
Enabling JSON Document Stores in Relational Systems

Craig Chasseur
University Of Wisconsin

chasseur@cs.wisc.edu

Yinan Li
University Of Wisconsin
yinan@cs.wisc.edu

Jignesh M. Patel
University Of Wisconsin

jignesh@cs.wisc.edu

ABSTRACT
In recent years, “document store” NoSQL systems have ex-
ploded in popularity, largely driven by the adoption of the
JSON data model in Web and mobile applications. The
advantages of these NoSQL document store systems (like
MongoDB and CouchDB) are tempered by a lack of tradi-
tional RDBMS features, notably a sophisticated declarative
query language, rich native query processing constructs (e.g.
joins), and transaction management providing ACID safety
guarantees. With this paper, we hope to spark a discus-
sion in the database community about how JSON data can
be supported on top of a relational infrastructure, and how
the best features of JSON document stores and relational
databases can be combined. We present Argo, a proof-of-
concept mapping layer for storing and querying JSON data
in a relational system with an easy-to-use SQL-like query
language. We also present NoBench, a micro-benchmark
suite for queries over JSON data in NoSQL and SQL sys-
tems. Our results point to directions of how one can marry
the best of both worlds, combining the flexibility and in-
teroperability of JSON with the rich query processing and
transactional properties offered by a traditional RDBMS.
Note: An extended version of this paper is available at [6].

1. INTRODUCTION
Relational database systems are facing new competition

from various NoSQL (“Not Only SQL”) systems. While
there are many varieties of NoSQL systems, the focus of this
paper is on document store NoSQL systems such as Mon-
goDB and CouchDB. These systems are appealing to Web
2.0 and mobile application programmers since they gener-
ally support JSON (Javascript Object Notation) as their
data model. This data model fits naturally into the type
systems of many programming languages, avoiding the prob-
lem of object-relational impedence mismatch. JSON data is
also highly-flexible and self-describing, and JSON document
stores allow users to work with data immediately without
defining a schema upfront. This “no-schema” nature elim-
inates much of the hassle of schema design, enables easy
evolution of data formats, and facilitates quick integration
of data from different sources. JSON is now a dominant
standard for data exchange among web services (such as

Copyright is held by the author/owner.
Sixteenth International Workshop on the Web and Databases (WebDB
2013),
June 23, 2013 - New York, NY, USA.

the public APIs for Twitter, Facebook, and many Google
services), making native JSON support appealing for appli-
cations that want to use these services.

In light of these advantages, many popular Web appli-
cations (e.g. Craigslist, Foursquare, and bit.ly), content
management systems (e.g. LexisNexis and Forbes), big me-
dia (e.g. BBC), and scientific applications (e.g. at the
Large Hadron Collider) today are powered by document
store NoSQL systems like MongoDB [2] and CouchDB [5].

Despite their advantages, JSON document stores suffer
some substantial drawbacks when compared to traditional
relational DBMSs. The querying capability of these NoSQL
systems is limited – they are often difficult to program for
complex data processing, and there is no standardized query
language for JSON. In addition, these leading JSON docu-
ment stores don’t offer ACID transaction semantics.

It is natural to ask whether there is a fundamental mis-
match between using a relational data processing kernel and
the JSON data model (bringing all the benefits described
above). The focus of this paper is to investigate this possibil-
ity by designing, developing, and evaluating a comprehensive
end-to-end solution that uses an RDBMS core, but exposes
the same JSON programming surface as the NoSQL JSON
document stores (with the addition of a highly usable query
language). We hope this initial investigation will lead to
many directions for future work and encourage a broader dis-
cussion in the database community about supporting JSON
data with relational technology, and adding features tradi-
tionally associated with RDBMSs to JSON document stores.

The key contributions of this work are as follows: First, we
consider how the JSON data model can be supported on top
of an RDBMS. A key challenge here is to directly support
the schema flexibility that is offered by JSON (see Section 2).
We then develop an automated mapping layer called Argo
that meets all of the requirements identified for JSON-on-
RDBMS (see Section 3). Argo runs on top of a traditional
RDBMS, and presents the JSON data model directly to the
application/user, with the addition of a sophisticated, easy
to use SQL-based query language for JSON, which we call
Argo/SQL. Thus, programming against Argo preserves all
the ease-of-use benefits that are associated with document
store NoSQL systems, while gaining a highly usable query
language and additional features that are naturally enabled
by using an RDBMS (such as ACID transactions).

