
The Michigan Benchmark: A Micro-Benchmark for
XML Query Performance Diagnostics

Jignesh M. Patel and H. V. Jagadish

Department of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, MI 48109, USA�
jignesh, jag � @eecs.umich.edu

1 Introduction

With the increasing popularity of the eXtensible Markup Language (XML) as a
representation format for a wide variety of data, and it is clear that large reposi-
tories of XML data sets will soon emerge. The effective management of XML in
a database thus becomes a pressing issue. Several methods for managing XML
databases have emerged, ranging from retrofitting commercial RDBMSs to build-
ing native XML database systems. There has naturally been an interest in bench-
marking the performance of these systems, and a number of benchmarks have been
proposed [4, 10, 12]. The focus of currently proposed benchmarks is to assess
the performance of a given XML database in performing a variety of representa-
tive tasks. Such benchmarks are valuable to potential users of a database system
in providing an indication of the performance that the user can expect on their
specific application. The challenge is to devise benchmarks that are sufficiently
representative of the requirements of most users. The TPC series of benchmarks
accomplished this, with reasonable success, for relational database systems. How-
ever, no benchmark has been successful in the realm of ORDBMS and OODBMS
which have extensibility and user-defined functions that lead to great heterogene-
ity in the nature of their use. It is too soon to say whether any of the current XML
benchmarks will be successful in this respect – we certainly hope that they will.

One aspect that current XML benchmarks do not focus on is the performance
of the basic query evaluation operations such as selections, joins, and aggregations.
A micro-benchmark that highlights the performance of these basic operations can
be very helpful to a database developer in understanding and evaluating alternatives
for implementing these basic operations. A number of questions related to perfor-
mance may need to be answered: What are the strengths and weaknesses of specific
access methods? Which areas should the developer focus attention on? What is the

1



basis to choose between two alternative implementations? Questions of this nature
are central to well-engineered systems. Application-level benchmarks, by their na-
ture, are unable to deal with these important issues in detail. For relational systems,
the Wisconsin benchmark [5] provided the database community with an invaluable
engineering tool to assess the performance of individual operators and access meth-
ods. Inspired by the simplicity and the effectiveness of the Wisconsin benchmark
for measuring and understanding the performance of relational DBMSs, we de-
velop a comparable benchmarking tool for XML data management systems. The
benchmark that we propose is called the Michigan benchmark.

A challenging issue in designing any benchmark is the choice of the data set
that is used by the benchmark. If the data is specified to represent a particular
“real application”, it is likely to be quite uncharacteristic for other applications
with different data distributions. Thus, holistic benchmarks can succeed only if
they are able to find a real application with data characteristics that are reasonably
representative for a large class of different applications.

For a micro-benchmark, the benchmark data set must be complex enough to in-
corporate data characteristics that are likely to have an impact on the performance
of query operations. However, at the same time the benchmark data set must be
simple so that it is not only easy to pose and understand queries against the data set,
but the queries must also guide the benchmark user to the precise component of the
system that is performing poorly. We attempt to achieve this balance by using a
data set that has a simple schema. In addition, random number generators are used
sparingly in generating the benchmark’s data set. The Michigan benchmark uses
random generators for only two attribute values, and derives all other data parame-
ters from these two generated values. In addition, as in the Wisconsin benchmark,
we use appropriate attribute names to reflect the domain and distribution of the
attribute values.

When designing benchmark data sets for relational systems, the primary data
characteristics that are of interest are the distribution and domain of the attribute
values and the cardinality of the relations. In addition, there may be a few addi-
tional secondary characteristics, such as clustering and tuple/attribute size. In XML
databases, besides the distribution and domain of attribute values and cardinality,
there are several other characteristics, such as tree fanout and tree depth, that are
related to the structure of XML documents and contribute to the rich structure of
XML data. An XML benchmark must incorporate these additional features into
the benchmark data and query set design. The Michigan benchmark achieves this
by using a data set that incorporates these characteristics without introducing un-
necessary complexity into the data set generation, and by carefully designing the
benchmark queries that test the impact of these characteristics on individual query
operations.

