCC = [], STR = [], PROB=[] A = Alphabet U �null�
1. Calculate the frequency of each q-gram s for

q varying from 1 to k as OCC(s).
//Now calculate conditional probability
2. For every a,Y such that �Y� � k

3. PROB(a�Y) = OCC(Ya)�OCC(Y)
4. End For
5. Create Priority Queue PQ of Size B bytes
6. Fix unconditional probabilities into PQ.
7. For each entry in Prob

8. priority = ������ ��� � �Prob(a�Y) - Prob(a�X)�
where � is the longest suffix of Y present in PQ.

9. PQ.insert(�a�Y, Prob(a�Y), priority�)
10. If Size of PQ exceeds B, drop lowest priority element

and adjust the priorities of affected elements.
11. End For
12. PQ contains the Symmetric Markovian Summary

Figure 3. Algorithm H1 to construct SMS

ing these algorithms in detail, we first present the intuition
behind defining a good notion of importance.

There are two components to the importance of a prob-
ability. A straightforward indicator of importance is the
error that might be incurred if the value were not in the
summary. We call this the Æ-value of the probability en-
try. Suppose that we exclude � ���	 � from the SMS, and
use some � ����� (where � is the maximal suffix of 	 ,)
from the summary to approximate it. We compute Æ �
�� ���	 � � � ������. Note that � ���	 � being more likely
than � ����� is just as important as it being less likely. It is
this symmetric property that leads to a better summary.

An orthogonal but important factor that determines the
importance of a probability entry is the likelihood that it will
actually be used in some queries. This is basically a work-
load dependent factor. For instance, even if the probabil-
ity � ������ has a higher Æ value than � �����, it
might still make better sense to choose� ����� to retain in
the summary, simply because it is likely to be used more of-
ten than the former. For the workload as a whole, the average
error incurred from approximating � ����� will add up
to more than the error from approximating � ������
since � ����� is likely to be used more often. The likeli-
hood that a given probability entry will be used for a given
workload is the �-value of the entry. In the absence of any
characterization of the queries, one can assume a uniform
query distribution and assign a higher � to shorter strings.
We combine these two components to define importance as
the product of Æ and �.

Formally speaking, for a given �, and a fixed summary
size (� entries), we want to store a subset of values from
each of ��� ��� ����� such that the values we prune away
can be approximated well. That is, we want to choose

� � ��
����� such that ��� � ���� ������������� �����

is maximized. Here ������� ��� is the value that will be
used to approximate � in � , if � is excluded from � . In other
words, we pick the subset of size B that has the highest to-
tal importance. This is clearly a hard optimization problem.
Constructing an optimal summary with a naive approach
will take an unacceptably long time. We therefore present
two heuristic approaches H1 and H2 that perform very well
for a wide range of datasets.

Algorithm H1 This algorithm first computes ��,��,...,��

using a q-gram frequency table. Note that values from � �

are the unconditional probabilities of occurrence of each of
the symbols. We’ll always need these for the first symbol
of the query string. The algorithm first selects �� into the
summary structure (maintained as a priority queue). For
each of the entries in ���� � ��, the algorithm computes
Æ � �� ���	 � � � ������. To find � , the maximal suf-
fix of 	 , it scans the priority queue. It then computes
� � �����	 ���, and importance = Æ � � and inserts the
entry into the priority queue. If the queue size exceeds the
maximum size of the summary, we remove the element with
the lowest importance. We then scan the queue and adjust
the Æ value for those elements that were directly dependent
on the entry we just deleted. This heuristic runs in time
�� ���!����, where � is the summary size, and is the
total number of probability entries being considered.

Algorithm H2 Though H1 is a good heuristic, an important
drawback is that it is computationally expensive. H2 uses
a simpler algorithm that runs faster than H1, but may yield
a slightly less accurate summary. Instead of scanning the
priority queue to find the � that is the maximal suffix, H2
simply uses the unconditional probability instead of the ac-
tual ������� ��� entry. Everything else remains the same.
Note that now, we do not have to adjust any values when we
delete an element from the priority queue. The main advan-
tage of this algorithm is that it is very simple, and fast. The
running time for H2 is �� ��!����.

Both H1 and H2 store the summary as a list of pairs
(“��	 ”, � ���	 �) sorted on the first part. A lookup can be
performed in ����!���� time using binary search.

