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Abstract

With thecontinuingtechnological trendof ever cheaper
andlarger memory, mostdatasetsin databaseservers will
soonbe able to residein main memory. In this configu-
ration, the performancebottleneck is likely to be the gap
betweentheprocessingspeedof theCPU and thememory
accesslatency. Previouswork hasshownthatdatabaseap-
plications have large instruction and data footprints and
hencedo not useprocessorcacheseffectively. In this pa-
per, weproposeCall GraphPrefetching(CGP),a hardware
techniquethatanalyzesthecall graphof a databasesystem
andprefetchesinstructionsfromthefunctionthat is deemed
likely to becallednext. CGPcapitalizeson thehighly pre-
dictablefunctioncall sequencesthataretypicalof database
systems.We evaluatethe performanceof CGP on setsof
Wisconsinand TPC-H queries,as well as on CPU-2000
benchmarks.For mostCPU-2000applicationsthenumber
of I-cachemisseswere veryfew evenwithoutanyprefetch-
ing, obviatingtheneedfor CGP. Our databaseexperiments
showthatCGPreducestheI-cachemissesby83%andcan
improvetheperformanceof a databasesystemby30%over
abaselinesystemthatusestheOM tool to layoutthecodeso
asto improveI-cacheperformance. CGPalsoachieved7%
higherperformancethan OM with next-N-line prefetching
ondatabaseapplications.

1. Intr oduction
The increasingneedto storeand query large volumes

of datahasmadedatabasemanagementsystems(DBMSs)
one of the most prominentapplicationson today’s com-
putersystems.DBMS performancein thepastwasbottle-
neckedby diskaccesslatency which is ordersof magnitude
slower thanprocessorcycle times. But with the trendto-
ward denserandcheapermemory, databaseservers in the
near future will have large main memory configurations,
andmany workingsetswill beresidentin mainmemory[2].
Moreover techniquessuchasconcurrentqueryexecution,
wherea querythat is waiting for a disk accessis switched

with anotherquerythatis readyfor execution,cansuccess-
fully maskmostof theremainingdiskaccesslatencies.Sev-
eral commercialdatabasesystemsalreadyimplementcon-
currentqueryexecutionalongwith asynchronousI/O to re-
ducethe I/O bottleneck. Oncethe disk accesslatency is
tolerated,or disk accessesare sufficiently infrequent,the
performancebottleneckshiftsfrom I/O responsetimeto the
memoryaccesstime.

There is a growing gap betweenprocessorand mem-
ory speedswhich can be reducedby the effective useof
multi-level caches. But recentstudieshave shown that
current databasesystemswith their large code and data
footprintssuffer significantlyfrom poorcacheperformance
[1, 4, 12, 15, 20]. Thusthekey challengein improving the
performanceof memory-bounddatabasesystemsis to uti-
lize cacheseffectively andreducecachemissstalls.

In thispaper, weproposeCall GraphPrefetching(CGP),
a hardwareinstructionprefetchingtechniquethat analyzes
thecall graphof anapplicationandprefetchesinstructions
to reducethe instructioncachemisses.AlthoughCGPis a
genericinstructionprefetchingscheme,it is particularlyef-
fective for largesoftwaresystemssuchasDBMSsbecause
of the layeredsoftwaredesignapproachusedby thesesys-
tems.CGPusesaCall GraphHistoryCache(CGHC)to dy-
namicallystoresequencesof functionsinvokedduringpro-
gramexecution,andusesthestoredhistorywhenchoosing
which functionsto prefetch.CGPusesCGHConly at func-
tion boundaries,and usesnext-N-line (NL) prefetchingto
prefetchinstructionswithin a functionboundary. We eval-
uatetheeffectivenessof CGPusinga subsetof CPU-2000
benchmarksandadatabaseworkloadthatconsistsof asub-
setof theWisconsin[3] andTPC-H[8] queries.

Our performanceevaluationsshow thatmostCPU-2000
benchmarksdonotneedany prefetchingsincethesebench-
markssuffer very few I-cachemisses.On the otherhand,
thedatabaseworkloadsdo suffer a significantnumberof I-
cachemisses,andCGPimprovestheirperformanceby 30%
over a baselinesystemthathasbeentunedup by usingthe
OM tool. OM performsprofile directedcodelayout to re-
duceI-cachemisseswhich improvesthe performanceof a



highly optimizedbinary (C++ -O5 optimizationlevel) by
11%. Using CGPin additionto OM improvesthe perfor-
manceby 45%overO5. But onedisadvantageof usingOM
is thattheDBMS sourcecodemustberecompiledto gener-
ate the profile information that OM requires. CGPalone,
without OM, doesnot needrecompilationof the source
codeandstill achievesa 40%performanceimprovement.

Comparedto a pure NL prefetchingschemeCGP is-
sues3% more useful prefetches,but the numberof use-
lessprefetchesis comparableto NL. However, of the use-
lessprefetchesissuedby CGP, 82% are issuedby its NL
prefetcherthatprefetcheswithin a functionboundary. CGP
reducesthecachemissesof theDBMS workloadsby 10%
andimprovestheperformanceby 7%relative to OM with a
pureNL scheme.