2



The remainder of this chapter is organized as follows. Section 2 presents the
related work. In Section 3, we discuss the rationale of the benchmark data set
design. In Section 4, we describe the queries of the benchmark data set. Section
5 presents our recommendation on how to analyze and present the results of the
benchmark. Finally, Section 6 summarizes the contribution of this benchmark.

2 Related Work

Several proposals for generating synthetic XML data have been proposed [1, 3].
Aboulnaga et al. [1] proposed a data generator that accepts as many as twenty
parameters to allow a user to control the properties of the generated data. Such a
large number of parameters adds a level of complexity that may interfere with the
ease of use of a data generator. Furthermore, this data generator does not make
available the schema of the data which some systems could exploit. Most recently,
Barbosa et al. [3] proposed a template-based data generator for XML, which can
generate multiple tunable data sets. In contrast to these previous data generators,
the data generator in the Michigan benchmark produces an XML data set designed
to test different XML data characteristics that may affect the performance of XML
engines. In addition, the data generator requires only few parameters to vary the
scalability of the data set. The schema of the data set is also available to exploit.

Three benchmarks have been proposed for evaluating the performance of XML
data management systems [4, 10, 12]. XMach-1 [4] and XMark [12] generate
XML data that models data from particular Internet applications. In XMach-1 [4],
the data is based on a web application that consists of text documents, schema-
less data, and structured data. In XMark [12], the data is based on an Internet
auction application that consists of relatively structured and data-oriented parts.
XOO7 [10] is an XML version of the OO7 Benchmark [8] which provides a com-
prehensive evaluation of OODBMS performance. The OO7 schema and instances
are mapped into a Document Type Definition (DTD) and the corresponding XML
data sets. The eight OO7 queries are translated into three respective languages of
the query processing engines: Lore [6, 9], Kweelt [11], and an ORDBMS. While
each of these benchmarks provides an excellent measure of how a test system
would perform against data and queries in their targeted XML application, it is dif-
ficult to extrapolate the results to data sets and queries that are different from ones
in the targeted domain. Although the queries in these benchmarks are designed
to test different performance aspects of XML engines, they cannot be used to per-
ceive the system performance change as the XML data characteristics change. On
the other hand, we have different queries to analyze the system performance with
respect to different XML data characteristics, such as tree fanout and tree depth;

3



and different query characteristics, such as predicate selectivity.
A desiderata document [2] for a benchmark for XML databases identifies com-

ponents and operations, and ten challenges that the XML benchmark should ad-
dress. Although their proposed benchmark is not a general purpose benchmark, it
meets the challenges that test performance-critical aspects of XML processing.

3 Benchmark Data Set

In this section, we first discuss characteristics of XML data sets that can have a
significant impact on the performance of query operations. Then, we present the
schema and the generation algorithms for the benchmark data.

3.1 A Discussion of the Data Characteristics

In the relational paradigm, the primary data characteristics are the selectivity of
attributes (important for simple selection operations) and the join selectivity (im-
portant for join operations). In the XML paradigm, there are several complicating
characteristics to consider as discussed in Section 3.1.1 and 3.1.2.

3.1.1 Depth and Fanout

Depth and fanout are two structural parameters important to tree-structured data.
The depth of the data tree can have a significant performance impact when we
are computing containment relationships which include an indirect containment
between ancestor and descendant and a direct containment between parent and
child. It is possible to have multiple nodes at different levels satisfying the ancestor
and the descendant predicates. Similarly, the fanout of the node tree can affect the
way in which the DBMS stores the data, and answers queries that are based on
selecting children in a specific order (for example, selecting the last child).