3.4 Evaluation of the Accuracy of SMS

In this section, we first compare the SMS-based algo-
rithms H1 and H2. We also compare the SMS method with
the method of [11], which is currently considered the best
method for estimating the selectivities of exact match predi-
cates. (Note that the recent work by Surajit et al. [3] uses an
estimation method that is built upon existing summary struc-
tures such as the pruned suffix tree. Their technique uses a
learning model to exploit the properties of English text, and
is not applicable to biological data. We note that our con-

tribution is orthogonal to [3] as their system can be built on
top of SMS.)

3.4.1 Experimental Setup

Data sets: We tested our estimation methods on number of
different biological datasets: a nucleotide (DNA) dataset [6]
(Chromosome 1 of Mouse, 200 million symbols) and a pro-
tein dataset (the SwissProt [17] collection, 53 million sym-
bols). We refer to these datasets as MGEN and SPROT re-
spectively. We also tried a number of English text sources
to verify the general applicability of our method, and the re-
sults are similar.
Query Sets: For MGEN, we generated 150 random strings
ranging from lengths 6 to 12 so it would span all the selec-
tivities. Similarly, for SPROT, we generated a set of 150
random strings of lengths ranging from 3 to 7.
Result Organization: For each algorithm, we classify the
queries based on their actual selectivities. Queries that have
less than 1% selectivity are classified as high selectivity
queries. The ones between 1%-10% were classified medium
selectivity, and those that had more than 10% selectivity
were classified as low selectivity queries. The metric of ac-
curacy we use is the average absolute relative error calcu-
lated as a percentage: " � ��� � ���
��������������

������
. We

refer to it simply as the average error.
Note that since highly selective queries produce only a

few results, the error in estimating this class can potentially
present a skewed picture. For instance, if the actual number
of occurrences was just 1, and we predicted 2 , that’s a 100%
error! A well established convention to not bias the result
presentation for such cases, is to use a correction [3, 11].
While calculating the error, if the �#$%�� selectivity is less
than 100/���, we divide the absolute error in selectivity by
100/��� instead of the actual value. ��� is the number of
tuples in the relation.
Platform: All experiments in this paper were carried out
on an 2.8 GHz Intel Pentium 4 machine with 2GB of main
memory, and running Linux, kernel version 2.4.20.

3.4.2 Comparison of H1 and H2

In our first study, we examine the effect of using an SMS of
type H1 versus one of type H2.

We ran the query sets using H1 and H2 on each of the
datasets for varying summary sizes. We present the results
for medium selectivity queries with MGEN in Figure 4(a).
The results for low and high selectivity queries and other
datasets are similar, and in the interest of space are omit-
ted here. From this figure, we see that as the summary size
increases, both H1 and H2 have increased accuracy. How-
ever, H1 has a consistent advantage over H2. At larger sum-
mary sizes the error from H2 is within 10% of H1. Note
that the cost of using H1 is significantly higher than the cost

A
ve

ra
ge

 E
rr

or
 (

%
)

0

20

40

60

Summary Size (Number of Entries)
0 1000 2000 3000 4000 5000

H1
H2

A
ve

ra
ge

 E
rr

or
 (

%
)

0

100

200

300

Query Selectivity
Low Med High

SMS
PSTMO

A
ve

ra
ge

 E
rr

or
 (

%
)

0

100

200

Query Selectivity
Low Med High

SMS
PSTMO

A
ve

ra
ge

 E
rr

or
 (

%
)

0

20

40

60

80

100

Query Selectivity
Low Med High

Small k(2)
Large k(5)

(a): Medium Selectivity,
MGEN: H2 vs H1

(b): MGEN: SMS vs. PSTMO (c): SPROT: SMS vs. PSTMO (d): K-Mismatch Estimation
Error

Figure 4. Evaluation of the Accuracy of SMS

of H2. For instance, with the MGEN dataset and an SMS
with 1000 entries, the time taken to construct H1 is 219 sec-
onds, while H2 takes only 93 seconds. However, H2 incurs
only a small loss in accuracy. Therefore, we conclude that
except for cases where very high accuracy is needed, or if
the summary size is very small, we use H1 to construct the
summary. In all other cases, we use H2 since it is cheaper to
construct, and nearly as accurate as H1.

3.4.3 Comparison with Existing Methods

In this section, we compare our SMS based algorithm with
the algorithm proposed in [11]. For this experiment, we
used algorithm H2 to construct the summaries. The algo-
rithm in [11] uses a maximum overlap parsing along with a
Markovian model for the text. The summary structure they
use is a pruned count suffix tree. For ease in presentation,
we refer to the method in [11] as the PSTMO algorithm.