Although both instruction and data cachemissescan
have a significantimpacton the overall performance,this
paperfocusesonly ontheinstructioncachemisses.Instruc-
tion cachemissesareharderto maskasthey serializepro-
gramexecutionby stallingtheissuingof instructionsin the
processorpipelineuntil thecachemissis serviced.Our re-
sultsshow thatsignificantspeedupscanbeachievedby fo-
cusingonly on I-cacheprefetching;techniquesfor reduc-
ing datastallswill further improve the performanceof the
databasesystem.

The rest of this paper is organizedas follows. Sec-
tion 2 describesprevious relatedwork. Section3 presents
anoverview of CGPanddiscussesthearchitecturalmodifi-
cationsneededfor its implementation.Section4 describes
thesimulationenvironmentandperformanceanalysistools
thatwe usedto assesstheeffectivenessof CGP. Theresults
of this assessmentarepresentedin Section5, andwe con-
cludein Section6.

2. RelatedWork
Researchershave proposedseveral techniquesto im-

prove the I/O bottleneckof databasesystems. Nyberg et
al. [15] suggestedthat if data intensive applicationsuse
softwareassisteddisk striping, theperformancebottleneck
shifts from I/O responsetime to the memoryaccesstime.
Boncz et al. [4] showed that the query executiontime of
datamining workloadswith a large main memorybuffer
pool is memoryboundratherthan I/O bound. Shatdalet
al. [20] proposedcache-consciousperformancetuningtech-
niquesthatimprovethelocality of thedataaccessesfor join
andaggregationalgorithms.Thesetechniquesreducedata
cachemisses,andareorthogonalto thegoalof CGPwhich
tries to reduceI-cachemisses.CGPmay be implemented
on top of thesecache-consciousalgorithms.

It is only recently that researchershave examinedthe
performanceimpactof architecturalfeaturesonDBMSs[1,
12, 25, 10, 19, 9, 11, 14]. Their resultsshow thatdatabase
applicationshave large instructionanddatafootprintsand

exhibit more unpredictablebranchbehavior than bench-
marksthatarecommonlyusedin architecturalstudies(e.g.
SPEC).Databaseapplicationshave fewer loops and suf-
fer from frequentcontext switches,causingsignificantin-
creasesin the instruction cachemiss rates [11]. Lo et
al. [12] alsoshowed that in OLTP workloads,the instruc-
tion cachemiss rate is nearly three times the datacache
miss rate. Ailamaki et al. [1] analyzedthree commer-
cial DBMSs on a Xeonprocessorandshowed thatTPC-D
queriesspendabout20%of their executiontime on branch
mispredictionstallsand20%on L1 instructioncachemiss
stalls(eventhoughtheXeonprocessorusesspecialinstruc-
tion prefetchinghardware). Their resultsalsoshowed that
L1 datacachemissesthat hit in L2 werenot a significant
bottleneck,but L2 datacachemissesreducedthe perfor-
manceby 20%.

Researchershave proposedseveral schemesto improve
instructioncacheperformance.PettisandHansen[16] pro-
poseda code layout algorithm which usesprofile guided
feedbackinformationto contiguouslylayout the sequence
of basicblocks that lie on the most commonlyoccurring
controlflow path.Romeret al. [18] implementedthePettis
andHansencodelayoutalgorithmusingthe Etch tool and
showedperformanceimprovementsfor Win32 binaries.In
this paperwe usedOM [24] which implementsa modified
PettisandHansenalgorithmto do feedback-directedcode
layout. This algorithmis discussedfurther in Section5.1.
Our resultsshow that using OM with CGP improves the
performanceby 45%overanO5optimizedbinary.

Next-N-line prefetching (NL) [21] is anotherprefetch-
ing techniquethat is often used. In this techniquewhen
a line is being fetchedby the CPU, the next N sequential
linesareprefetched,unlessthey arealreadyin cache.This
schemeworkswell in programsthatexecutelongsequences
of straightline code.CGPusesNL prefetchingfor prefetch-
ing codewithin a function,andthe CGHC for prefetching
acrossfunction calls. We show that CGP takes good ad-
vantageof thenextline prefetchingschemeandalsooutper-
formsOM with a pureNL schemeby 7%.

Researchershave proposedseveral techniquesfor non-
sequentialinstruction prefetching [22, 7, 13, 17]. Of
these,the work that is closestto CGP is that of Luk and
Mowry [13]. They proposedcooperativeprefetchingwhere
thecompilerinsertsprefetchinstructionsto prefetchbranch
targets. Their approach,however, requiresISA extensions
to addfour new prefetchinstructions:two to prefetchthe
targetsof branches,onefor indirectjumpsandonefor func-
tion returns.They usenext-N-line prefetchingfor sequen-
tial accesses.Specialhardware filters are usedto reduce
theprefetchtraffic. By contrast,CGPis a simplehardware
schemethat discoversandexploits predictablecall behav-
ior as found, for example,in databaseapplicationsdueto
their layeredsoftwaredesign.CGPusesNL prefetchingto



prefetchwithin a function boundaryandcanbenefitfrom
usingtheOM tool at link time to make NL moreeffective
by reducingthenumberof takenbranches,which increases
thesequentialityof thecode.HenceusingOM with NL can
effectivelyprefetchinstructionswithin afunctionboundary,
andtherebyreducestheneedfor branchtargetprefetching
thatoccurswithin a functionboundary. By building onNL,
CGPcanfocusonprefetchingfor functioncalls.SinceCGP
is implementedin hardware,it permitsrunninglegacy code
withoutmodificationor recompilationwhich is particularly
attractive for largesoftwaresystemssuchasDBMSs.