We also present a micro-benchmark, called NoBench, to
quantify the performance of JSON document stores (see Sec-
tion 4). Using NoBench, we compare the performance of
Argo on two RDBMSs (MySQL and PostgreSQL) with Mon-
goDB, and find that Argo or a similar JSON-on-relational
system can often outperform existing NoSQL systems, while
providing higher functionality (e.g. joins, ACID).



{ "name": "George Bluth",
"age": 58,
"indicted": true,
"kids": ["Gob", "Lindsay", "Buster",

{
"name": "Michael",
"age": 38,
"kids": ["George-Michael"]

}],
"rival": "Stan Sitwell" }

{ "name": "Stan Sitwell",
"age": "middle-aged",
"charity_giving": 250120.5,
"kids": ["Sally"] }

Figure 1: A pair of valid JSON objects.

2. BACKGROUND

2.1 The JSON Data Model
The JSON data model [8] consists of four primitive types,

and two structured types. The four primitive types are:

• Unicode Strings, wrapped in quote characters.
• Numbers, which are double-precision IEEE floats.
• Boolean values, which are true or false.
• Null, to denote a null value.

The two structured types are:

• Objects, which are collections of attributes. Each at-
tribute is a key (String) and value (any type) pair.

• Arrays, which are ordered lists of values. Values in an
array are not required to have the same type.

A value in an object or array can be either a primitive type
or a structured type. Thus, JSON allows arbitrary nesting
of arrays and objects.
Figure 1 shows an example of two JSON objects. The first

object has string attributes name and rival, a numeric age
attribute, and a boolean indicted attribute. The object also
has an attribute kids, which is an array consisting of three
strings and an object (it is perfectly legal to mix value types
in an array). The nested object in the kids array defines
its own mapping of keys to values, and includes its own
array of kids (recall that JSON can nest objects and arrays
arbitrarily deep within each other).

2.2 JSON Document Stores
JSON-based NoSQL document stores, such as MongoDB [2]

and CouchDB [5], store collections of JSON objects in lieu
of relational tables, and use JSON as the primary data for-
mat to interact with applications. There are no restrictions
on the format and content of the objects stored, other than
those imposed by the JSON standard. This leads to several
salient differences from the relational model, namely:

• Flexibility and Ease-of-Use: Since applications don’t
have to define a schema upfront (or ever), application
writers can quickly start working with the data, and eas-
ily adapt to changes in data structure.

• Sparseness: An attribute with a particular key may ap-
pear in some objects in a collection, but not in others.
This situation often arises in e-commerce data [4, 7].

• Hierarchical Data: Values may be arrays or objects,
nested arbitrarily deep. In contrast to the relational ap-
proach of normalizing hierarchical data into separate ta-

bles with foreign-key references, hierarchical data is rep-
resented intensionally within the parent object [10].

• Dynamic Typing: Values for a particular key have no
fixed data type, and may vary from object to object.

MongoDB is the current market leader in the document
store category, and has a richer feature set than CouchDB,
including a real query language, secondary indices, and a
fast binary representation of JSON [1]. MongoDB is used to
power major web applications (including Craigslist, Foursquare,
and bit.ly), content management systems (including Lexis-
Nexis and Forbes), and scientific data from the LHC [3].

2.3 JSON vs. XML
JSON is similar to XML in that both are hierarchical semi-

structured data models. In fact, JSON is replacing XML in
some applications due to its relative simplicity, compactness,
and the ability to directly map JSON data to the native data
types of popular programming languages (e.g. Javascript).

There is a rich body of research on supporting XML data
using an underlying RDBMS. We are inspired by this re-
search, and we have adapted some techniques originally pro-
posed for dealing with XML to the JSON data model. We
discuss the differences between XML and JSON in depth
and draw insights from the existing XML research in [6].