For this experiment, we fixed the summary size to be 5%
of the database size. We present the average absolute relative
error for each class of query for each dataset in Figures 4(b)
and 4(c).

For the MGEN dataset, SMS has a slight advantage over
PSTMO for low and medium selectivity queries. However,
for high selectivity queries, PSTMO has a very large error
- over 340%, compared to only 18% with SMS! In the case
of SPROT, we see that PSTMO has a slight advantage for
low and medium selectivity queries. This is mostly due to
the fact that the query set has many short strings. PSTMO
stores the exact counts of these short strings and therefore
ends up being very accurate for these queries. However, for
longer strings (high selectivity), the error for PSTMO rises
sharply to 164%. In contrast, SMS has a low error of 21%.
As discussed in Section 3.3, SMS is more accurate because
it is a symmetric digest of the information in the text.

An important class of queries that were not explored in
the above study is the class of negative queries. While
searching text databases, users commonly make spelling or
typographical errors which result in the string predicate se-

lecting zero records. Algorithms like PSTMO tend to pro-
vide very poor estimates for these queries. However, our
SMS based algorithm works very well for these queries too.
We have also experimented with negative queries, and the
results are similar to the highly selective queries.
Execution times: We compared the execution time of the
SMS based estimation algorithm with that of PSTMO. For
DNA queries, the average time taken for our method is 3 mi-
croseconds while PSTMO takes 66 microseconds. For pro-
tein queries, we take 7 microseconds while PSTMO takes 18
microseconds. This advantage is due to the fact that PSTMO
needs to repeatedly traverse a suffix tree. Traversing suffix
tree nodes is expensive because it involves chasing a num-
ber of pointers. While the estimation time is an insignificant
part of the query evaluation time, these numbers show that
even though the SMS based algorithm is more accurate than
PSTMO, it does not take longer to execute!

3.4.4 K-Mismatch Estimation

We examined the effectiveness of our estimation method for
predicates using the k-mismatch model.The result of this
study for a small k (2) and a large k (5) is shown in Fig-
ure 4(d). Observe that the error in estimation in this case
is generally higher than the exact model. This is because
we use the estimates from the exact model to compute these
estimates, and the cumulative error tends to be significantly
larger. Inspite of the relatively larger error, the estimates are
reasonably accurate for queries of all selectivities.

In summary, we have presented an algorithm for esti-
mating the selectivity of string/sequence predicates using a
novel structure called the Symmetric Markovian Summary
(SMS). Our estimation method using SMS is more accurate
than existing algorithms, and also takes less time for com-
puting the estimate. Existing methods are particularly poor
in estimating the selectivity of highly selective predicates,
which is gracefully handled by our approach. As our empir-
ical evaluation shows, in some cases our approach is up to 5
times more accurate than the previous best algorithm.

4 Query Evaluation

The introduction of new operators in PiQL presents two
significant challenges. First, we need efficient algorithms to
execute new operators like match, augment, contains, etc.
Second, we need to extend the optimizer to be able to op-
timize over the new operators. We first discuss algorithms
for the crucial match operator. We then briefly describe al-
gorithms for other operators, and present a new physical op-
erator called the Match-and-Augment. Finally, we present
an optimization algorithm that is highly effective at finding
good plans for a subset of queries.

4.1 Algorithms for Match

The algorithms for evaluating the match operator varies
depending on the match model. In the simplest case - the
exact match - a linear scan of the database can be used. The
Scan algorithm scans the sequence from start to finish and
compares each sequence with the query pattern for an exact
match. With a match model such as a k-mismatch model, a
Finite State Automaton (FSA) is constructed for the query,
and each sequence is run through this automaton. The cost
of this algorithm is �� � �
�� where is the length of the
database, and �
� is the expected number of states of the
automaton that are traversed before deciding on a hit or a
miss. For the more complex model using a substitution ma-
trix, the linear scan or the FSA scan algorithm cannot be
used directly. Instead, we can use the Smith-Waterman [20]
(SW) algorithm, which is a dynamic programming local-
alignment algorithm. Its time complexity is���� �where
� is the size of the query and is the size of the database.
The BLAST [2] family of algorithms is a heuristic approach
to local-similarity searching that runs faster than SW, and
finds most matches for a given query.

