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Abstract

EÆcient support for set-valued attributes is likely to grow

in importance as object-relational database systems, which

either support set-valued attributes or propose to do so

soon, begin to replace their purely relational predecessors.

One of the most interesting and challenging operations on

set-valued attributes is the set containment join, because

it provides a concise and elegant way to express otherwise

complex queries. Unfortunately, evaluating these joins is

diÆcult, and naive approaches lead to algorithms that are

very expensive. In this paper, we develop a new partition

based algorithm for set containment joins: the Partitioning

Set Join Algorithm (PSJ), which uses a replicating multi-

level partitioning scheme based on a combination of set

elements and signatures. We present a detailed perfor-

mance study with a complete implementation in the Par-

adise object-relational database system. Our results show

that PSJ outperforms previously proposed set join algo-

rithms over a wide range of data sets.

1 Introduction

The data modeling community has long realized that
set valued attributes provide a concise and natural
way of modeling complex data [RKS98]. Recently,
there has been a resurgence of interest in set-valued
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attributes from two di�erent perspectives. First, com-
mercial O/R DBMS [Sto96] are beginning to support
set-valued attributes, which is likely to lead to their
use in \real" applications. Second, the rise of XML as
an important data standard increases the need for set-
valued attributes, since it appears that set-valued at-
tributes are key for the natural representation of XML
data in relational systems [SHT+99]. Unfortunately,
although sets have been fairly well studied from a data-
modeling viewpoint [Zan83], very little has been pub-
lished about the eÆcient implementation of operations
on set-valued attributes. In this paper, we consider the
implementation of a particularly challenging operation
over set-valued attributes, the set-containment join.

Many real world queries can be easily expressed us-
ing set containment joins. Consider a simple relation
that describes a document and set of hyper-links that
point to it.

DOCUMENT(did, fhyper-links-ing, actual-document)

Suppose document d1 is more important than d2 if d1
is linked-to by a superset of the documents that link
to d2. We can �nd pairs of documents d1 and d2 where
d1 is more important than d2 with the following query:

SELECT d1.did, d2.did
FROM DOCUMENT d1, DOCUMENT d2

WHERE d2.hyper-links-in � d1.hyper-links-in

The algorithms available for implementing set-
containment joins depend upon how set-valued at-
tributes are stored in the database. As described in
[KJD00], sets can be stored in the nested internal
representation (set elements are stored together along
with the rest of the attributes) or the unnested external

representation (set elements are scattered and stored
in a separate relation). To the best of our knowledge,
current commercial O/R DBMS use the unnested ex-
ternal representation. Since the unnested external rep-
resentation reduces to standard SQL2 relations under



the covers, set containment joins on the unnested ex-
ternal representation can be evaluated by rewriting the
queries into SQL2 (with no sets) and evaluating these
rewritten queries. On the other hand, with the nested
internal representation, the most obvious algorithm for
evaluating set-containment joins is nested loops. Two
questions immediately arise: (1) Are there better al-
gorithms than nested loops? (2) How do these algo-
rithms compare in eÆciency with the rewrite in SQL2
approach that is most logical for the unnested external
representation?

This paper attempts to answer these questions by
proposing a new partition-based join algorithm for set
containment joins, which we call PSJ. Partition-based
algorithms certainly dominate join algorithms in scalar
and spatial domains, so it is natural to suspect that
a partition-based algorithm will be the algorithm of
choice for set-containment joins.

This paper makes two main contributions. First, it
presents the new algorithm PSJ for set containment
joins. Second, it includes an extensive performance
study of three set containment algorithms: the tradi-
tional SQL approach on the unnested external rep-
resentation, signature nested loops and PSJ on the
nested internal representation. Our experience with
an implementation in the Paradise object-relational
database system [PYK+97] shows that PSJ yields sig-
ni�cant speedup over both the SQL-based approach
and signature nested loops. An added bene�t of this
algorithm is that, like all partition-based algorithms, it
is trivially parallelizable. Finally, our results present a
strong case for storing sets in the nested internal form,
since PSJ and even signature nested loops outperform
the rewritten queries over the unnested external rep-
resentation.