One potential way of testing fanout and depth is to generate a number of distinct
data sets with different values for each of these parameters and then run queries
against each data set. The drawback of this approach is that the large number of
data sets makes the benchmark harder to run and understand. In this proposal, our
approach is to create a base benchmark data set of a depth of 16. Then, using a
“level” attribute of an element, we can restrict the scope of the query to data sets
of certain depth, thereby, quantifying the impact of the depth of the data tree.

To study the impact of fanout, we generate the data set in the following way.
There are 16 levels in the tree, and each level has a fanout of 2, except levels 5, 6,
7, and 8. Levels 5, 6, and 7 have a fanout of 13, whereas level 8 has a fanout of
1/13 (at level 8 every thirteenth node has a single child). This variation in fanout is

4



designed to permit queries that measure the effect of the fanout factor. For instance,
the number of nodes is 2,704 for nodes at levels 7 and 9. Nodes at level 7 have a
fanout of 13, whereas nodes at level 9 have a fanout of 2. Queries against these two
levels can be used to measure the impact of fanout.

Level Fanout Nodes % of Nodes
1 2 1 0.0
2 2 2 0.0
3 2 4 0.0
4 2 8 0.0
5 13 16 0.0
6 13 208 0.0
7 13 2,704 0.4
8 1/13 35,152 4.8
9 2 2,704 0.4

10 2 5,408 0.7
11 2 10,816 1.5
12 2 21,632 3.0
13 2 43,264 6.0
14 2 86,528 11.9
15 2 173,056 23.8
16 – 346,112 47.6

Figure 1: Distribution of the nodes in the base data set

3.1.2 Data Set Granularity

To keep the benchmark simple, we choose a single large document tree as the
default data set. If it is important to understand the effect of document granularity,
one can modify the benchmark data set to treat each node at a given level as the
root of a distinct document. One can compare the performance of queries on this
modified data set against queries on the original data set.

3.1.3 Scaling

A good benchmark needs to be able to scale in order to measure the performance of
databases on a variety of platforms. In the relational model, scaling a benchmark
data set is easy - we simply increase the number of tuples. However, with XML,
there are many scaling options, such as increasing number of nodes, depth, or
fanout. We would like to isolate the effect of the number of nodes from the effects

5



due to other structural changes, such as depth and fanout. We achieve this by
keeping the tree depth constant for all scaled versions of the data set and changing
the number of fanouts of nodes at only a few levels.

The default data set, which is described in Section 3.1.1, is called DSx1. This
data set has about 728K nodes, arranged in a tree of a depth of 16 and a fanout of
2 for all levels except levels 5, 6, 7 and 8, which have fanouts of 13, 13, 13, 1/13
respectively. From this data set we generate two additional “scaled-up” data sets,
called DSx10 and DSx100 such that the numbers of nodes in these data sets are
approximated 10 and 100 times the number of nodes in the base data set, respec-
tively. We achieve this scaling factor by varying the fanout of the nodes at levels
5-8. For the data set DSx10 levels 5–7 have a fanout of 39, whereas level 8 has a
fanout of 1/39. For the data set DSx100 levels 5–7 have a fanout of 111, whereas
level 8 has a fanout of 1/111. The total number of nodes in the data sets DSx10 and
DSx100 is 7,180K and 72,350K respectively (which translates into a scale factor
of 9.9x and 99.4x respectively).

In the design of the benchmark data set, we deliberately keep the fanout of
the bottom few levels of the tree constant. This design implies that the percentage
of nodes in the lower levels of the tree (levels 9–16) is nearly constant across all
the data sets. This allows us to easily express queries that focus on a specified
percentage of the total number of nodes in the database. For example, to select
approximately 1/16. of all the nodes, irrespective of the scale factor, we use the
predicate aLevel = 13.

3.2 Schema of Benchmark Data

The construction of the benchmark data is centered around the element type Base-
Type. Each BaseType element has the following attributes:

1. aUnique1: A unique integer generated by traversing the entire data tree in a
breadth-first manner. This attribute also serves as the element identifier.