The OASIS [14] algorithm is a suffix tree based technique
for sequence similarity that can be used with any match
model (including the substitution-based matrix model with
affine gap penalties). In the case of the exact match, one can
simply traverse down the suffix tree along the query string
and collect all the leaf nodes under that node (this is essen-
tially a simple suffix tree query). The cost of this algorithm
is ��� � �� where q is the length of the query and � is the
number of matches. The cost of a k-mismatch search with a
suffix tree is typically similar to an OASIS search.

Choosing the right algorithm can not only impact the per-
formance, but sometimes also the accuracy. With BLAST,
there is a possibility that some of the hits might be missed
- it should be used only in cases when this is acceptable.
Smith-Waterman and OASIS on the other hand never miss
matches and could always be used in all situations, though
these algorithms can be more expensive to execute.

Algorithms for other operators like augment, contains,

Algorithm Optimize
1. Compute selectivity s(i) of each predicate
2. Compute cost c(i) of evaluating each predicate
3. Let f be the most selective predicate
4. Let g be an adjacent predicate
5. t = cost of evaluating g, then combining it with f.
6. u = cost of using a match-and-augment operator
7. If t � u , then rewrite the plan as match-and-augment
8. If there is another adjacent predicate that has

not been considered, pick it to be g. Go to step 5.
9. End

Figure 5. The Optimization Algorithm

not-contains are similar to a traditional join. Instead of a
simple equality, the join condition tends to be a complex
predicate involving match types.

4.2 A New Combined Operator

We have designed a new physical operator that combines
the match operator with the match augmentation operator.
We call this the Match-and-Augment (MA) operator. It
can be used to extend a set of matches with another set of
matches on the same dataset. For instance, consider the fol-
lowing expression:
AUGMENT(MATCH(A.seq,“ATTA”,MM(BLOSUM62)),
MATCH(A.seq.“CA”,EXACT), 0,50).

A simple way of computing this expression is to evaluate
each match independently, and then use a join to compute
the augment. Alternately, we can evaluate the first MATCH,
then scan 50 symbols to the right of each match, and check
for the occurrences of “CA”. In this process, we output only
those matches where we find the “CA”. This is essentially
the approach used in the MA operator. The MA approach
can often be cheaper than performing two matches sepa-
rately and combining the results with the augment operation.

4.3 Optimization

Our current optimization strategy uses a two stage opti-
mization method. In the first step, we optimize the portion
of the query that refers to the complex sequence predicates,
and in the second stage we call the PostgreSQL optimizer to
optimize the traditional relational components of the query.
We acknowledge that this two step process may miss oppor-
tunities for optimization across the two components, but is
amenable for rapid prototyping. As part of future work, we
plan on integrate these two optimization steps.

The basic idea behind the optimization algorithm is as
follows: Suppose that the query contains match predi-
cates connected together by operators like augments. We
compute the selectivity of each match predicate, and pick
the most selective predicate to start with. We examine the

predicate adjacent to this and compute the cost of evaluat-
ing that match and combining it with the current predicate.
Now, we compare this with the cost of using a match and
augment operator. If it is cheaper, then we rewrite the plan
to use a match and augment operation and examine another
adjacent predicate in the same way. The algorithm termi-
nates when an adjacent predicate cannot be combined using
a match and augment or when all the predicates have been
combined. The algorithm is outlined in Figure 5.

It is easy to see the algorithm runs in time proportional
to the number of match predicates. Although it explores a
very small portion of the plan space, it is highly effective,
as demonstrated by the results shown in Section 5. The op-
timizer uses SMS for predicate selectivity estimation. The
cost model is fairly straightforward (CPU + I/O costs), and
is omitted in the interest of space.

5 Experimental Validation

In this section, we present the results of various ex-
perimental studies that we conducted to examine the per-
formance of our system. Our data set is the full mouse
genome [6] (2.6 billion symbols), and our query workloads
include a combination of synthetic and real queries. For con-
structing a suffix tree, we used the TDD algorithm [24].

Our current implementation is a simple prototype imple-
mentation that uses PostgreSQL [26]. We acknowledge that
our current prototype is not a fully integrated implementa-
tion as the system does not directly support the PiQL query
language, and has only limited support for the data types dis-
cussed in Section 2. For the class of queries that we use in
our experiments, we have various scripts that optimize and
generate query plans using modules that sit outside the Post-
greSQL engine. The prototype uses PostgreSQL for the rela-
tional components of the query, and external modules for the
sequence-based components. While our current implemen-
tation is primitive, it allows us to evaluate the effectiveness
of our methods accurately. As part of future work, we plan
on producing a fully integrated solution with PostgreSQL.