1.1 Related Work

Joins have been studied extensively in relational
[MK76], [Bra84], [DKO+84], [DNS91] and spatial
domains [LR96], [PD96]. Pointer joins for eÆ-
ciently traversing path expressions in object-oriented
databases has also been studied extensively [DLM93],
[SC90]. However, there is very little previous work
on set containment joins. The only reported work
of which we are aware is the work by Helmer and
Moerkotte [HM96], [HM97]. These papers investigate
nested loops algorithms for computing a set contain-
ment join and propose a new signature based hash join.
We discuss these algorithms in Sections 3 and 4.2

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2
de�nes the problem of set containment and the nota-
tion used in the paper. Various storage representations
for sets, the SQL approach and signature nested loops
joins are explained in detail in Section 3. The parti-
tion based set join algorithm is outlined in Section 4.

Section 5 presents a detailed performance study of all
the algorithms. The conclusions and future work are
presented in Section 6.

2 Problem De�nition and Notations

For the rest of the paper, we consider the two relations
R(a; fbg) and S(c; fdg) containing the set valued at-
tributes fbg and fdg respectively. Since set is a type
constructor, attributes b and d can be of any arbitrary
type and we assume that these types provide an equal-
ity predicate that compares the equivalence of two set
elements. Also we do not assume any order among the
set elements. The set containment join, R ./fbg�fdg S,
pairs tuples in relation R and S such that fbg is subset
of fdg. Table 1 describes the notation used in the rest
of the paper.

3 Previously Proposed Algorithms

Options for algorithms for set containment joins heav-
ily depend on how the set valued attributes are stored
in the database. In order to make this paper self-
contained, we briey discuss the options for storing
set-valued attributes.

3.1 Storage Representations for Sets

Various representations for sets are possible depending
on the following two characteristics: nesting (set ele-
ments are clustered or scattered) and location (set el-
ements are either stored with the rest of the attributes
internally or vertically partitioned and stored exter-
nally). As outlined in [KJD00], the two main repre-
sentations for sets are:

� Nested Internal: Here the set elements are
grouped together and stored with the rest of the
attributes in the tuple.

� Unnested External: In this representation, the
set-valued attribute is stored in a separate rela-
tion. For each set-valued attribute in a relation,
two relations are created: (1) A base relation that
stores the other non set-valued attributes and an
identi�er, and (2) An auxiliary relation that stores
each element of the set-valued attribute as a tuple
with the (corresponding) identi�er.

3.2 Join Algorithms for Unnested External

If sets are stored in the unnested external representa-
tion, set-containment joins can be expressed and evalu-
ated using standard SQL2 constructs. This approach
is important to study, because (a) it is the simplest
to add to any RDBMS, and (b) perhaps because of
(a), to our knowledge the commercial O/R DBMSs all
use this approach. As discussed in Section 3.1, in this
representation, a relation with a set-valued attribute
is decomposed into two relations. A set containment
operation can then be expressed using SQL over these



j R j Relation cardinality of R (# of tuples) j S j Relation cardinality of S (# of tuples)
rR Average set cardinality of R rS Average set cardinality of S
� Selectivity of R ./fbg�fdg S f False drops as a percent of � j R jj S j

IOseq Cost of a sequential I/O IOrand Cost of a random I/O

Table 1: Notations

SELECT *

FROM R, S

WHERE R.{b} S.{d}⊆

SELECT RS.i, SS.j

FROM RS, SS

WHERE RS.b = SS.d

GROUP BY RS.i, SS.j

HAVING COUNT(*) = (SELECT COUNT(*)

FROM RS AS NRS

WHERE NRS .i = RS .i)

Original Query Transformed Query

R(a,{b}) RB(a,i) RS(i,b)

S(c,{d}) SB(c,i) SS(i,d)

Figure 1: Original and Transformed SQL Queries (ex-
cluding �nal joins for a and c)

decomposed relations. If R and S are the two relations
being joined, and RS and SS are the corresponding de-
composed auxiliary set relations, then the original and
transformed queries are shown in Figure 1.

The rewritten query involves a correlated nested
sub-query and hence it is expensive to evaluate. A
possible optimization is to use magic-sets rewriting
[SPL96] and transform the original query into the set
of queries shown in Figure 2, thus evaluating the in-
ner query only once (as opposed to once for every tu-
ple produced by the outer block). Our experiments
show empirically that even this approach performs
very poorly unless the set sizes and relation sizes are
small; in fact, in many cases, it is so bad that the
algorithm can arguably be called \ugly".

3.3 Signature Nested Loops Algorithm for
Nested Internal

The signature nested loops algorithm proposed by
[HM97] attempts to reduce the cost of evaluating the
containment predicate by approximating sets using
signatures and evaluating the join predicate by com-
paring these signatures. A signature is a �xed length
bit vector that is computed by applying a function
M iteratively to every element e in the set and set-
ting the bit determined by M(e). If the containment
predicate s � t is to be satis�ed for two signatures
s and t, then the following condition is necessary:For
all bit positions that are set to 1 in signature s, the
corresponding bits in signature t should be set to 1.