3. ARGO: BRINGING JSON TO RELATIONS
Existing NoSQL document stores are limited by the lack of

a sophisticated and easy-to-use query language. The most
feature-rich JSON-oriented query language today is Mon-
goDB’s query language. It allows selection, projection, dele-
tion, limited types of updates, and COUNT aggregates on a
single collection of JSON objects, with optional ordering
of results. However, there is no facility for queries across
multiple collections (including joins), or for any aggregate
function other than COUNT. Such advanced query constructs
must be implemented outside of MongoDB, or within Mon-
goDB by writing a Javascript MapReduce job (while in other
systems like CouchDB, even simple queries require MapRe-
duce). MongoDB’s query language requires specifying pro-
jection lists and predicates as specially-formatted JSON ob-
jects, which can make query syntax cumbersome.

NoSQL systems typically offer BASE (basically available,
soft state, eventually consistent) transaction semantics. The
BASE model aims to allow a high degree of concurrency, but
it is often difficult to program against a BASE model; for
example, it is hard for applications to reconcile changes [11].
Recent versions of NoSQL systems such as MongoDB have
made an effort to improve beyond BASE, but these improve-
ments are limited to ensuring durability of individual writes
and still fall far short of full ACID semantics.

To address these limitations, we developed Argo, an auto-
mated mapping layer for storing and querying JSON data in
a relational DBMS. Argo has two main components:

• A mapping layer to convert JSON objects to relational
tuples and vice versa. (Described in Section 3.1)

• A SQL-like JSON query language, called Argo/SQL, for
querying JSON data. Beneath the covers Argo/SQL con-
verts queries to vanilla SQL that works with the mapping
scheme, and reconstructs JSON objects from relational
query results. (Described in Section 3.2)

Note that since the Argo approach uses a relational engine,
it can provide stronger ACID semantics.



3.1 Argo: The Mapping Layer
The storage format of Argo handles schema flexibility,

sparseness, hierarchical data, and dynamic typing as defined
in Section 2.2. The Argo storage format was designed to be
as simple as possible while still being a comprehensive so-
lution for storage of JSON data, and is meant mainly to
demonstrate the feasibility of storing JSON data in a rela-
tional system (We show in Section 5 that even this simple
format provides good performance.)
In order to address sparse data representation in a rela-

tional schema, Argo uses a vertical table format (inspired
by [4]), with columns for a unique object id (a 64-bit BIG-
INT), a key string (TEXT), and a value. Rows are stored in
vertical table(s) only when data actually exists for a key,
which allows different objects to define values for different
keys without any artificial restrictions on object schema, and
without any storage overhead for “missing” values.
To deal with hierarchical data (objects and arrays), we

use a key-flattening approach. The keys of a nested object
are appended to the parent key, along with the special sepa-
rator character “.”. This technique has the effect of making
the flattened key look like it is using the element-access op-
erator, which is conceptually what it represents. Similarly,
each value in an array is handled by appending the value’s
position in the array to the key, enclosed by square brack-
ets. This scheme allows the storage of hierarchical data in
a single, flat keyspace. To illustrate, the flattened key for
George Bluth’s grandson “George-Michael” in Figure 1 is
kids[3].kids[0]. Key-flattening is similar to the Dewey-order
approach for recording the order of XML nodes [13].
With the structured data types (objects and arrays) han-

dled by key-flattening, we now address storage for the prim-
itive types: strings, numbers, and booleans. We evaluated
two storage schemes which we call Argo/1 and Argo/3. For
the sake of brevity, we only describe Argo/3 in detail here,
but full details on Argo/1 are available in [6].

3.1.1 Argo/3
This mapping scheme uses three separate tables (one for

each primitive type) to store a single JSON collection. Each
table has the standard objid and keystr columns, as well as
a value column whose type matches the type of data (TEXT
for string, DOUBLE PRECISION for number, and BOOLEAN or
BIT for boolean). This one-table-per-type schema is not
unlike the use of different “node tables” to store element,
attribute, and text nodes from an XML document in a re-
lational system [12]. It is possible to store any number of
JSON collections in just 3 tables by adding a column for a
unique collection ID to this schema, but we do not do so be-
cause this can complicate query processing and cause data
from a single collection to become sparse on shared data
pages, incurring significant overhead.
Figure 2 illustrates the Argo/3 representation for the sam-

ple JSON objects from Figure 1. All values in the two ob-
jects in the file are distributed across three tables, according
to their types. In particular, the attributes with key age
have different value types in the two objects, and therefore
are separately stored in table argo people str and argo peo-
ple num. Nested values are handled with key-flattening.
To reconstruct JSON objects from the mapped tuples in