3. Call Graph Prefetching(CGP)
DBMSsarecommonlybuilt usinga layeredsoftwarear-

chitecturewhereeachlayer providesa setof well-defined
entrypointsto the layersabove it. Figure1 shows the lay-
ers in a typical databasesystemwith the storagemanager
beingthebottom-mostlayer. Thestoragemanagerprovides
basicfile storagemechanisms(suchastablesandindices),
concurrency controlandtransactionmanagementfacilities.
Relationaloperatorsthatimplementalgorithmsfor join, ag-
gregationetc.,aretypically built on top of thestorageman-
ager. The query scheduler, the query optimizer and the
queryparserarethenbuilt ontopof theoperatorlayer. Each
layer in this modulararchitectureprovides a set of well-
definedentry pointsandhidesits internal implementation
detailsso as to improve the portability and maintainabil-
ity of the software. The sequenceof function calls within
eachof theseentrypointsis transparentto thelayersabove.
Althoughsuchlayeredcodetypically exhibits poor spatial
andtemporallocality, thefunctioncall sequencescanoften
be predictedwith greataccuracy. CGP exploits this pre-
dictability to prefetchinstructionsfrom the procedurethat
is deemedmostlikely to beexecutednext.

Relational Operators

Query Optimizer

Query Scheduler

Storage Manager

Query Parser

Figure 1. Software layers in a typical DBMS

3.1. A Simple Call Graph Example
We introduceCGP with the following pedagogicalex-

ample.Figure2 showsa segmentof acall graphfor adding
a recordto a file in SHORE[6]. SHOREis a storageman-
agerthatprovidesstoragevolumes,B+-trees,R*-trees,con-

currency control andtransactionmanagement.In this ex-
ample,Createrec calls Find page in buffer pool to check
if the relation into which the recordis being addedis al-
readyin themainmemorybuffer pool. If thepageis notal-
readyin thepool theGetpage from diskfunctionis invoked
to bring the pagefrom the disk into thepool. This pageis
thenlockedusingtheLock page routine,subsequentlyup-
datedusingUpdatepage, andfinally unlocked usingUn-
lock page.

The Createrec function is the entry point provided by
thestoragemanagerto createa record,andis routinely in-
voked by a numberof relationaloperators,including in-
sert,bulk load,join (to createtemporarypartitionsor sorted
runs),andaggregate.Althoughit is difficult to predictcalls
to Createrec, onceit is invoked Find page in buffer pool
is always the next function to be called. Whena pageis
broughtinto thememorybuffer pool from thedisk,DBMSs
typically “pin” the pagein the buffer pool to prevent the
possibility of its beingreplacedbeforeit is used. Given a
largebuffer pool sizeandrepeatedcalls to Createrec, the
pagethat is beingupdatedwill usuallybe foundpinnedin
the buffer. HenceGetpage from disk will usually not be
calledandLock page, Updatepage andUnlock page will
bethesequenceof functionsnext invoked.CGPcapitalizes
on this predictability by prefetchinginstructionsneeded
for executingFind page in buffer pool uponenteringCre-
ate rec, then prefetchinginstructionsfor Lock page once
Find page in buffer pool is entered,and finally prefetch-
ing instructions from Updatepage after returning from
Find page in buffer pool, and for Unlock page upon re-
turningfrom Updatepage.

Unlock_page

Update_page

Lock_page()

Getpage_from_disk

Lock_page

Find_page_in_buffer_pool

Find_page_in_buffer_pool()

Update_page()

Unlock_page()

Create_rec 

Getpage_from_disk()
if NOT found

Figure 2. Call Graph for the Createrecfunction

3.2. Exploiting Call Graph Inf ormation
Themainhardwarecomponentof theCGPprefetcheris

the Call GraphHistory Cache(CGHC) which comprisesa
tagarrayanda dataarrayasshown in Figure3. Eachentry
in thetagarraystoresthestartingaddressof a function(F)
andan index (I). Thecorrespondingentry in thedataarray
storesasequenceof startingaddressescorrespondingto the



sequenceof functionsthat werecalledby � the last time
that functionF wascalled. If � hasnot yet returnedfrom
its mostrecentcall, thissequencemaybepartiallyupdated.
For easeof explanationhereand in Figure 3 we usethe
functionnameto representthestartingaddressof thefunc-
tion. By analyzingthe executablesusingATOM [23] we
foundoutthatin ourbenchmarks80%of thefunctionshave
callsto fewer than8 distinctfunctions.Henceeachentryin
thedataarray, asimplementedin our evaluations,canstore
up to 8 functionaddresses.Moreover 8 functionaddresses
canbestoredin a cacheline of 32 bytes,which is thestan-
dardline sizeof ourL1 dataandinstructioncaches.Soa32
byte line in the dataarraycanconvenientlyusesamedata
pathusedby L1 cachesto transferdatafrom the L2 level
CGHC(if a two level CGHCdesignis used).If a function
in thetagentryinvokesmorethan8 functions,only thefirst
8 functionsinvokedarestoredin ourevaluations.As shown
laterin Section5.3,a smalldirectmappedCGHCachieves
nearlythesameperformanceasaninfinite sizeCGHCand
hencewe choseto usea directmappedCGHCinsteadof a
set-associativeCGHC.