2. aUnique2: A unique integer generated randomly.

3. aLevel: An integer set to store the level of the node.

4. aFour: An integer set to aUnique2 mod 4.

5. aSixteen: An integer set to aUnique1 + aUnique2 mod 16. Note that this
attribute is set to aUnique1 + aUnique2 mod 16 instead of aUnique2 mod
16 to avoid a correlation between the predicate on this attribute and one on
either aFour or aSixtyFour.

6



6. aSixtyFour: An integer set to aUnique2 mod 64.

7. aString: A string approximately 32 bytes in length.

The content of each BaseType element is a long string that is approximately
512 bytes in length. The generation of the element content and the string attribute
aString is described in Section 3.3.

In addition to the attributes listed above, each BaseType element has two sets
of subelements. The first is of type BaseType. The number of repetitions of
this subelement is determined by the fanout of the parent element, as described in
Figure 1. The second subelement is an OccasionalType, and can occur either 0 or
1 time. The presence of the OccasionalType element is determined by the value
of the attribute aSixtyFour of the parent element. A BaseType element has a
nested (leaf) element of type OccasionalType if the aSixtyFour attribute has the
value 0. An OccasionalType element has content that is identical to the content of
the parent but has only one attribute, aRef. The OccasionalType element refers
to the BaseType node with aUnique1 value equal to the parent’s aUnique1 �����
(the reference is achieved by assigning this value to aRef attribute.) In the case
where there is no BaseType element has the parent’s aUnique1 ����� value (e.g.,
top few nodes in the tree), the OccasionalType element refers to the root node of
the tree. The XML Schema specification of the benchmark data is Figure 2.

In this section, we have described the structure of the data set. In the next sec-
tion, we will examine how to generate the string content of attributes and elements
in the data set.

3.3 Generating the String Attributes and Element Content

The element content of each BaseType element is a long string. Since this string
is meant to simulate a piece of text in a natural language, it is not appropriate
to generate this string from a uniform distribution. Selecting pieces of text from
real sources, however, involves many difficulties, such as how to maintain roughly
constant size for each string, how to avoid idiosyncrasies associated with the spe-
cific source, and how to generate more strings as required for a scaled benchmark.
Moreover, we would like to have benchmark results applicable to a wide variety of
languages and domain vocabularies.

To obtain the string value that has a distribution similar to the distribution of
a natural language text, we generate these long strings synthetically, in a carefully
stylized manner. We begin by creating a pool of �	��
��� (over sixty thousands) 1

1Roughly twice the number of entries in the second edition of the Oxford English Dictionary.
However, half the words that are used in the benchmark are “derived” words, produced by appending
“ing” to the end of a word.

7



� ?xml version=“1.0”? �� xsd:schema
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
targetNamespace=“http://www.eecs.umich.edu/db/mbench/bm.xsd”
xmlns=“http://www.eecs.umich.edu/db/mbench/bm.xsd”
elementFormDefault=“qualified” �� xsd:complexType name=“BaseType” mixed=“true” �� xsd:sequence �� xsd:element name=“eNest” type=“BaseType” minOccurs=“0” �� xsd:key name=“aU1PK” �� xsd:selector xpath=“.//eNest”/ �� xsd:field xpath=“@aUnique1”/ �� /xsd:key �� xsd:unique name=“aU2” �� xsd:selector xpath=“.//eNest”/ �� xsd:field xpath=“@aUnique2”/ �� /xsd:unique �� /xsd:element �� xsd:element name=“eOccasional” type=“OccasionalType” minOccurs=“0” maxOccurs=“1” �� xsd:keyref name=“aU1FK” refer=“aU1PK” �� xsd:selector xpath=“../eOccasional”/ �� xsd:field xpath=“@aRef”/ �� /xsd:keyref �� /xsd:element �� /xsd:sequence �� xsd:attributeGroup ref=“BaseTypeAttrs”/ �� /xsd:complexType �� xsd:complexType name=“OccassionalType” �� xsd:simpleContent �� xsd:extension base=“xsd:string” �� xsd:attribute name=“aRef” type=“xsd:integer” use=“required”/ �� /xsd:extension �� /xsd:simpleContent �� /xsd:complexType �� xsd:attributeGroup name=“BaseTypeAttrs” �� xsd:attribute name=“aUnique1” type=“xsd:integer” use=“required”/ �� xsd:attribute name=“aUnique2” type=“xsd:integer” use=“required”/ �� xsd:attribute name=“aLevel” type=“xsd:integer” use=“required”/ �� xsd:attribute name=“aFour” type=“xsd:integer” use=“required”/ �� xsd:attribute name=“aSixteen” type=“xsd:integer” use=“required”/ �� xsd:attribute name=“aSixtyFour” type=“xsd:integer” use=“required”/ �� xsd:attribute name=“aString” type=“xsd:string” use=“required”/ �� /xsd:attributeGroup �� /xsd:schema �

Figure 2: Benchmark Specification in XML Schema

8



synthetic words. The words are divided into 16 buckets, with exponentially grow-
ing bucket occupancy. Bucket � has ����� � words. For example, the first bucket has
only one word, the second has two words, the third has four words, and so on. The
words are not meaningful in any language, but simply contains information about
the bucket from which it is drawn and the word number in the bucket. For exam-
ple, “15twentynineB14” indicates that this is the 1,529th word from the fourteenth
bucket. To keep the size of the vocabulary in the last bucket at roughly 30,000
words, words in the last bucket are derived from words in the other buckets by
adding the suffix “ing” (to get exactly � ��� words in the sixteenth bucket, we add
the dummy word “oneB0ing”).

Sing a song of PickWord,
A pocket full of PickWord
Four and twenty PickWord
All baked in a PickWord.

When the PickWord was opened,
The PickWord began to sing;
Wasn’t that a dainty PickWord
To set before the PickWord?

The King was in his PickWord,
Counting out his PickWord;
The Queen was in the PickWord
Eating bread and PickWord.

The maid was in the PickWord
Hanging out the PickWord;
When down came a PickWord,
And snipped off her PickWord!

Figure 3: Generation of the String Element Content

The value of the long string is generated from the template shown in Figure 3,
where “PickWord” is actually a placeholder for a word picked from the word pool
described above. To pick a word for “PickWord”, a bucket is chosen, with each
bucket equally likely, and then a word is picked from the chosen bucket, with
each word equally likely. Thus, we obtain a discrete Zipf distribution of parameter
roughly 1. We use the Zipf distribution since it seems to reflect word occurrence
probabilities accurately in a wide variety of situations. The value of aString at-

9



tribute is simply the first line of the long string that is stored as the element content.
Through the above procedures, we now have the data set that has the structure

that facilitates the study of the impact of data characteristics on system performance
and the element/attribute content that simulates a piece of text in a natural language.

4 Benchmark Queries

In creating the data set above, we make it possible to tease apart data with different
characteristics, and to issue queries with well-controlled yet vastly differing data
access patterns. We are more interested in evaluating the cost of individual pieces
of core query functionality than in the evaluating the composite performance of
queries that are of application-level. Knowing the costs of individual basic op-
erations, we can estimate the cost of any complex query by just adding up rele-
vant piecewise costs (keeping in mind the pipelined nature of evaluation, and the
changes in sizes of intermediate results when operators are pipelined).

One clean way to decompose complex queries is by means of an algebra. While
the benchmark is not tied to any particular algebra, we find it useful to refer to
queries as “selection queries”, “join queries” and the like, to clearly indicate the
functionality of each query. A complex query that involves many of these simple
operations can take time that varies monotonically with the time required for these
simple components.

In the following subsections, we describe each of these different types of queries
in detail. In these queries, the types of the nodes are assumed to be BaseType
(eNest nodes) unless specified otherwise.