this scheme, Argo starts with an empty JSON object and
fetches rows from the three tables in parallel, ordered by
objid. Argo examines the keystr of each row, checking for

argo people str

objid keystr valstr

1 name George Bluth
1 kids[0] Gob
1 kids[1] Lindsay
1 kids[2] Buster
1 kids[3].name Michael
1 kids[3].kids[0] George-Michael
1 rival Stan Sitwell
2 name Stan Sitwell
2 age middle-aged
2 kids[0] Sally

argo people num

objid keystr valnum

1 age 58
1 kids[3].age 38
2 charity giving 250120.5

argo people bool

objid keystr valbool

1 indicted true

Figure 2: Decomposition of JSON Objects from Fig-
ure 1 into the Argo/3 Relational Format.

the element-access operator “.” and/or an array subscript in
square brackets, creating intermediate nested objects or ar-
rays as necessary on the path represented by the key string.
The primitive value for the row (whose type depends on
which of the three tables it was stored in) is inserted into the
appropriate place in the reconstructed object. Argo repeats
this process for all rows across the three tables which share
the same objid. Argo then emits the reconstructed JSON
object and starts over with a new, empty object, moving on
to the next-lowest objid from the three tables.

3.2 Argo/SQL
Argo/SQL is a SQL-like query language for collections

of JSON objects. It supports three types of statements:
INSERT, SELECT, and DELETE.

An insert statement has the following form:

INSERT INTO collection_name OBJECT {...};

A SELECT statement can specify a projection list of at-
tribute names or * for all attributes. It can optionally spec-
ify a predicate in a WHERE clause. It is also possible to specify
a single INNER JOIN. To illustrate these features, we show a
number of valid Argo/SQL SELECT statements, and the re-
sults they return, in Figure 3. We discuss the evaluation
of predicates in Section 3.2.1, selection and projection in
Section 3.2.2, and join processing in Section 3.2.3.

Finally, a DELETE statement removes objects from a col-
lection with an optional WHERE predicate. The following is
an example of a valid DELETE statement in Argo/SQL:

DELETE FROM people WHERE "Lindsay" = ANY kids;

The above query deletes the first object from the collec-
tion. Note that it has a predicate that matches the string
“Lindsay” with any of the values in the array kids. Array-
based predicates are discussed in more detail in Section 3.2.1.

We describe the mechanics of selection query evaluation
below. See [6] for more details on inserts and deletes.

3.2.1 Predicate Evaluation
Evaluating the WHERE clause of a SELECT or DELETE query

requires a general mechanism for evaluating predicates on
JSON objects and finding the set of objids that match.

Simple Comparisons: Suppose we wish to evaluate a
simple predicate comparing an attribute to a literal value.
Argo selects objid from the underlying table(s) where keystr
matches the specified attribute (values nested arbitrarily



Query Result

SELECT age FROM people; {"age": 58}
{"age": "middle-aged"}

SELECT * FROM people WHERE { "name": "Stan Sitwell",
charity_giving > 100000; "age": "middle-aged",

"charity_giving": 250120.5,
"kids": ["Sally"] }

SELECT left.name, right.kids { "left": {
FROM people AS left "name": "George Bluth" },
INNER JOIN people AS right "right": {
ON (left.rival = right.name); "kids": ["Sally"] } }

Figure 3: Argo/SQL SELECT statement examples.

deep in arrays or objects are allowed), and where the value
matches the user-specified predicate. Argo uses the type of
the literal value in such a predicate to determine which table
to check against. The six basic comparisons (=, !=, <, <=,
>, >=), as well as LIKE and NOT LIKE pattern-matching for
strings, are supported.
For example, the predicate charity_giving > 100000 is

evaluated in Argo/3 as:

SELECT objid FROM argo_people_num WHERE keystr =

"charity_giving" AND valnum > 100000;

Predicates Involving Arrays: Argo/SQL supports pred-
icates that may match any of several values in a JSON ar-
ray, using the ANY keyword. When ANY precedes an attribute
name in a predicate, Argo will match any keystr indicating
a value in the array, instead of exactly matching the at-
tribute name. For example, the predicate "Lindsay" = ANY

kids is evaluated in Argo/3 as:

SELECT objid FROM argo_people_str WHERE keystr

SIMILAR TO "kids\[[0123456789]+\]" AND valstr =

"Lindsay";

Conjunctions: In general, an AND conjunction of predi-
cates can not be evaluated on a single row of the underly-
ing relational tables, since each row represents only a single
value contained in an object. Fortunately, Argo can take the
intersection of the matching objids for the subpredicates of
a conjunction to find the matching objids for that conjunc-
tion. For example, the predicate age >= 50 AND indicted

= True is evaluated in Argo/3 as:

(SELECT objid FROM argo_people_num WHERE keystr

= "age" AND valnum >= 50) INTERSECT (SELECT objid

FROM argo_people_bool WHERE keystr = "indicted"

AND valbool = true);

Disjunctions: Just as a conjunction can be evaluated as
the intersection of its child subpredicates, a disjunction can
be evaluated as the UNION of the sets of objids matching its
child subpredicates. For example, the predicate age >= 50

OR indicted = true is evaluated in Argo/3 as:

(SELECT objid FROM argo_people_num WHERE keystr =

"age" AND valnum >= 50) UNION (SELECT objid FROM

argo_people_bool WHERE keystr = "indicted" AND

valbool = true);

Negations: Any basic comparison can be negated by tak-
ing the opposite comparison. For negations of conjunctions
or disjunctions, Argo applies De Morgan’s laws to push nega-
tions down to the leaf comparisons of a predicate tree.

3.2.2 Selection
A SELECT query requires reconstruction of objects match-

ing the optional predicate. If there is a WHERE predicate
in a SELECT query, the matching object IDs (found via the

methods described in Section 3.2.1) are inserted into a tem-
porary table (created with the SQL TEMPORARY keyword, so
it is private to a connection), and attribute values belonging
to the matching objects are retrieved via 3 SQL queries of
the following form for each of the Argo/3 tables.

SELECT * FROM argo_people_str WHERE objid IN

(SELECT objid FROM argo_temp) ORDER BY objid;

Argo iterates through the rows in the results of the above
queries and reconstructs matching JSON objects according
to the method described in Section 3.1.1.

Projection: The user may wish to project only certain
attributes from JSON objects matching a query, as illus-
trated in the first query in Figure 3. The object reconstruc-
tion algorithms detailed above are the same, with the addi-
tion of a predicate that matches only the specified attribute
names. Because a given attribute may be an embedded ar-
ray or object, we can not simply match the attribute name
exactly, we must also find all nested child values if any exist.
Argo accomplishes this task with LIKE predicates on the key
string column. For example, if the projection list contains
the attributes“name”and“kids”, Argo will run the following
queries of the following form:

SELECT * FROM argo_people_str WHERE (keystr =

"name" OR keystr LIKE "name.%" OR keystr LIKE

"name[%" OR keystr = "kids" OR keystr LIKE

"kids.%" OR keystr LIKE "kids[%") AND objid IN

(SELECT objid FROM argo_temp) ORDER BY objid;

3.2.3 Join Processing
Argo supports SELECT queries with a single INNER JOIN as

illustrated by the last query in Figure 3. In order to evaluate
a join condition on attributes of JSON objects, Argo per-
forms a JOIN query on the underlying Argo/3 tables where
the keystrs match the names of the attributes in the join
condition, and the values satisfy the join condition. For ex-
ample, to evaluate the JOIN query shown in Figure 3, Argo
would run the following:

SELECT argo_join_left.objid,

argo_join_right.objid FROM argo_people_str AS

argo_join_left, argo_people_str AS argo_join_-

right WHERE argo_join_left.keystr = "rival" AND

argo_join_right.keystr = "name" AND argo_join_-

left.valstr = argo_join_right.valstr;

This is not the end of the story, however, as many join con-
ditions make sense for more than one of the JSON primitive
data types. The equijoin shown above evaluates the join
condition for strings. To evaluate the condition for numbers
and boolean values, Argo runs two more queries similar to
the above on the number and boolean tables, then takes the
UNION of the three.

As with a simple SELECT query, Argo stores the results
of the above in a TEMPORARY intermediate table. Argo then
selects rows matching the left and right objid in the inter-
mediate table from the underlying data tables (optionally
projecting out only certain attributes as described in Sec-
tion 3.2.2), and reconstructs the joined objects according to
the method described in Section 3.1.1.