5.1 Impact of SMS-based Estimation

In order to understand the benefits of increased accu-
racy from the new SMS based estimation algorithm, we per-
formed the following experiment. We randomly generated
a hundred queries having three match predicates each. One
of the predicates used a k-mismatch model, while the others
used an exact match. The query load was executed for k =
0, 1, and 2. (We use these relatively small values since k is
usually a small number in practice.)

The lengths of each of these predicates was randomly
chosen to be between 6 and 14. Neither the suffix tree in-
dex, nor the match and augment operator is used in evaluat-

k Without MA With MA
Average (Std-Dev) Average (Std-Dev)

0 3.04 (11.5) 0.19 (0.08)
1 46.71 (142.08) 0.55 (0.65)
2 226.76 (808.5) 13.55 (41.46)

Table 3. Query Plan Evaluation Times (mins)

ing these queries. Each query was optimized by exhaustively
searching over all the plans in the plan space. (Note that in
this experiment we are not using the linear optimization al-
gorithm of Section 4.3. The exhaustive optimization is guar-
anteed to pick the plan with the best estimated cost, thereby
isolating any effects related to the optimization algorithm.)

We optimized the queries in two ways: In one case we
used PSTMO [11] to estimate the selectivities while opti-
mizing the query, and in another case, we used the SMS
based estimation algorithm. We used a one percent summary
in both cases. We found that the average running time of the
query plan (which does not include the optimization time)
was higher by about 43% when using PSTMO. Of the 100
queries, 90 queries were optimized identically by both algo-
rithms, and 10 queries were optimized differently. These 10
query plans took roughly 4.6 times as long to execute when
optimized using PSTMO as opposed to using SMS. The rea-
son for this behavior is because PSTMO had overestimated
the selectivity of some of the predicates by a margin large
enough that it led to a different execution plan in each of
these ten queries. This clearly drives home the advantage of
using SMS based estimation over existing methods.

5.2 Impact of Using Match and Augment

In this experiment, we explore the effectiveness of using
the new match and augment operator (MA), which was de-
scribed in Section 4.2. For this experiment, we ran the set of
100 queries generated as above in two different ways. One
plan was optimized with the MA operator and the other plan
without it. For this experiment also, we used an exhaustive
search optimization algorithm. The query plan evaluation
times are summarized in Table 3 for each value of k. As is
evident, the use of the new operator can lead to significant
savings. The plan that used the match-and-augment operator
executed 10 to 80 times faster on average.

In Table 3, we also provide the standard deviation of the
times for the 100 queries. To get a better understanding of
how often and how much the match and augment operator
helps, we split the queries into three sets: the first set, where
the new operator provides at most a 2X speedup (small ad-
vantage), the second bin where the speedup was greater than
2 but less than 10 (significant advantage), and the third bin
where the speedup exceeded a factor of 10 (large advantage).
We observed that for k = 0, in 65% of the queries were in
the first category, around 20% in the second, and 15% in

T
im

e
(m

in
)

0

1

2

3

Number of Predicates

3 5 7

Optimization
Evaluation

Exh Lin Exh Lin

Exh

Lin

Figure 6. Optimization and Evaluation Times

the third. Similarly for the case where k = 1, the split-up
was 35%, 30%, and 35% respectively. Finally for k = 2, the
query set split 30%, 20%, 50% into the three categories. It
is clear from the evidence that the new operator can be very
useful in a significant number of queries.

5.3 Optimizer Evaluation

In this experiment, we compare two optimization algo-
rithms. The first one is a conventional algorithm that ex-
haustively searches the plan space. The second algorithm
is the linear time optimization algorithm described in Fig-
ure 5. For this experiment, a suffix tree index is available
on the data, which increases the number of algorithms that
the optimizer can choose from. We generated three sets of
hundred queries each with 3, 5, and 7 predicates. One of
the predicates in each query was randomly selected to use a
k-mismatch model with k randomly chosen as one of 0, 1, 2.
The average query optimization time and the evaluation time
in each case is shown in Figure 6. The plan obtained using
the linear time optimization algorithm always runs within
6% of the optimal plan’s running time. For the exhaustive
query optimization method, the time taken to optimize the
query is low for a small number of predicates (3 or 5), but is
unacceptably large when more predicates (7 and above) are
used. Performing an exhaustive search to find the optimal
plan is a better option only in the case of 3 predicates. Over-
all, this experiment shows that the linear query optimization
method is quite robust. The exhaustive optimization method
can produce slightly better plans, but should only be used
when the query has a small number of predicates.