Each call and eachreturn instruction that is executed
makes two accessesto CGHC. In both casesthe first ac-
cessusesthetargetaddressof thecall (or thereturn) to de-
terminewhich function to prefetchnext; thesecondaccess
usesthestartingaddressof thecurrentlyexecutingfunction
to updatethecurrentfunction’s index andcalling sequence
that is storedin CGHC.To quickly generatethe targetad-
dressof a call or return instruction,theprocessor’s branch
predictoris usedinsteadof waiting for the target address
computationwhich may take several cycles in the out-of-
order processorpipeline. On a CGHC access,if thereis
no hit in the tag array, no prefetchesareissuedanda new
tagarrayentry is createdwith thedesiredtagandanindex
valueof 1. The correspondingdataarrayentry is marked
“invalid,” unlesstheCGHCmissoccurson thesecond(up-
date) accessfor a call (say � calls � ), in which casethe
first slotof thedataarrayentryfor � is setto � .

In general,the index value in the tag arrayentry for a
function � , pointsto oneof the functionsin thedataarray
entryfor � . An index valueof 1 selectsthefirst functionin
thedataarrayentry. Notethat the index valueis initialized
to 1 whenever a new entry is createdfor � , andthe index
valueis resetto 1 whenever � returns.

Whenthe branchpredictorpredictsthat � is calling � ,
thefirst (call prefetch) accessto the directmappedCGHC
tag arrayis madeby usingthe lower orderbits of the pre-
dictedtargetaddress,� , of thefunctioncall. If theaddress
storedin the tag entry matches� , as the index valueof a
function being called shouldbe 1, a prefetchis issuedto
the first function addressthat is storedin the correspond-
ing dataarrayentry. Thesecondfunctionwill beprefetched
whenthe first function returns,the third when the second

Func_Addr

Create_rec

Find_page..

Update_page

1

1

1

Index
Tag Array

Sequence of functions invoked

Find_page..

Lock_page

MUX

Data Array

Update_page Unlock_page

Prefetch address

On a CGHC hit, Index

selects function to prefetch
to L2

Figure 3. Call Graph Histor y Cache. (state
sho wn in CGHC occur s as Lock page is being
pref etched from Find page in buffer pool)

returnsetc. The prefetcherthuspredictsthat the sequence
of callsto beinvokedby � will bethesameasthelasttime

� was executed. We choseto implementthis prediction
schemebecauseof the simplicity of its prefetchlogic and
theaccuracy of this predictorfor stablecall sequences.

For the samecall instruction ( � calls � ), the second
(call update) accessto the CGHC tag arrayis madeusing
the lower order bits of the startingaddressof the current
function � . If theaddressstoredin thetagentrymatches� ,
thenthe index of thatentry is usedto selectoneof 8 slots
of thecorrespondingdataarrayentry, andthepredictedcall
target, � , is storedin thatslot. Theindex is incrementedby
1 on eachcall update, up to amaximumvalueof 8.

On a return instruction,whenthe function � returnsto
function � , thelowerorderbitsof thestartingaddressof �
areusedfor thefirst (return prefetch) accessto theCGHC.
Ona taghit, theindex valuein thetagarrayentryis usedto
selecta slot in the correspondingdataarrayentry, andthe
functionin thatslot is prefetched.

On a return instruction,a conventionalbranchpredictor
only predictsthereturnaddressin � to which � returns,in
particularit doesnotprovidethestartingaddressof � . Con-
sequentlyamodifiedbranchpredictoris usedto providethe
startingaddressof � . Sincetheentriesin thetagarraystore
only starting addressesof functions,the target addressof
a returninstructioncannotbedirectly usedfor a tagmatch
in CGHC.To overcomethis problemtheprocessoralways
keepstrackof thestartingaddressof thefunctioncurrently
beingexecuted.Whena call instructionis encountered,the
startingaddressof the caller function is pushedonto the
branchpredictor’s returnaddressstackstructurealongwith
the return address.On a return instruction, the modified
branchpredictorretrievesthe returnaddressasusual,and
alsogetsthecallerfunction’sstartingaddresswhich is used
to accesstheCGHCtagarray.

On the same return instruction, the second (re-
turn update) accessto CGHCis madeusingthelowerorder
bitsof thestartingaddressof thecurrentreturningfunction,



� . Onataghit, theindex valuein thetagarrayentryis reset
to one.

SinceCGPpredictsthat the sequenceof function calls
madeby acallerwill bethesameasthelasttime thatcaller
wasexecuted,prefetchingan entirefunction basedon this
predictionmaywasteprocessorresourcesif theprefetched
function is not invokedduringtheactualexecution.More-
over prefetchinga largefunction into the instructioncache
canpollute thecacheby replacingexisting cachelinesthat
maybeneededsoonerthantheprefetchedlines. Hencethe
prefetchalgorithmonly prefetches� cachelines,where �
is a parameterthatcanbebasedon thecachesize,line size
andthe I-cachemisslatency. Sinceonly the first � cache
lines of a callee function are prefetchedfrom within the
caller function, therestof thecalleefunction is prefetched
after entering the callee function by using a simple NL
prefetchingscheme. We usethe notationCGP N to rep-
resenta CGP schemethat prefetchesonly � cachelines
ratherthananentirefunctionon eachprefetchrequest.