However, this condition is not suÆcient since signa-
tures are only an approximate representation for the
set (unless the signature length is equal to the size of
the domain of the set). Hence using signatures to eval-
uate a predicate will yield false drops. The actual sets
must be examined to eliminate these false drops.

The signature nested loops algorithm operates in
three phases: the signature construction phase, the

probing phase, and the veri�cation phase. During the
signature construction phase, the entire relation R is
scanned, and for every tuple ti 2 R, a signature si
is constructed. A triplet (ci; si; OIDi) is computed
and stored in an intermediate relation Rsig ; here ci
is the set cardinality and OIDi is the physical record
identi�er (rid) of the tuple. The same process is re-
peated for the relation S and an intermediate rela-
tion Ssig is created. Next, the algorithm proceeds to
the probing phase, where the tuples of Rsig and Ssig
are joined. For every pair (ci; si; OIDi) 2 Rsig and
(cj ; sj ; OIDj) 2 Ssig , two conditions must be veri�ed
(i) ci � cj and (ii) si^sj = si, where the wedge repre-
sents the bit-wise and of the two signatures. If both the
conditions are satis�ed, then the pair (OIDi; OIDj)
is a possible candidate for the result. During the �nal
veri�cation phase, the tuples referred to in the candi-
date (OIDi; OIDj) pairs are fetched and the subset
predicate is evaluated on the actual set instances, pro-
ducing the �nal result.

The main issue in the signature nested loop join
algorithm is reducing the number of false drops to
minimize the cost of the veri�cation phase. The false
drop probability depends on the number of bits used in
constructing the signature. The greater the signature
length, the smaller will be the false drop probability.
However, larger signatures lead to more bit compar-
isons per signature, thereby increasing the execution
time of the probing phase. Hence, it is necessary that
the chosen signature size be such that further increases
in the number of bits do not signi�cantly reduce the
false drop probability. Based on the de�nition of false
drop probability, we derive an equation for the optimal
signature length (F ) as

F =
�rS

ln

�
1�

�
f�

1��(1+f)

�1=rR� (1)

The detailed derivation is presented in [KJJK00].
Note that even with the signatures of an ideal

length, this algorithm compares signatures for every
pair of tuples in the cross product of R and S. If R
and S each has one million tuples, there are one tril-
lion comparisons. This is discouraging enough to be
considered \bad."

4 Partitioned Set Join (PSJ)

In this section, we propose a new algorithm for the
nested internal representation that is based upon par-
titioning. In general, partition based algorithms for
joins (scalar and spatial) attempt to optimize join
execution by partitioning the problem into multiple



INSERT INTO RSTmp(i, counti)

SELECT RS.i, COUNT(*)

FROM RS

GROUP BY RS.i

INSERT INTO RSSSTmp(i, j, countij)

SELECT RS.i, SS.j, COUNT(*)

FROM RS, SS

WHERE RS.b = SS.d

GROUP BY RS.i, SS.j

SELECT RSSSTmp.i, RSSSTmp.j

FROM RSSSTmp, RSTmp

WHERE RSSSTmp.i = RSTmp.i

AND RSSSTmp.countij = RSTmp.counti

Count Query Candidate Query Verify Query

Figure 2: Magic Sets Rewriting

smaller subproblems using a partitioning function.
First, the relation R is partitioned into k partitions,
R1; R2; : : : ; Rk. Similarly, the relation S is partitioned
into S1; S2; : : : ; Sk using the same function. Note that
we are using a generalization of the classical de�nition
of partitioning in that one tuple may be mapped to
multiple partitions.

The algorithm proposed in this section, called the
Partitioned Set Join Algorithm (PSJ), uses a two level
partitioning scheme. It operates in three phases:

� Partitioning Phase: Each tuple of R is sent to
exactly one partition based on the �rst level par-
titioning function h. Each tuple of S, in general,
is replicated across multiple partitions using (the
same) h.

� Joining Phase: Each partition of R is joined
with its counterpart in S using a second level
partitioning function that operates on signatures.
Hence false drops are possible.

� Veri�cation Phase: The tuple pairs that the
join phase indicates could join, are compared to
remove any false drops.

The subsequent sections describe each of the phases in
detail.