4. NOBENCH: A JSON BENCHMARK
NoBench is a micro-benchmark that aims to identify a

simple and small set of queries that touch on common op-



erations in the target JSON settings. The NoBench queries
are not meant to replicate or simulate a particular produc-
tion workload, but instead focus on individual operations
common to many applications. NoBench consists of a data
generator and a set of 12 simple queries described below.

4.1 Generated Data
The NoBench data generator creates a series of JSON ob-

jects with several attributes, including unique strings, num-
bers, dynamically typed attributes, a nested array of strings
drawn from a Zipfian distribution of real English text [9], a
small nested object, and several sparse attributes (each in-
dividual object has a set of 10 sparse attributes defined out
of 1000 possible). See [6] for more details.

4.2 Queries
The benchmark has twelve queries, and the result of each

query is inserted into a temporary collection. The queries
are grouped into five categories, and are described below.
For more details, please see [6].
Projection - Q1 to Q4: These four projection queries

run over all objects in the collection. Q1 projects common
attributes, Q2 projects nested attributes from a nested ob-
ject, and Q3 & Q4 project sparse attributes which only exist
in a small number of objects.
Selection - Q5 to Q9: Q5 is a rifle-shot selection query

which selects one object by an exact match on a string at-
tribute. Q6 through Q9 each select 0.1% of the objects in
the collection, measuring the cost of reconstructing many
matching objects with different types of predicates. Q6
uses a numeric predicate on a fixed-type numeric attribute,
Q7 is similar but queries on a dynamically-typed attribute,
Q8 matches a string in a nested array (simulating keyword
search), and Q9 selects via a predicate on a sparse attribute.
Aggregation - Q10: This query selects 10% of the ob-

jects in the collection, groups them into 1000 groups based
on the value of a numeric attribute, and does a COUNT.
Join - Q11: This query selects 0.1% of the objects in the

collection and performs a self-equijoin of a nested string at-
tribute with a non-nested string attribute. Since MongoDB
has no native join facility, a Javascript MapReduce job was
written to perform the join in MongoDB.
Insert - Q12: This query bulk inserts 0.1% new data.

5. EVALUATION
This section presents a sample of results of NoBench on

a leading NoSQL database MongoDB (version 2.0.0), and
Argo (see Section 3) on two representative open-source database
systems PostgreSQL (version 9.1.1) and MySQL (version
5.5.15). Comprehensive results are available in [6].
We ran our experiments on a server with two Intel Xeon

X5650 processors, 24GB of DDR3 main memory, and a hard-
ware RAID-0 consisting of four 7200RPM disks. In all the
experiments, we simply run one query at a time. In keeping
with the design of the NoBench (a micro-benchmark), this
method allows us to determine the performance of core data
processing operations without other compounding factors.
We configured all three systems as similarly as possible to
ensure a fair comparison (all systems are configured to use
up to 23 GB of memory, and have a checkpoint interval of
five minutes and a group commit interval of 100 ms).
Benchmark performance is sensitive to indexing. In all

three systems, we created B-tree indices to enhance query

performance where sensible. In PostgreSQL and MySQL,
we built indices on the objid and keystr columns of each
of the three tables, as well as the valstr column of the
string table and the valnum column of the number table. In
MongoDB, indices are built on the values associated with a
particular key. The MongoDB documentation recommends
building indices to match queries that will actually be run,
and we follow this recommendation, building indices on each
non-sparse attribute which we query on.

For each query, 10 runs, each with randomized parame-
ters, are performed. We discard the maximum and minimum
response times and report the mean time for the remaining
8 runs. With few exceptions, the normalized coefficient of
variation in execution times was less than 20%, and tended
to be smaller for longer-running queries. We use the mean
time from MongoDB as a baseline. To compare the perfor-
mance of Argo on MySQL and PostgreSQL with the Mon-
goDB baseline, we calculate a unitless speedup factor, which
is the mean execution time for MongoDB divided by the
mean execution time for the other system. We also report
the geometric mean of the speedup factors for all 12 queries.