4.1 Selection

Relational selection identifies the tuples that satisfy a given predicate over its at-
tributes. XML selection is both more complex and more important because of
the tree structure. Consider a query, against a popular bibliographic database, that
seeks books, published in the year 2002, by an author with name including
the string “Bernstein”. This apparently straightforward selection query involves
matches in the database to a 4-node “query pattern”, with predicates associated
with each of these four (namely book, year, author, and name). Once a match
has been found for this pattern, we may be interested in returning only the book
element, all the nodes that participated in the match, or various other possibilities.
We attempt to organize the various sources of complexity in the following.

10



4.1.1 Returned Structure

In a relation, once a tuple is selected, the tuple is returned. In XML, as we saw
in the example above, once an element is selected, one may return the element,
as well as some structure related to the element, such as the sub-tree rooted at the
element. Query performance can be significantly affected by how the data is stored
and when the returned result is materialized.

To understand the role of returned structure in query performance, we use the
query, select all elements with aSixtyFour = 2. The selectivity of this query is
1/64 (1.6%).

This query is run in the following cases:

� QR1. Return only the elements in question, not including any sub-elements.

� QR2. Return the elements and all their immediate children.

� QR3. Return the entire sub-tree rooted at the elements.

� QR4. Return the elements and their selected descendants with aFour =1.

Note that details about the computation of the selectivities of queries can be
found at [13].

The remaining queries in the benchmark simply return the unique identifier
attributes of the selected nodes (aUnique1 for eNest and aRef for eOccasional),
except when explicitly specified otherwise. This design choice ensures that the cost
of producing the final result is a small portion of the query execution cost.

4.1.2 Simple Selection

Even XML queries involving only one element and a single predicate can show
considerable diversity. We examine the effect of this single selection predicate in
this set of queries.

� Exact Match Attribute Value Selection
Selection based on the value of a string attribute.
QS1. Low selectivity. Select nodes with aString = “Sing a song of
oneB4”. Selectivity is 0.8%.

QS2. High selectivity. Select nodes with aString = “Sing a song of
oneB1”. Selectivity is 6.3%.

Selection based on the value of an integer attribute.
We reproduce the same selectivities as in the string attribute case.
QS3. Low selectivity. Select nodes with aLevel = 10. Selectivity is 0.7%.

11



QS4. High selectivity. Select nodes with aLevel = 13. Selectivity is 6.0%.

Selection on range values.
QS5. Select nodes with aSixtyFour between 5 and 8. Selectivity is 6.3%.

Selection with sorting.
QS6. Select nodes with aLevel = 13 and have the returned nodes sorted by
aSixtyFour attribute. Selectivity is 6.0%.

Multiple-attribute selection.
QS7. Select nodes with attributes aSixteen = 1 and aFour = 1. Selectivity
is 1.6%.

� Element Name Selection
QS8. Select nodes with the element name eOccasional. Selectivity is
1.6%.

� Order-based Selection
QS9. Select the second child of every node with aLevel = 7. Selectivity is
0.4%.

QS10. Select the second child of every node with aLevel = 9. Selectivity
is 0.4%.

Since the fraction of nodes in these two queries are the same, the perfor-
mance difference between queries QS9 and QS10 is likely to be on account
of fanout.

� Element Content Selection
QS11. Select OccasionalType nodes that have “oneB4” in the element
content. Selectivity is 0.2%.

QS12. Select nodes that have “oneB4” as a substring of element content.
Selectivity is 12.5%.

� String Distance Selection
QS13. Low selectivity. Select all nodes with element content that the dis-
tance between keyword “oneB5” and keyword “twenty” is not more than
four. Selectivity is 0.8%.

QS14. High selectivity. select all nodes with element content that the dis-
tance between keyword “oneB2” and keyword “twenty” is not more than
four. Selectivity is 6.3%.