4.1 Partitioning Phase

This phase uses a partitioning function h that operates
on the set elements. The partitioning phase begins by
reading the relation R. For each tuple r of R, the
following steps are executed

1. A 3-tuple (ci; si; OIDi) is computed, where ci is
the set cardinality, si is the signature of the set
instance, and OIDi is the OID of the tuple.

2. A random element eR is picked from r:fbg.

3. The 3-tuple is sent to the partition determined by
h(eR).

Observe that the 3-tuple for each tuple of R is sent
only to one partition. Now the relation S is read. For
each tuple s of S, the following steps are executed

1. A 3-tuple (ci; si; OIDi) is computed.

2. For each element eS 2 s:fdg, the 3-tuple is sent
to the partition determined by h(eS).

Note that if r:fbg � s:fdg then the partition deter-
mined by h(eR) will contain the 3-tuples corresponding
to r and s. Hence the algorithm computes containment
correctly.

4.2 Joining Phase

During the joining phase, each partition of R is joined
with its counterpart in S. There are various algo-
rithms that could be used in this phase. However,
at this point, the tuples in each partition do not carry
the actual set instances since they are approximated
by signatures. Hence the join algorithm in this phase
has to operate directly on signatures. In this phase,
we use a partition based in-memory algorithm using
signatures.

The joining algorithm works in two steps: the build
step and the probe step. In the build step, an array A
of size equal to the number of bits in the signature is
constructed. Now the partition Ri is scanned and each
3-tuple (ci; si; OIDi) is read. A bit position m that is
set to 1 is chosen randomly from the signature. The 3-
tuple is inserted into A[m]. At the end of �rst step, the
signatures from partition Ri have been partitioned.

During the probe step, partition Si is scanned. For
each 3-tuple (cj ; sj ; OIDj) the chain of signatures in
A[n] is examined whenever bit n is set to 1 in sj . The
containment predicate is evaluated (as in Section 3.3)
for each signature encountered in the chain and the
candidate pairs (OIDi; OIDj) are inserted into a tem-
porary relation. These candidate pairs potentially sat-
isfy the containment relationship.

This phase of the algorithm is similar to signature
hash join (SHJ) proposed in [HM97]. We use a single
bit in the signature to determine the array index for
R. SHJ in general uses more bits (a partial signature)
to determine the array index. For S, SHJ requires all
possible subset signatures to be enumerated for a given
partial signature to determine the chains to be probed.
This enumeration is exponential.

4.3 Veri�cation Phase

In the veri�cation phase, we examine the actual R and
S tuples to determine whether they satisfy the join



condition. The main issues involved in this phase are
speeding up set containment veri�cation and avoid-
ing random seeks while fetching the tuples. Refer to
[KJJK00] for a full discussion of the techniques used
to accomplish these goals.

4.4 Estimation of Number of Partitions and
Signature Size

The performance of PSJ depends two factors: the
number of partitions (PPSJ ) and the signature size
(FPSJ ). The desired number of partitions further de-
pends on two parameters: the average set cardinality
and the relation cardinality. Even though the speedup
is expected to increase as the number of partitions is
increased, in practice, the overhead associated with
each partition prevents such unbounded speedup.

In order to estimate the desired number of parti-
tions, we employ a detailed analytical model which
accounts for the overheads. Based on this model, we
estimate the ideal number of partitions as

PPSJ =

 
j R jj S j

�
1 �

�
1� 1

F

�rS�
Z

!1=3

(2)

where Z = 2IOrand + 2IOseq +H

The derivation of this equation is presented in
[KJJK00]. The fudge factor H accounts for various
system dependent factors. The fudge factor is likely
to vary across systems. For a given system, H can
be determined by choosing a sample set of data and
running the algorithm for various partitions.

Since partitioning avoids many redundant compar-
isons, one can expect the signature size to be lower
(when compared to Sig-NL). Also, as the number of
partitions is increased the signature size is expected to
get lower. We derive an equation for signature size.

(1�e�rS=FPSJ )rR�
f�PPSJ�

1�
�
1� 1

FPSJ

�rS�
� �PPSJ � f�PPSJ

= 0

(3)

We use bisection method to solve this equation. There
is a cyclic dependency between equations (2) and (3).
Hence both the equations have to be solved simultane-
ously. We use these equations to determine the appro-
priate combination of partitions and signature size in
our experiments for PSJ. As we shall see in Section 5.8
and Section 5.9, fortunately the performance curves as
a function of the number of partitions and signature
size are rather at. So these equations do not have to
be exact for reasonable performance.