5.4 GeneLocator: An Application

The current implementation of Periscope/SQ has been
used in an web-based application called GeneLocator that
we have built in collaboration with researchers at the Kel-
logg Eye Center at the University of Michigan. GeneLo-

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

ACGTTGATGGAG CATAATA

Start of Gene
0−3000 bp 20−30 bp

DNA Strand (+ direction)

Figure 7. The Promoter Region of a
Potential Target Gene

cator is a tool for finding target promoter regions. In or-
der to understand certain genetic factors associated with eye
diseases, scientists are trying to identify all genes that are
regulated by a particular transcription factor (a protein that
regulates transcription). Such proteins typically bind to a
“signature” binding site - a short sequence of DNA gener-
ally 6-15 bases long, within the genomic DNA region called
the promoter region. The presence of a TATA-box (a pat-
tern like “TAATA”) or a GC-box (a pattern like “GCGC”)
within a few hundred base pairs often indicates that the bind-
ing site is functionally relevant for the transcription of the
downstream gene. Also, transcription generally begins at a
“CA” site, which is a short distance following the TATA-box
or the GC-box. Figure 7 pictorially represents the TATA-
box pattern that the biologists are looking for. In PiQL, this
query can be expressed as:

SELECT AUGMENT(AUGMENT(
M1.match, M2.match, 0,2988),
M3.match, 15,35) AS res, G.name
FROM MATCH(DB.dna,“ACGTTGATGGAG”,KM(1)) M1,
MATCH(DB.dna,“TAATA”,EX) M2,
MATCH(DB.dna,“CA”,EX) M3,
GeneAnnotations as G,
WHERE score(res) � 15 AND
G.start � start(res) AND G.start - start(res) � 5000 AND
G.chromosome = DB.chromosome

In the above query, GeneAnnotations is a table with the fol-
lowing schema: GeneAnnotations (id, chromosome, start,
end, type, annotation), and is loaded with the gene anno-
tation data from NCBI [6]. The extra conditions in the
WHERE clause in the above query filter out the matches
to report only those that are a short distance upstream of a
known gene.

Notice how the above query, which would require a fairly
complex program in a scripting language, can be declara-
tively expressed in just a few lines using PiQL. The declara-
tive framework not only makes it easier to ask sophisticated
biological queries, but also results in significant improve-
ments in query evaluation time (as we will see below).

GeneLocator is accessed by a web interface, which al-
lows the end user to pose queries by filling out a sim-
ple form. Our collaborators are working with the mouse
genome, and use this tool for posing interactive queries.

With their permission we logged the queries that they is-
sued. Most of their queries had three match predicates. The
inter-predicate distance and the number of mismatches al-
lowed in the match model varied across the queries. One or
two of the predicates often used an exact match model. The
others used a k-mismatch model. The actual queries are not
presented in order to protect the privacy of the research. For
this application we built a suffix tree on the mouse genome
using our suffix tree construction method [24].

5.5 Performance of GeneLocator

We compared the execution times of the set of queries
logged using three different query plans. The first query
plan does not use any indexes, and uses no optimization -
a naive left to right evaluation of the augments is used to
compute the result. The second plan uses a suffix tree and
an exhaustive search to choose the cheapest plan. It does not
use the match-and-augment operator. The third plan is opti-
mized using the linear optimization method and includes the
match-and-augment operator. The execution times for these
plans when run against the entire mouse genome are shown
in Table 4.

The first observation from Table 4 is that the suffix tree
can dramatically improve the query execution time. This
does not come as a surprise, since suffix tree index based
algorithms are usually very efficient. Second, we observe
that the plan with the match and augment operator executes
faster than the one without it by nearly an order of mag-
nitude. Existing procedural methods tend to resemble the
first plan (no indexes, no optimization, simple operators) and
therefore take an extremely long time to run. Periscope/SQ
not only provides a declarative and easy way to pose com-
plex queries, but also executes these queries upto 450 times
faster than existing procedural approaches!

6 Related Work

Miranker et al. [15] use constructs similar to PiQA [25]
to describe complex sequence queries. They largely focus
on devising and exploiting metric space indexing structures
for faster sequence queries. Our work, on the other hand,
focuses on providing a declarative and efficient system in
the context of many existing similarity measures.