12



4.1.3 Structural Selection

Selection in XML is often based on patterns. Queries should be constructed to
consider multi-node patterns of various sorts and selectivities. These patterns of-
ten have “conditional selectivity.” Consider a simple two node selection pattern.
Given that one of the nodes has been identified, the selectivity of the second node
in the pattern can differ from its selectivity in the database as a whole. Similar de-
pendencies between different attributes in a relation could exist, thereby affecting
the selectivity of a multi-attribute predicate. Conditional selectivity is complicated
in XML because different attributes may not be in the same element, but rather in
different elements that are structurally related.

In this section, all queries return only the root of the selection pattern, unless
otherwise specified.

� Parent-child Selection
QS15. Medium selectivity of both parent and child. Select nodes with
aLevel = 13 that have a child with aSixteen = 3. Selectivity is approxi-
mately 0.7%.

QS16. High selectivity of parent and low selectivity of child. Select nodes
with aLevel = 15 that have a child with aSixtyFour = 3. Selectivity is
approximately 0.7%.

QS17. Low selectivity of parent and high selectivity of child. Select
nodes with aLevel = 11 that have a child with aFour = 3. Selectivity is
approximately 0.7%.

� Order-sensitive Parent-child Selection
QS18. Local ordering. Select the second element below each element with
aFour = 1 if that second element also has aFour = 1. Selectivity is 3.1%.

QS19. Global ordering. Select the second element with aFour = 1 below
any element with aSixtyFour = 1. This query returns at most one element,
whereas the previous query returns one for each parent.

QS20. Reverse ordering. Among the children with aSixteen = 1 of the
parent element with aLevel = 13, select the last child. Selectivity is 0.7%.

� Ancestor-Descendant Selection
QS21. Medium selectivity of both ancestor and descendant. Select nodes
with aLevel = 13 that have a descendant with aSixteen = 3. Selectivity is
3.5%.

QS22. High selectivity of ancestor and low selectivity of descendant.
Select nodes with aLevel = 15 that have a descendant with aSixtyFour = 3.

13



Selectivity is 0.7%.

QS23. Low selectivity of ancestor and high selectivity of descendant.
Select nodes with aLevel = 11 that have a descendant with aFour = 3.
Selectivity is 1.5%.

� Ancestor Nesting in Ancestor-Descendant Selection
In the ancestor-descendant queries above (QS21-QS23), ancestors are never
nested below other ancestors. To test the performance of queries when an-
cestors are recursively nested below other ancestors, we have three other
ancestor-descendant queries. These queries are variants of QS21-QS23.

QS24. Medium selectivity of both ancestor and descendant. Select nodes
with aSixteen = 3 that have a descendant with aSixteen = 5.

QS25. High selectivity of ancestor and low selectivity of descendant.
Select nodes with aFour = 3 that have a descendant with aSixtyFour = 3.

QS26. Low selectivity of ancestor and high selectivity of descendant.
Select nodes with aSixtyFour = 9 that have a descendant with aFour = 3.

The overall selectivities of these queries (QS24-QS26) cannot be the same
as that of the “equivalent” unnested queries (QS21-QS23) for two situations
– first, the same descendants can now have multiple ancestors they match,
and second, the number of candidate descendants is different (fewer) since
the ancestor predicate can be satisfied by nodes at any level. These two
situations may not necessary cancel each other out. We focus on the local
predicate selectivities and keep these the same for all of these queries (as
well as for the parent-child queries considered before).

QS27. Similar to query QS26, but return both the root node and the descen-
dant node of the selection pattern. Thus, the returned structure is a pair of
nodes with an inclusion relationship between them.