5 Performance Evaluation

In this section, we evaluate the performance of the
three set containment algorithms: the SQL approach
for the unnested external representation (SQL), and
the signature nested-loops (Sig-NL) and PSJ algo-
rithms for nested internal. As a special case, we also
ran PSJ with one partition which we call PSJ-1. The

special case of one partition is important when applica-
ble, because it has no partitioning overhead. We �rst
describe our implementation of these algorithms and
then present results from various experiments designed
to investigate the performance of these algorithms un-
der various conditions.

5.1 Implementation

Paradise is a shared nothing parallel object-relational
system developed at the University of Wisconsin-
Madison [PYK+97]. We implemented sets using the
ADT mechanism in Paradise. The set ADT imple-
ments a number of set-oriented methods, including:
create-iterator, which returns an iterator over the el-
ements of the set; and set operators which are im-
plemented by type speci�c methods invoked by the
query engine when comparison and assignment are
performed on sets. For more details on the implemen-
tation, refer to [KJD00], [RPN].

We implemented signature-nested loops (Sig-NL)
and PSJ as join algorithms in the system, and ex-
tended the optimizer to recognize set containment join
operations in queries. For the SQL approach, magic
set optimization was used to rewrite the correlated
nested query as shown in Section 3.2. In order to
ensure that the optimizer did not choose bad plans,
optimal physical plans for each query were fed into
the system rather than the queries themselves.

5.2 Experimental Setup and Data Generation

In our experiments, the total size of the non set-valued
attributes in a tuple was 68 bytes. The average size of
each set element was 30 bytes. We ran the experiments
on an Intel 333 MHZ Pentium processor with 128MB
of main memory running Solaris 2.6. We used a 4GB
disk for storing the database volume. The disk was
mounted as a raw device. It provided an I/O band-
width of 6 MB/sec. Paradise was con�gured with a
32MB bu�er pool. Though this bu�er pool size may
seem small compared to current trends in memory, we
used this value since we wanted to test data sets that
were much larger than the bu�er pool. As will be
seen in the following sections, with this bu�er pool
size, some experiments take many days to run. Each
experiment was run against a cold bu�er pool to elim-
inate the e�ect of �le caching. The data generator for
the BUCKY benchmark [CDN+97] was modi�ed to
generate data synthetically. The data generator takes
as input the cardinality of the relations R and S, the
average cardinality of the set valued attributes in the
two relations, the size of the domain from which the set
elements are drawn, and a correlation value. For each
tuple, the set-valued attribute is generated as follows.
First, the data generator divides the entire domain into
50 smaller sub-domains. The set elements are drawn
from these sub-domains. Set elements are correlated
if they are drawn from the same sub-domain. Correla-
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Figure 3: Taxonomy of Set Distributions

tion of a set instance is de�ned as the percentage of the
set elements that are drawn from a single sub-domain.
For example, if the set cardinality is 10, a correlation
of 90% implies that 9 set elements are picked from one
sub-domain and 1 element is randomly chosen from
one of the remaining 49 sub-domains. All the experi-
ments used a correlation of 10% unless otherwise spec-
i�ed. Joining tuples were generated such that every R
tuple joins with exactly one S tuple.

5.3 Set Distributions

There are many distributions involving set valued at-
tributes because there are many degrees of freedom:

� Average set cardinality of relation R and S

� Relation cardinality of R and S

� Size of domain from which the set elements are
drawn

� Degree of correlation among the elements.

Each parameter can inuence the performance of the
containment algorithm. In an e�ort to reduce the
problem space, we restricted ourselves to varying the
relation and set cardinalities. Based on these two pa-
rameters we have four possible quadrants as shown
in Figure 3 and the experiments explore each of the
quadrant in detail. We chose the response time as our
performance metric.

5.4 Varying Relation Cardinality

In this set of experiments, we investigated the e�ect
of varying the relational cardinality. The domain size
was �xed at 10000. Since the join was not symmetric,
we further re�ned the experiments based on di�erent
cardinalities of R and S :

� The relation cardinalities of R and S are varied
together and the values are kept the same.

� The relation cardinality of S is kept constant at
a large value and that of R is varied.

� The relation cardinality of R is kept constant at
a large value and that of S is varied.