Hammer and Schneider [10] outline an algebraic ap-
proach for expressing complex biological phenomenon (like
transcription). However, this algebra can not be used to
express the complex sequence queries that we consider in
this paper, and no system has been built using this alge-
bra. In [7, 9], the authors propose an alignment calculus on
strings and describe a system to query string databases. The
language permits the user to express complex string match-
ing predicates using the alignment calculus. However, the

Algorithm Time (min)
Unoptimized Plan (No Index) 473.05
Optimized, No MA (With Index) 9.76
Optimized, With MA 1.02

Table 4. Execution Times

notion of an approximate match is hard to capture in this
context. Also, to our knowledge, no performance evalua-
tions have been carried out for this system.

Previous work on querying traditional sequences [18,19]
is largely tailored towards handling time series data and can-
not be directly used for querying biological sequences.

Recognizing the need for supporting sequence query
matching in a relational framework, commercial DBMS
vendors have recently started supporting BLAST calls from
SQL statements [5, 21, 22]. However, these methods
only provided limited sequence searching capabilities, al-
lowing only simple pattern search (for example match-
augmentation is not supported), and can only work with the
BLAST match model.

Krishnan, Vitter, and Iyer presented one of the earliest
approaches for estimating the selectivity of exact wildcard
string predicates in [12]. The more recent work by Ja-
gadish et al. [11] improves on [12] by using a short-memory
Markovian assumption instead of an independence assump-
tion. These methods employ pruned suffix trees as the sum-
mary of the text in the database. Suffix trees are versatile
data structures, however, they have the drawback of being
biased towards storing more frequent patterns. The SMS
based approach we propose does not have this bias and is
more accurate than existing techniques.

Chaudhuri, Ganti, and Gravano [3] recently proposed a
technique which takes advantage of the frequency distribu-
tion properties of the English text to increase the accuracy
of estimation techniques. The method is based on the fact
that English text often has a short identifying substring. This
method has not been shown to be applicable to other datasets
such as DNA and protein sequences. The estimation meth-
ods that we propose in this paper can easily fit into the over-
all framework of [3] for use in text databases.

7 Conclusions and Future Work

In this paper, we have presented Periscope/SQ - a sys-
tem that permits declarative and efficient querying on bi-
ological sequences. This system uses a declarative query-
ing language, called PiQL, which extends traditional SQL
to provide integrated querying of relational and biological
sequence data. In producing this system, we have made sig-
nificant contributions in various aspects of query process-
ing for biological sequences. Periscope/SQ employs a novel
method for estimating the selectivity of sequence predicates

that is more accurate than previous methods. In addition, the
system uses novel physical operators and query optimiza-
tion strategies for processing complex biological sequence
queries. Periscope/SQ is being used in an actual eye genetics
application to evaluate queries in less than one hundredth the
time it used to take before, demonstrating the huge impact
that this approach can have for scientists querying biological
sequences.

As part of future work, we plan on fully integrating our
methods with the PostgreSQL engine. We also plan on de-
veloping more sophisticated methods for query evaluation,
estimation, and optimization for all PiQA operators, and ex-
ploring opportunities for optimization across the relational
and sequence querying components. In addition, we are in-
vestigating methods for extending the declarative query pro-
cessing framework to cover other biological data types, in-
cluding protein structures and biological networks.

Acknowledgments

This research was supported in part by the National Sci-
ence Foundation under grant IIS-0093059, the National In-
stitutes of Health under grant 1-U54-DA021519-01A1, and
by a research gift donation from Microsoft. Additional sup-
port for this research was provided by National Institutes of
Health grant EY11115, the Elmer and Sylvia Sramek Char-
itable Foundation, and the Research to Prevent Blindness
Foundation. The technical component of this project, in-
cluding system conception, algorithmic and software devel-
opment was carried out by J.M.P. and S.T.; A.S. and J.S.F.
provided valuable input regarding the applicability of the
query language for actual biological applications, and car-
ried out an evaluation of the system for the eye genetics ap-
plication. The corresponding author for this paper is J.M.P.,
Tel +1 (734) 647-1806, Fax +1 (734) 763 8094.

References

[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Esti-
mating the Selectivity of XML Path Expressions for Internet
Scale Applications. In VLDB, pages 591–600, 2001.

[2] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.
Basic Local Alignment Search Tool. Journal of Molecular
Biology, 215:403–410, 1990.