In order to study how the systems perform as the data
size is scaled up, the queries in NoBench are evaluated over
datasets whose cardinality is scaled by a factor of 4, from
1 million to 64 million objects. The total on-disk sizes of
the datasets are reported in [6]. The 1-million and 4-million
object datasets fit in memory for each database, while the
16 million object dataset exceeds the memory size for the
relational systems (but not MongoDB), and the 64 million
object dataset requires spilling to disk for all systems.

5.1 MongoDB vs. Argo
In this section, we present results from running NoBench

on MySQL and PostgreSQL (with Argo/3), and MongoDB.
Results are shown in Table 1. For the sake of space, we show
only the smallest and largest scale factors. At each scale fac-
tor, the GM of speedup factors shows MySQL outperforming
MongoDB. Argo on PostgreSQL outperforms MongoDB at
the 1M and 4M scale factors, but falls somewhat behind at
16M and 64M. For all but the smallest scale, MySQL outper-
forms PostgreSQL. We perform a complete, detailed analysis
of all queries, including analysis of the query plans chosen
by each system’s optimizer, in [6]. To summarize, we found
that a few major design differences between the systems had
correspondingly major implications for performance:

• Storage format: MongoDB stores whole objects contigu-
ously using a fast binary representation of JSON [1]. Argo
decomposes objects into a 1-row-per-value format.

• Indices: indices in MongoDB are on the values of a par-
ticular attribute. Indices in Argo are built separately on
objid, keystr, and various column values. MongoDB in-
dices therefore tend to be smaller and are specialized to
particular attributes.

• MapReduce: MongoDB can’t natively query more than
one table at once. Even a simple self-join (e.g. Q11)
requires writing a Javascript MapReduce job, which can’t
benefit from any indexing or native querying capability
and requires frequent deserialization of JSON objects to
load them into a Javascript VM. These factors limit the
performance of MapReduce in MongoDB.

We now summarize some key results from our evaluation:
Projection: Argo on MySQL tends to outperform Mon-

goDB for projection queries, as it can use an index on keystr



1 Million Objects 64 Million Objects
Mongo PGSQL Speedup MySQL Speedup Mongo PGSQL Speedup MySQL Speedup

Projection

Q1 104.56 2.01 52.52 5.05 20.90 7261.63 6004.00 1.21 1575.65 4.61
Q2 102.95 2.30 44.76 4.97 20.71 7276.17 18913.28 0.38 1609.58 4.52
Q3 3.24 0.03 108.00 0.05 64.80 472.05 1811.96 0.26 514.90 0.92
Q4 3.53 0.06 58.73 0.05 70.60 553.92 1539.10 0.36 475.49 1.16

Selection

Q5 1.59 0.001 1590 0.001 1590 260.73 0.30 869.1 0.26 1002.8
Q6 1.76 0.06 29.33 0.17 10.35 353.10 2993.52 0.12 2438.96 0.14
Q7 1.58 0.05 31.60 0.11 14.36 321.47 2239.01 0.14 1912.36 0.17
Q8 1.66 0.05 33.20 0.11 15.09 326.38 2975.56 0.11 1048.50 0.31
Q9 1.90 0.17 11.18 0.47 4.04 362.65 1800.08 0.20 1019.05 0.36

Aggregation Q10 1.24 0.85 1.46 2.28 0.54 31174.31 9479.01 3.29 2101.88 14.83

Join Q11 211.81 16.69 12.69 0.16 1323.8 53318.21 10117.21 5.27 2543.00 20.97

Insert Q12 0.19 0.83 0.23 1.30 0.15 35.12 123.31 0.28 22.82 1.54

GM 1.0 – 23.90 – 19.52 1.0 – 0.80 – 2.35

Table 1: Performance comparison. All times in seconds. Speedup column indicates speedup over MongoDB
at the same scale factor (higher is better). GM is the geometric mean of the speedup factor over all queries.

to quickly fetch just the appropriate rows, while MongoDB
must scan every object and project attributes from each.
Selection: For Q5 (rifle-shot selection), we found that