5.4.1 Vary Relation Cardinalites of R and S

In this experiment, the relation cardinality was var-
ied for two values of set cardinality: 20 and 120. The
results of these experiments are plotted in Figure 4.
The numbers for the SQL approach for relation car-
dinalities greater than 20000 are not included in the
�gure since these runs took more than 24 hours. The
main observation is that PSJ outperforms (or performs
as well as) other algorithms consistently over the en-
tire space of relation cardinality. On the other hand,
the SQL approach starts getting worse from 10000 on-
wards. Section 5.5 discusses why the SQL approach
performs poorly. Sig-NL and PSJ are analyzed in Sec-
tion 5.6.

5.5 Performance of the SQL Approach

As seen from Figure 4, the SQL approach performs
reasonably well at very small relation and set cardi-
nalities. However, as the relation sizes increase (note
the peak at 10000), the response time increases rapidly.
The cost breakdown of the SQL approach shows that
most of the time is dominated by candidate generation
query.

� The input to the joins are two large set relations
RS and SS .

� The number of intermediate tuples generated as
a result of the join is also large.

� The number of groups generated from the aggre-
gate operator is also large.

For a detailed cost breakdown of SQL approach, refer
the expanded version of the paper [KJJK00]. Because
of the aforementioned problems and consequent per-
formance degradation, the SQL approach is not con-
sidered in the remaining sections.

5.6 Sig-NL Vs PSJ

The individual cost breakdown of these algorithms is
shown in Figure 5, Figure 6 and Figure 7.

In general, the cost of these algorithms consists of
three components: partitioning cost, comparison cost
and veri�cation cost. The cost of Sig-NL and PSJ-1 do
not have any partitioning cost. The cost of Sig-NL can
be broken down into signature creation cost (labeled
as Rsig-creat and Ssig-creat in the graphs), join cost
(labeled as Sig-join) and sort and verify costs (labeled
as Sort and Verify). The cost of PSJ-1 is broken down
into build cost (labeled as R-build), probe cost (labeled
as S-probe), and sort and verify costs (labeled as Sort
and Verify). The cost of PSJ is broken into partition
creation and deletion cost (labeled as Part-creat and
Part-delete), partition cost (labeled as Spart-time and
Rpart-time), join cost (labeled as Part-join) and sort
and verify costs (labeled as Sort and Verify). The com-
parison cost is high in Sig-NL. It decreases in PSJ-1
and is least in PSJ.
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The �rst observation is that PSJ outperforms PSJ-
1 and Sig-NL consistently as seen from Figure 4. Sig-
NL spends most of its execution time in comparing the
signatures (see Figure 5), whereas the execution time
of PSJ-1 is dominated by the signature probing cost
(see Figure 6). Looking at Figure 7, we observe that
the cost in PSJ is distributed across the partitioning,
signature joining and the veri�cation costs. Partition-
ing reduces the signature comparisons, but requires a
partitioning phase. For PSJ to perform well the reduc-
tion in the number of comparisons from partitioning
should be signi�cant, and the partitioning cost should
not be too high. The reduction in number of com-
parisons is dominant at higher relation cardinalities as
seen in Figure 6 and Figure 7 (compare Part-Join in
PSJ with S-probe in PSJ-1 and Sig-Join in Sig-NL).
Hence PSJ consistently performs better at higher re-
lation cardinalities. For lower relation cardinalities,
the cost gained by avoiding unnecessary comparisons
is not high.

The second observation is that the gap between PSJ
and the rest is smaller for set cardinality of 120. This
is because the partitioning cost is higher for larger set
cardinalities. In addition, the comparison cost also
increases because of replication. Another contribut-
ing factor is the requirement of large signature sizes
for lower set cardinalities of R. This unexpected phe-
nomenon occurs because the probability that a given
set instance in R joins with some set instance in S in-
creases as its cardinality decreases. Hence in order to
keep the false drops minimum, an increase in the sig-
nature size is required. For example, in Sig-NL when
the relation cardinality of R (and S) was 25000, the re-
quired signature size was 181 bits for a set cardinality
of 20 while it was 104 bits for a set cardinality of 120.
This larger signature size has a much greater impact
on Sig-NL and PSJ-1. Note however that as the av-
erage set cardinality of S increases, the signature size
increases as expected.

The third observation is that PSJ-1 outperforms

Sig-NL consistently. This is expected since several
unnecessary comparisons are eliminated. Quantita-
tively, for a set cardinality of 20 and relation cardinal-
ity of 25000, Sig-NL requires 625 million comparisons
whereas PSJ-1 requires only 80 million comparisons.
When the set cardinality is 120, the number of com-
parisons increases since the expected number of bits
set to 1 in the signature increases thereby causing more
chains to be examined for a given set of S. Hence the
performance gap between the two decreases.