3.3. Designconsiderations
OperationsthataccessandupdatetheCGHCarenot on

the critical pathof the processorpipelineandcanbe done
in thebackground.In our implementationtheprefetchand
updateaccessesto theCGHCarein differentcyclesto elim-
inatetheneedfor having a dual-portedCGHC.TheCGHC
is accessedonecycleafterthebranchpredictorpredictsthe
targetof a call or return instruction. Sincethe CGHC is a
small direct mappedcache,the tag matchof the targetad-
dressis completedin this cycle. A prefetchis issuedin the
next cycleafterahit in CGHC.TheCGHCis updatedin the
following clock cycle to reflectthecall sequencehistory.

OurcurrentCGPimplementationprefetchesinstructions
directly into the L1 I-cache. The traffic generatedby the
prefetchesand the L1 cachemissesareservicedby L2 in
FIFO orderwithout giving any priority to thedemandmiss
traffic. Although the lack of priority may increasethe la-
tency of thedemandmisstraffic, it simplifiestheL2 access-
ing interfacewithin theL1 cache.

4. Simulation Envir onment and Benchmarks

4.1. Methodology
To evaluatethe effectivenessof CGP we implemented

a subsetof the relationaloperatorson top of the SHORE
storagemanager[6]. SHOREis a fully functionalstorage
managerwhich hasbeenusedextensively in the database
researchcommunityandis alsousedin somecommercial
databasesystems.SHOREprovidesstoragevolumes,files
of untypedobjects,B+ trees,andR* trees,full concurrency
control and recovery with two-phaselocking and write-
aheadlogging. We implementedthe following relational
operatorson top of SHORE:select,indexedselect,grace

join, nestedloopsjoin, indexednestedloop join andhash-
basedaggregate. EachSQL querywastransformedinto a
queryplan usingtheseoperators.The relationaloperators
and the underlyingstoragemanagerwerecompiledon an
Alpha21264processorrunningOSFVersion4.0F. Wecom-
piledSHOREusingtheCompaqC++compiler, version6.2,
with the-O5 -ifo -inline andspeedflagsturnedon.

We used the SimpleScalarsimulator [5], for detailed
cycle-levelprocessorsimulation.Themicroarchitecturepa-
rametersweresetasshown in Table1.

Fetch,Decode& IssueWidth 4
Inst Fetch& L/S QueueSize 16
Reservationstations 64
FunctionalUnits 4add/2mult
Memorysystemportsto CPU 4
L1 I andD cacheeach 32KB,2-way,32byte
Unified L2 cache 1MB,4-way,32byte
L1 hit latency(cycles) 1
L2 hit latency(cycles) 16
Memlatency (cycles) 80
BranchPredictor 2-lev,2K-entry

Table 1. Microarchitecture Parameter Values

To evaluatetheperformanceof CGPwe useda database
workload that consistsof eight queries(1 through7 and
9) from the Wisconsin benchmark[3], and five queries
(1,2,3,5,and6) from the TPC-H benchmark[8]. Wiscon-
sin queries1 through7 are 1% and 10% rangeselection
queries(with andwithout indices)andquery9 is two-way
join query. The selectedTPC-H queriesinclude queries
with aggregationsandmany joins,andalsoincludesa sim-
ple nestedquery(query2). The remainingTPC-Hqueries
needmorerelationaloperatorsthanwe have currentlyim-
plementedandhencearenotevaluatedin thispaper.

We selectedqueries from two different benchmarks,
WisconsinandTPC-H,to demonstratehow CGPperforms
with mixedworkloads.The resultsin this sectionevaluate
the effectivenessof CGPfor four differentdatabasework-
loads.Theseworkloadsare:

1. Wisc-prof, a set of threequeriesfrom the Wisconsin
benchmark:query1 (sequentialscan),query5 (non-
clusteredindex select)and query 9 (two-way join).
Thesequerieswere chosensincethey include query
operationsthat are frequentlyusedby the otherWis-
consin benchmarkqueries. Theseselectedqueries
wererunon a databaseof 2100tuples.

2. Wisc-large-1consistsof thesamethreequeriesusedin
the Wisc-prof workload,except that the querieswere
run on a full 21,000tupleWisconsindatabase(10,000
tuplesin eachof the first two relations,and1,000tu-
plesin thethird relation).Thetotalsizeof thedatabase



includingtheindicesis 10MB. This workloadwasse-
lectedto seehow CGPperformancedifferswhenrun-
ning thesamequerieson adifferentsizedatabase.

3. Wisc-large-2 consistsof all eight Wisconsinqueries
runningona 10MB database.

4. Wisc+tpch consistsof all eightWisconsinqueriesand
thefiveTPC-Hqueriesrunningconcurrentlyona total
databaseof size40MB. In thisworkloadthesizeof the
TPC-Hdatasetwas30MB.

The queriesin eachworkload were executedconcur-
rently, each query running as a separatethread in the
databaseserver. We useda small databasesize(40MB) to
allow theSimpleScalarsimulationto completein a reason-
able time. Even with this small database,the total num-
berof instructionssimulatedin wisc+tpch wasabout3 bil-
lion. Increasingthesizeof thedatasetincreasesthenumber
of instructionsexecuted,but doesnot significantlyalter the
typesandsequencesof functionscalls thataremade;CGP
performanceis in fact fairly independentof the database
sizethat is used. To verify this claim, we simulatedCGP
on thewisc-large-2querieswith a 100MB datasetandsaw
improvementsquitesimilar to thosefor the10MB dataset.