[3] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity Estima-
tion for String Predicates: Overcoming the Underestimation
Problem. In ICDE, pages 227–238, 2004.

[4] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biologi-
cal Sequence Analysis : Probabilistic Models of Proteins and
Nucleic Acids. Cambridge Univ. Press, 1st edition, 1999.

[5] B. A. Eckman and A. Kaufmann. Querying BLAST within a
Data Federation. IEEE Data Engineering Bulletin, 27(3):12–
19, 2004.

[6] GenBank, NCBI, 2004. www.ncbi.nlm.nih.gov/GenBank.

[7] G. Grahne, R. Hakli, M. Nykanen, H. Tamm, and E. Ukko-
nen. Design and Implementation of a String Database Query
Language. Information Systems, 28(4):311–337, 2003.

[8] Growth of GenBank, National Center
for Biotechnology Information (NCBI).
www.ncbi.nlm.nih.gov/Genbank/genbankstats.html, 2004.

[9] R. Hakli, M. Nykanen, H. Tamm, and E. Ukkonen. Imple-
menting a Declarative String Query Language with String
Restructuring. In PADL, pages 179–195, 1999.

[10] J. Hammer and M. Schneider. Genomics Algebra: A New,
Integrating Data Model, Language, and Tool for Processing
and Querying Genomic Information. In CIDR, 2003.

[11] H. V. Jagadish, O. Kapitskaia, R. Ng, and D. Srivastava. One-
dimensional and Multi-dimensional Substring Selectivity Es-
timation. The VLDB Journal, 9(3):214–230, 2000.

[12] P. Krishnan, J. S. Vitter, and B. Iyer. Estimating Alphanu-
meric Selectivity in the Presence of Wildcards. In SIGMOD,
pages 282–293, 1996.

[13] E. M. McCreight. A Space-economical Suffix Tree Construc-
tion Algorithm. Journal of the ACM, 23(2):262–272, 1976.

[14] C. Meek, J. M. Patel, and S. Kasetty. OASIS: An Online and
Accurate Technique for Local-alignment Searches on Bio-
logical Sequences. In VLDB, pages 910–921, 2003.

[15] D. P. Miranker, W. Xu, and R. Mao. MoBIoS: A Metric-
Space DBMS to Support Biological Discovery. In SSDBM,
pages 241–244, 2003.

[16] J. M. Patel. The Role of Declarative Querying in Bioinfor-
matics. OMICS: A Journal of Integrative Biology, 7(1):89–
92, 2003.

[17] R. Apweiler et al. UniProt: the Universal Protein Knowl-
edgebase. Nucleic Acids Research, 32(D):115–119, 2004.

[18] P. Seshadri, M. Livny, and R. Ramakrishnan. Sequence
Query Processing. In SIGMOD, pages 430–441, 1994.

[19] P. Seshadri, M. Livny, and R. Ramakrishnan. The Design and
Implementation of a Sequence Database System. In VLDB,
pages 99–110, 1996.

[20] T. F. Smith and M. S. Waterman. Identification of Com-
mon Molecular Subsequences. Journal of Molecular Biol-
ogy, 147:195–197, 1981.

[21] S. M. Stephens, J. Y. Chen, M. G. Davidson, S. Thomas, and
B. M. Trute. Oracle Database 10g: a platform for BLAST
search and Regular Expression pattern matching in life sci-
ences. Nucleic Acids Research, 33:D675–D679, 2005.

[22] S. M. Stephens, J. Y. Chen, and S. Thomas. ODM BLAST:
Sequence Homology Search in the RDBMS. IEEE Data En-
gineering Bulletin, 27(3):20–23, 2004.

[23] M. Stonebraker, D. Moore, and P. Brown. Object Relational
DBMS: Tracking the Next Great Wave. Morgan Kauffman,
2nd edition, 1999.

[24] S. Tata, R. A. Hankins, and J. M. Patel. Practical Suffix Tree
Construction. In VLDB, pages 36–47, 2004.

[25] S. Tata and J. M. Patel. PiQA: An Algebra for Querying
Protein Data Sets. In SSDBM, pages 141–150, 2003.

[26] The PostgreSQL Database System. www.postgresql.org.
[27] C. H. Wu and D. W. Nebert. Update on Human Genome

Completion and Annotations: Protein Information Resource.
Human Genomics, 95760-21:35, 2004., 1(3):1–5, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