We also conducted experiments where the cardinal-
ity of one relation was �xed and the other was varied.
The trends observed were the same.

5.7 Varying Set Cardinality

In this experiment, we varied the set cardinality for
two di�erent relation cardinalities: 20000 and 100000
to explore the quadrants of small and large relation
cardinalities. The signature size for Sig-NL and PSJ-1
and the number of partitions for PSJ were chosen using
equations (2) and (3). The domain size was set at
10000. The results are plotted in Figure 8 and the cost
breakdown of PSJ-1 and PSJ are shown in Figure 9
and Figure 10.

For a given relation cardinality, as the set cardi-
nality increases, the gap between PSJ and the rest
diminishes. In fact for a relation cardinality of 20000
when the set cardinality is 160, PSJ-1 marginally out-
performs PSJ. This is because the partitioning cost in-
creases rapidly with increasing set cardinality as seen
in Figure 10. This happens because more partitions
are required and replication is higher. At the larger re-
lation cardinality of 100000, the set cardinality thresh-
old beyond which PSJ-1 outperforms PSJ increases as
expected.

5.8 E�ect of Signature Size

In this experiment, we study the e�ect of signature
size on the performance of Sig-NL and PSJ. Both al-
gorithms use signatures for producing an intermediate
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Figure 5: Cost Breakdown for Sig-NL

Set Cardinality of 20

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5000 10000 25000 75000 125000

Relation Cardinality

R
es

p
o

n
se

T
im

e
(s

ec
)

Verify

Sort

S-probe

R-build

Set Cardinality of 120

0

2500

5000

7500

10000

12500

15000

5000 10000 25000 75000 125000

Relation Cardinality

R
es

p
o

n
se

T
im

e
(s

ec
)

Verify

Sort

S-probe

R-build

Figure 6: Cost Breakdown for PSJ-1
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Figure 7: Cost Breakdown for PSJ
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Figure 8: Varying Set Cardinality
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Figure 9: Cost Breakdown for PSJ-1
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Figure 10: Cost Breakdown for PSJ
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Figure 11: E�ect of Signature Size

candidate set of result. As noted in Section 3.3, the
number of false drops in the candidate set is inu-
enced by the size of the signature. Hence the choice of
signature size is important both in Sig-NL and PSJ.
For this experiment, we used a relation cardinality of
20,000 for both R and S, an average set cardinality of
10 for R, and average set cardinality of 20 for S. The
size of domain was �xed at 10,000. For PSJ, we used
the optimal number of 42 partitions, as predicted by
equation (2). The result of this experiment is plotted
in Figure 11.

The �rst observation is that for smaller signature
sizes, Sig-NL is very expensive. This is because many
elements in the domain hash to the same bit, thereby
increasing the false drops. Such an increase in the
false drops increases the time of the veri�cation phase.
As the signature size increases, the number of false
drops reduces and hence the performance of Sig-NL
improves. However, after a signature size of 80, in-
creasing the signature length does not cause any signif-
icant improvement in the performance of Sig-NL. The
second observation is that PSJ is relatively immune to
the signature size. This is because partitioning reduces
the number of false drops.

For this data set, the signature size for Sig-NL pre-
dicted by equation (1) was 173 bits. For PSJ with 42
partitions, the signature size predicted by equation (3)
was 116 bits. Given the atness of the PSJ curve, it is
not important to get the signature size exactly right.

5.9 E�ect of Increasing Partitions in PSJ

In this experiment, we study the e�ect of the number of
partitions on the performance of PSJ. The relation car-
dinality of both relations was set at 20,000 and the set
cardinality was set at 120. The set elements are drawn
from a domain size of 10000. An appropriate combi-
nation of partitions and signature size was used as de-
termined by equations (2) and (3). The results of this
experiment is shown as the �rst graph in Figure 12. It
shows the breakdown of total cost: partition creation
and deletion times (the time to create and delete the

partition �les in SHORE, the storage manager used
in Paradise), partition time (the time taken to insert
tuples into the partition �les), join time, sort time and
veri�cation time. From this �gure, we observe that
PSJ has three phases: the �rst phase, in which the
total cost decreases gradually as the number of parti-
tions is increased; the second phase in which the total
cost is approximately constant; and the third phase in
which the total cost starts increasing as the number of
partitions becomes very large.