5. Results

5.1. FeedbackDir ectedCodeLayout with OM
Beforepresentingtheresultsfor CGP, webriefly discuss

thefeedback-directedcodelayoutoptimizationof OM that
reducesI-cachemissesby increasingspatiallocality. Since
CGPalsotargetsI-cachemisses,weappliedCGPto anOM
optimizedbinary to seehow muchadditionalbenefitCGP
canprovide.

The OM [24] tool on Alpha processorsimplements
a modified version of the Pettis and Hansen profile-
directed code layout algorithm for reducing instruction
cachemisses[16]. OM performstwo levels of codelay-
out optimizationsat link time alongwith traditionalcom-
piler optimizationsthat couldnot be performedeffectively
at compiletime. OM’s ability to analyzeobjectlevel code
at link time opensup new opportunitiesfor redoingopti-
mizations,suchas inter-proceduraldeadcodeelimination
and loop-invariantcodemotion. In the first level of code
layoutoptimization,OM usesprofile informationto deter-
minethelikely outcomeof theconditionalbranchesandre-
arrangesthebasicblockswithin a functionsuchthatcondi-
tionalbranchesaremostlikely not taken.Thisoptimization
increasesthe averagenumberof instructionsexecutedbe-
tweentwo taken branches.Consequently, the numberof
instructionsusedin eachcacheline increases,which in turn
reducesI-cachemisses.Thesecondlevel of codelayoutop-
timizationrearrangesfunctionsusingaclosest-is-beststrat-
egy. If onefunction calls anotherfunction frequently, the

two functionsareallocatedcloseto oneanotherin memory
so as to improve the spatiallocality. SinceOM is a link-
time optimizer, it hastheability to rearrangefunctionsthat
arespreadacrossmultiple files, including staticallylinked
library routines.

The profile information neededfor OM optimizations
was generatedby running two workloads,wisc-prof and
wisc+tpch to provide betterfeedbackinformationthanthat
providedby runningjustoneworkload.Eachof thesework-
loadswasrunseparatelyandtheprofile informationof both
runswasmergedto generatetherequiredfeedbackfile used
by OM. TheOM optimizationswereappliedto anO5 opti-
mizedbinary. OM’s ability to performtraditionalcompiler
optimizationsreducedthedynamicinstructioncountof the
OM codeby 12%,relative to theO5optimizedcode.

5.2. CGP and OM PerformanceComparisons
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Figure 4. Performance comparison of O5, OM
and CGP

In thissectionwepresenttheperformanceimprovements
due to OM optimizations. We also presentthe perfor-
manceimprovementsdue to CGP without OM optimiza-
tionsandtheperformanceimprovementsresultingfrom ap-
plying CGPto anOM optimizedbinary.

Figure 4 shows the execution cycles neededfor run-
ning the four workloads using the O5 optimized bi-
nary, the O5+OM optimizedbinary, and the binary gen-
erated by running the CGPN algorithm on the O5
binary and the O5+OM binary. We selected two
different values for N, the number of cache lines
prefetchedeachtime, namely2 and4 (corresponding,re-
spectively, to bars labeledO5+CGP 2/O5+OM+CGP 2,
O5+CGP 4/O5+OM+CGP 4 in thegraphs).For theseex-
perimentswe useda two level CGHCwith 2KB in thefirst
level and 32KB in the secondlevel. Figure 4 shows that
on averagetheOM optimizationsresultin an11%speedup
over O5 optimized code. In all cases,CGP alone out-
performsOM alone. CGP4 alone,without OM, achieves
40% speedupover O5. CGP4 with OM achieves 45%



speedupover O5, and 30% over OM alone. This shows
thatCGPalonecansignificantlyimproveperformance,and
usingCGPwith OM givesadditionalbenefits.

Oneobservationmight helpexplain why CGPimproves
performancesignificantlyoverOM. Namely, theclosest-is-
beststrategy usedby OM for codelayout is not very ef-
fective for functionsthat are frequentlycalled from many
different places in the code. For instance,procedures
suchas lock record() canbe invoked by several functions
in the databasesystem,and OM’s closest-is-beststrategy
placeslock record() close to only a few of its callersby
replicating lock record(). Aggressive function replication
can causesignificantcodebloat which can adverselyaf-
fect I-cacheperformance. On the other hand, CGP can
prefetch lock record() from those functions that invoke
lock record(), without having to replicatethefunction.

5.3. Exploring the designspaceof CGHC
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Figure 5. Performance of five diff erent CGHC
configurations

The performanceof CGPdependson the ability of the
hardwareto storeenoughcall graphhistorysoasto effec-
tively issueprefetchesfor repeatedcall sequences.Since
CGHCstoresthis history information,we exploredtheef-
fectof varyingthesizeof CGHContheoverallperformance
of CGP. Figure 5 shows the performanceof CGP4 for
five different CGHC configurations,namely1KB CGHC
(CGHC-1K), 32KB CGHC(CGHC-32K), 1KB+16KB two
level CGHC (CGHC-1K+16K), 2KB+32KB two level
CGHC (CGHC-2K+32K), andan infinite CGHC (CGHC-
Inf) whereeachfunctionin theprogramhasanentry in the
CGHC that storesthe entire function call sequenceof its
mostrecentinvocation.