MongoDB was using a scan to find the matching object,
even though a clearly useful index was available (a serious
oversight by the query optimizer). Argo on the SQL systems
always uses an index to find the matching object, leading to
its major performance advantage on Q5. For the 0.1% se-
lectivity queries (Q6-Q9) MongoDB does use indices. At
a scale of 1M objects, Argo on the relational systems out-
performs MongoDB, but at larger scale factors MongoDB’s
performance begins to overtake Argo. MongoDB benefits
from more compact data storage and smaller, more special-
ized indices, requiring less disk I/O during query processing
than Argo on MySQL or PostgreSQL for these queries.
Aggregation: MongoDB’s built-in group function was

used to implement COUNT with GROUP BY, and we found that
MongoDB generally tends to outperform Argo on MySQL
(though not overwhelmingly) for Q10 up through a scale
factor of 16M. Once MongoDB’s data no longer fits in mem-
ory, however, we found that MongoDB switched from a
relatively fast, optimized in-memory implementation of the
group function to an extremely slow MapReduce version.
Join: The join query, Q11, needs to use MapReduce on

MongoDB, and much like the MapReduce version of Q10,
the performance of this join query is far worse than Argo.
Overall, our evaluation shows that when Argo/3 is run on

MySQL, its performance is high enough to make it a com-
pelling alternative to MongoDB. We find that, when data is
small enough to fit entirely in memory, Argo/3 on MySQL
outperforms MongoDB almost across the board. When data
is too large to fit in memory, Argo/3 on MySQL has supe-
rior performance for all classes of queries except selection of
large groups of objects, where MongoDB performs better.

6. CONCLUSION AND FUTURE WORK
JSON document stores are rapidly gaining in popularity

amongst developers of data-driven web and mobile applica-
tions, and traditional DBMSs are not being considered seri-
ously in these new settings. In this paper, we have demon-
strated with our prototype mapping layer Argo that tradi-
tional RDBMSs can support the flexibility of the schema-less
JSON data model. Furthermore, one can go beyond what
JSON NoSQL systems offer today and provide an easy-to-
use declarative query language. Our results demonstrate
that the Argo solution is generally both higher performing

and more functional (e.g. it provides ACID guarantees and
natively supports joins) than the leading NoSQL document
store MongoDB. With Argo, traditional RDBMSs can offer
an attractive alternative to NoSQL document stores while
bringing additional benefits such as management tools that
have been hardened for RDBMSs over time.

There are a number of directions for future work, in-
cluding expanding the evaluation to explore the impact of
cluster environments, and looking at alternative mapping
techniques (including encoding JSON objects as XML doc-
uments and using existing XML mappings). We hope that
our initial work presented here will encourage a broader dis-
cussion about leveraging relational technology to support
new applications using JSON data.

Acknowledgments
This work was supported in part by the National Science
Foundation under grants IIS-1110948 and IIS-1250886 and
a gift donation from Google.

7. REFERENCES
[1] 10Gen, Inc. BSON Specification. http://bsonspec.org/, 2011.

[2] 10Gen, Inc. MongoDB. http://www.mongodb.org, 2011.

[3] 10Gen, Inc. MongoDB Production Deployments.
http://www.mongodb.org/display/DOCS/Production+Deployments,
2011.

[4] R. Agrawal, A. Somani, and Y. Xu. Storage and querying of
e-commerce data. In VLDB, pages 149–158, 2001.

[5] Apache Software Foundation. Apache CouchDB.
http://couchdb.apache.org/, 2011.

[6] C. Chasseur, Y. Li, and J. M. Patel. Enabling JSON Document
Stores in Relational Systems (Extended Paper).
http://pages.cs.wisc.edu/~chasseur/argo-long.pdf.

[7] E. Chu, J. Beckmann, and J. Naughton. The case for a
wide-table approach to manage sparse relational data sets. In
SIGMOD, pages 821–832. ACM, 2007.

[8] D. Crockford. The application/json Media Type for JavaScript
Object Notation (JSON). RFC 4627 (Informational), July 2006.

[9] W. Francis and H. Kucera. A standard corpus of present-day
edited american english. Department of Linguistics, Brown
University, 1979.

[10] E. Meijer and G. Bierman. A co-relational model of data for
large shared data banks. Queue, 9:30:30–30:48, March 2011.

[11] K. Muthukkaruppan. The Underlying Technology of Messages.
Facebook’s Engineering Notes, 2010.

[12] T. Shimura, M. Yoshikawa, and S. Uemura. Storage and
retrieval of xml documents using object-relational databases. In
DEXA, pages 206–217, 1999.

[13] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered xml
using a relational database system. In SIGMOD, pages
204–215, 2002.