In order to further investigate the sharp increase in
partitioning overhead, we plot both the total number
of pages generated by the algorithm and the actual
number of pages that the system uses (see the second
graph in Figure 12. The actual number of pages gen-
erated by the system counts the number of disk pages
that were created by the algorithm. This number is
higher than the number of pages generated by the al-
gorithm as it includes the per-tuple overhead, and the
overhead due to fragmentation. The storage manager
allocates pages in extents (a group of pages) and frag-
mentation occurs when there are unused pages in the
extent. The graph shows that as the number of parti-
tions increases, there is a corresponding increase in the
size of the data generated (because of the increased
replication of S tuples). However, the replication of
each tuple is bounded by the set cardinality, and, con-
sequently the increase in the amount of data gener-
ated slows down after 64 partitions. However, the ac-
tual number of pages required still continues increasing
rapidly because of fragmentation. In addition, other
costs like the the number of bu�er pool pins and un-
pins, the cost of creating and deleting the partitions
also increases with the number of partitions. Thus,
the partitioning overhead increases sharply when the
number of partitions is large. This experiment shows
that the number of partitions has a critical impact on
the performance of PSJ. The equation (2) can be used
to estimate a reasonable number of partitions. For set
cardinality of 120, the number of partitions chosen by
the equation was 70.

5.10 Disk Space Requirements

Here we investigate the size of the intermediate space
required for Sig-NL and PSJ. We do not consider PSJ-
1 since it is an in-memory algorithm. We ran two
experiments to examine the disk space requirements.
In the �rst experiment, we set the relation cardinalities
to 100,000 and varied the set cardinality, and in the
second experiment, we set the set cardinality to 120
and varied the relation cardinalities. The results of
these two experiments are plotted in Figure 13 and
Figure 14 respectively. In these two �gures, we plot the
number of pages generated by each algorithm (labeled
as Sig-NL-Gen and PSJ-Gen in the graphs) and the
actual number of pages created on disk (labeled as Sig-
NL-Actual and PSJ-Actual). The main observation
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Figure 13: Disk Space, Varying Set Cardinality

is that Sig-NL requires much less storage than PSJ
as expected. The number of pages required by Sig-
NL varies slightly because of the variation in signature
size. Since the number of pages required by Sig-NL is
so low, there is a high probability that these pages
will remain in the bu�er pool during the operation of
the algorithm. PSJ on the other hand requires a large
amount of intermediate storage that steadily increases
as the cardinality increases. This behavior in PSJ is
caused by the following two factors: a) the number
of times the 3-tuple (as described in section 4.1) is
replicated increases as set cardinality increases and b)
the number of tuples per partition increases as the
relation cardinality increases.

For large data sets, the memory requirement for
PSJ-1 is very high since the entire set of R signatures
has to be accommodated. On the other hand, Sig-
NL and PSJ adapt themselves to available amount of
memory. Hence they are well suited to a multi-user
environment.

6 Conclusions and Future Work
This paper investigates algorithms for computing a set
containment join. These algorithms cover two possible
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implementations of set valued attributes: the unnested
external representation and the nested internal rep-
resentation. The unnested external representation is
used by commercial O/R DBMSs for implementing
set-valued attributes. In this case, set containment
join is implemented using a standard SQL2 query. For
the nested internal representation, this paper considers
two algorithms. The �rst is a variation of nested loops
(Sig-NL) that uses signatures to speed up the evalu-
ation of the join predicate. The second algorithm is
PSJ, a new partition based algorithm that is proposed
in this paper. This algorithm is based on a two level
partitioning scheme by using set elements to partition
relation R and replicate relation S. Within each par-
tition, it uses an in-memory algorithm based on parti-
tioning of signatures.

This paper also presents a detailed performance
study of the three algorithms. The performance space
of these algorithms is summarized in Figure 15. For
small data sets and small set cardinalities, PSJ works
well. The SQL approach and Sig-NL performs reason-
ably well for extremely small data sets and small set
cardinalities; however, as the relation or the set car-
dinality size increases the performance degrades very
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gorithms

rapidly. PSJ with one partition is usable at higher set
cardinalities provided there is enough memory. Else-
where, PSJ is the algorithm of choice.

Since the native SQL approach performed so poorly,
we are investigating how the bene�ts of PSJ can be
achieved even in systems that use the unnested exter-
nal set representation. One obvious approach would be
to execute the join by: (a) converting the inputs from
the unnested external format to a temporary nested
internal approach, (b) doing the join, (c) reconverting
the output. In this way the nested internal approach
is just an internal data structure of the join algorithm.
Clearly this will be much faster than the native SQL
over unnested external approach (which took days in
some of our tests.) In future work we plan to investi-
gate this and other alternatives.
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