As seenfrom Figure 5, a 1KB CGHC is about 12%
slower thananinfinite CGHC.But theperformancegapbe-
tweenthe other threefinite CGHC configurationsand the
infinite CGHCis verysmall.Surprisinglyfor thewisc+tpch
benchmarktheperformanceof theinfinite CGHCis slightly
worsethanall configurationsexceptCGHC-1K. Sincethe

infinite CGHC cachesall the history information, it will
havemorehitsandcausemoreprefetches.Someprefetches,
however, will beuselessprefetchesthat result in increased
bus traffic andmaycausecachepollution. Smallerconfig-
urationsthat eliminatelessrecentfunction call sequences
from theCGHC(via LRU replacement)mayretainahigher
proportionof the usefulprefetchinformation, resultingin
a lower percentageof uselessprefetches.In wisc+tpch the
gainsof an infinite CGHC due to more useful prefetches
areapparentlyoutweighedby thelossesdueto issuingmore
uselessprefetches.

Among the four finite CGHC configurations that
weresimulated,the performancesof CGHC-2K+32Kand
CGHC-32Kare better than the remainingconfigurations.
But insteadof usinga 32KB onelevel CGHC with a one
cycle accesstime, we choseto usea two level CGHCwith
2KB in thefirst level CGHCand32KB in thesecond.The
accesstimesto thetwo level CGHCaresameastheaccess
times of the two level cachehierarchy. On a miss in the
first level CGHC,the secondlevel CGHC is accessed.On
a hit in thesecondlevel CGHCanentryfrom thefirst level
CGHCis writtenbackto thesecondlevelandthehit entryin
thesecondlevelCGHCis movedto thefirst level. Onamiss
in the secondlevel CGHC a new entry is allocatedin the
first level CGHCandthereplacedentryfrom thefirst level
is written back to the secondlevel. The remainingevalu-
ationsin this paperarepresentedusinga CGHC-2K+32K
configuration.

5.4. Comparisonwith Next-N-Line Prefetching
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Figure 6. Performance comparison of O5, OM,
NL and CGP

SinceOM optimizationsincreasethesequentialityof ac-
cessesto acodesegment,asimpleprefetchingschemesuch
asNL, wherethenext � lines from thecurrentlyaccessed
cacheline are prefetched,might be more successful(in
termsof usefulversususelessprefetches)whenappliedaf-



terOM. Figure6 comparestheperformanceof NL prefetch-
ing with CGP, whereeachis appliedto the OM optimized
binary. NL 2 andNL 4 areNL schemesthat prefetchthe
next 2 and next 4 cachelines, respectively, from the cur-
rentlyaccessedcacheline.

Theresultsshow that theNL schemeis indeedeffective
in improving theperformanceof theOM optimizedbinary,
but CGP still outperformsNL aloneby about7% and is
within 19% of the perfectI-cacheperformance(labeledas
perf-Icachein thegraph)in whichall accessesto theI-cache
arecompletedin 1 cycle. The NL schemeis effective for
prefetchinglong straight line sequencesof codewithin a
function. In our workloadson averageonly 43 instructions
wereexecutedbetweentwo successive functioncalls. This
frequentchangein thecontrolflow limits theeffectiveness
of theNL scheme,evenwith theOM optimizations.

5.5. I-cachePerformance
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Figure 7. I-Cache miss comparison of O5, OM,
NL and CGP

Furtheranalysisshowsthereasonsfor theimprovedper-
formanceof CGPover NL. Figure7 shows the numberof
I-cachemisses.TheOM reorganizationreducesthenumber
of cachemissesby 21%relativeto theO5optimizedbinary,
but OM+NL reducescachemissesby 77% andOM+CGP
by 87%.

5.6.PrefetchEffectivenessandBusTraffic overhead

Figure 8 shows the prefetcheffectivenessof CGP and
NL by categorizing the issuedprefetchesinto threecate-
gories.Thebottomcomponent,Pref Hits, shows thenum-
berof timesthatthenext referenceto anL1 cacheline after
it wasprefetchedfoundthereferencedinstructionalreadyin
theL1 cache.Thecentercomponent,DelayedHits, shows
thenumberof timesthat thenext referenceto a prefetched
cacheline findsthereferenceinstructionstill enrouteto the
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Figure 8. Prefetch Timeliness of NL and CGP

cachefrom the lower levelsof memory. Finally the upper
component,UselessPrefetches, shows thenumberof times
that cachelines wereprefetched,but replacedbeforetheir
next reference. On averageCGP4 issuesonly 8% more
prefetchesthanNL 4 alone,andgenerates22%morehits to
prefetchedcachelinesthanNL 4. Of theprefetchesissued
by CGP4, 54%wereuseful;51%wereusefulfor NL 4.
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To understandwhy CGPgeneratesnearlyasmany use-
lessprefetchesasNL wesplit theCGPprefetchesinto those
that are issuedby its NL prefetcherand thosethat are is-
suedby CGHC.Figure9 shows theresultsof this split for
CGP4. While only 40% of the prefetchesissuedby the
NL portionareusefulprefetches,77%of theprefetchesis-
suedby the CGHC portion areuseful. Hencethe CGHC
portion is muchmoreaccuratethanthe NL portion. Since
CGPusesCGHC only to prefetchacrossfunction bound-
aries,andusesNL to prefetchwithin a function we might
expectthatCGHCandNL prefetchdisjoint setsof instruc-
tions. However, we seethat both the useful and the use-
lessprefetchesof theNL portionof Figure9 arefewer than
thosefor NL 4 in Figure8. This shows that someof the
prefetchesissuedby theNL 4 schemearenow beingissued
by the CGHC portion of the CGP4 scheme. This could
occur, for example,if a calleefunction is laid out closeto
its caller andNL 4 prefetchespastthe endof the caller to
thebeginninglinesof thecalleefunctiondueto thesequen-
tiality of the codelayout, whereassuchcalleeprefetches



would tendto occurearlierduringcallerexecutionandfall
within the CGHC portion of CGP. Thusthe CGHC allows
CGPschemeto issuesomeof theprefetchesearlier(i.e. at
a moretimely point) thanthosesameprefetcheswould be
issuedby NL. TheNL prefetchof suchcachelinesin CGP
will be squashedsincethe prefetchwasalreadyissuedby
CGHC.Thetotal delayedhits of CGP4 arefewer thanthe
delayedhits of NL 4 which is anothermeasureof the in-
creasedtimelinessof CGPprefetchesrelative to NL.

In anattemptto improvethetimelinessof NL, weimple-
mentedrun-aheadNL prefetching,which is a modifiedNL
prefetchingscheme(resultsnotshown here).Thisprefetch-
ing scheme,insteadof prefetchingthe next N sequential
lines from the currentlyaccessedcacheline, prefetchesN
lines that begin M cachelines after the currentlyaccessed
cacheline. Although this schemedid improve the timeli-
nessof somedelayedhits, the overall performanceof this
modifiedNL schemeis muchworsethanNL. With frequent
control flow changes,and with an averageof only 43 in-
structionsbetweentwo consecutive functioncalls, the run-
aheadNL schemeprefetchestoo many uselessinstructions
from too far aheadin the instructionstream,and fails to
prefetchsomecloserlines thatareneeded,therebysignifi-
cantlydecreasingthenumberof usefulprefetches.

5.7. Applying CGP to CPU2000benchmarks
In this sectionwe show that althoughCGP is a gen-

eraltechniquewhichcanbeappliedto applicationsin other
domains,the layeredsoftwarearchitectureof databaseap-
plicationsmake CGPparticularlyattractive for DBMS. To
quantify the impact of CGP when appliedto someother
applicationdomain, we usedCGP on the CPU-intensive
SPEC-CPU2000benchmarks. We selectedseven bench-
marksfrom theCPU2000integerbenchmarksuite,namely
gzip,gcc,crafty, parser, gap,bzip2andtwolf. Thesebench-
marks were compiled, as above, with the CompaqC++
compilerwith O5andthenOM. Thetestinputset,provided
by SPEC,wasusedto generatetherequiredprofileinforma-
tion for OM. Thetrain inputsetwasthenrunfor two billion
instructionsto generatetheresultspresentedin thissection.

In Figure10, the lastbar for eachbenchmarkshows the
executioncyclesrequiredwith a perfectI-cache,whereall
accessesto the I-cachearecompletedin 1 cycle. Theper-
formancegap due to using a 32 KB I-cache,rather than
perfect I-cache,is 17% in gcc, 9% in crafty, 2% in gap,
andlessthan1% for eachof theotherbenchmarks.In fact
with a32KB I-cache,for CPU2000,theI-cachemissratios
arenearly0% exceptfor gcc andcrafty which have 0.5%
and0.3%I-cachemissratios,respectively. The I-cacheis
thus not a performancebottleneckin most CPU2000ap-
plications,in which caseit is unnecessaryto useprefetch-
ing techniquessuchasCGPandNL. For thoseapplications
thatdo suffer from I-cachemisses,namelygcc andcrafty,
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Figure 10. Effectiveness of CGP on CPU-2000
applications

NL prefetchingaloneachievesperformancegainssimilar to
thoseof CGP. NL 4 andCGP 4 eachspeedup the execu-
tion of gccby 7 to 8%andcraftyby 4%relativeto O5+OM
alone.This shows thatCGPis not especiallyattractive for
workloadswith small I-cachefootprintsand� or infrequent
functioncalls.

6. Conclusionsand Future work

This paperproposesCall Graph Prefetching (CGP) to
increasethe performanceof databasesystemsby improv-
ing their I-cacheutilization. With datasetsthataremostly
mainmemoryresident,CGPcanoutperformthebestexist-
ing feedbackdirectedcompileroptimizationsby 30%,and
providesanadditionalspeedupof 7%overNL prefetching.
The hardwarerequirementsof CGParequite modest. By
addinga 2KB first level CGHC with a 32KB secondlevel
CGHC,CGPachievessignificantperformancebenefits.

In this paper, exceptfor the profile run of instrumented
coderequiredby OM, if OM is usedas a base,CGP is
implementedentirely in hardware,which permitsrunning
legacy codewithout modificationor recompilation. How-
ever, CGPcanbeimplementedentirelyin softwareby hav-
ing a compiler insert prefetch instructionsinto the code
basedon call graphinformationgeneratedfrom profile ex-
ecutions.

We have demonstratedthe effectivenessof CGP for
databaseapplications.Someof themorecommonlystudied
benchmarks,suchasCPU-2000,exhibit very little I-cache
stall andthereis no needto useCGPfor suchbenchmarks.
We do, however, expectCGPto beusefulin otherapplica-
tion domains,suchaslargeJava andC++ programswhere
I-cacheperformancecanbe a bottleneckandrepeatedse-
quencesof smallfunctioninvocationsarecommon.
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