� Complex Pattern Selection
Complex pattern matches are common in XML databases, and in this section,
we introduce a number of chain and twig queries that we use in this bench-
mark. Figure 4 shows an example of each of these types of queries. In the
figure, each node represents a predicate such as an element tag name predi-
cate, or an attribute value predicate, or an element content match predicate.
A structural parent-child relationship in the query is shown by a single line,
and an ancestor-descendant relationship is represented by a double-edged
line. The chain query shown in the Figure 4(i) finds all nodes that match
the condition A, such that there is a child node that matches the condition B,
such that some descendant of the child node matches the condition C. The

14



twig query shown in the Figure 4(ii) matches all nodes that satisfy the con-
dition A, and have a child node that satisfies the condition B, and also has a
descendant node that satisfies the condition C.

A

B

C

(i) Chain Query (ii) Twig Query

A

B C

Figure 4: Samples of Chain and Twig Queries

We use the following complex queries in our benchmark:

� Parent-child Complex Pattern Selection
QS28. One chain query with three parent-child joins with the selec-
tivity pattern: high-low-low-high. The query is to test the choice of join
order in evaluating a complex query. To achieve the desired selectivities,
we use the following predicates: aFour=3, aSixteen=3, aSixteen=5 and
aLevel=16.

QS29. One twig query with two parent-child selection (low-high, low-
low). Select parent nodes with aLevel=11 (low selectivity) that have a child
with aFour=3 (high selectivity), and another child with aSixtyFour=3 (low
selectivity).

QS30. One twig query with two parent-child selection (high-low, high-
low). Select parent nodes with aFour=1 (high selectivity) that have a child
with aLevel=11 (low selectivity) and another child with aSixtyFour=3 (low
selectivity).

� Ancestor-descendant Complex Pattern Selection
QS31-QS33. Repeat queries QS28-QS30, but using ancestor-descendant in
place of parent-child.

QS34. One twig query with one parent-child selection and one ancestor-
descendant selection. Select nodes with aFour=1 that have a child of nodes
with aLevel=11, and a descendant with aSixtyFour = 3

15



� Negated Selection
QS35. Find all BaseType elements below which there is no Occasional-
Type element.

4.2 Value-Based Join

A value-based join involves comparing values at two different nodes that need not
be related structurally. In computing the value-based joins, one would naturally
expect both nodes participating in the join to be returned. As such, the return
structure is a tree per join-pair. Each tree has a join-node as the root, and two
children, one corresponding to each element participating in the join.

QJ1. Low selectivity. Select nodes with aSixtyFour =2 and join with them-
selves based on the equality of aUnique1 attribute. The selectivity of this query
is approximately 1.6%.

QJ2. High selectivity. Select nodes based on aSixteen =2 and join with
themselves based on the equality of aUnique1 attribute. The selectivity of this
query is approximately 6.3%.

4.3 Pointer-based Join

The difference between these following queries and the join queries based on
values (QJ1-QJ2) is that references which can be specified in the DTD or XML
Schema and may be optimized with logical OIDs in some XML databases.

QJ3. Low selectivity. Select all OccasionalType nodes that point to a node
with aSixtyFour =3. Selectivity is 0.02%.

QJ4. High selectivity. Select all OccasionalType nodes that point to a node
with aFour = 3. Selectivity is 0.4%.

Both of these pointer-based joins are semi-join queries. The returned elements
are only the eOccasional nodes, not the nodes pointed to.

4.4 Aggregation

Aggregate queries are very important for data warehousing applications. In XML,
aggregation also has richer possibilities due to the structure. These are explored in
the next set of queries.

QA1. Value aggregation. Compute the average value for the aSixtyFour
attribute of all nodes at level 15. Note that about 1/4 of all nodes are at level 15.
The number of returned nodes is 1.

QA2. Value aggregation with groupby. Group nodes by level. Compute the
average value of the aSixtyFour attribute of all nodes at each level. The return

16



structure is a tree, with a dummy root and a child for each group. Each leaf (child)
node has one attribute for the level and one attribute for the average value. The
number of returned trees is 16.

QA3. Value aggregate selection. Select elements that have at least two occur-
rences of keyword “oneB1” in their content. Selectivity is 0.3%.

QA4. Structural aggregation. Amongst the nodes at level 11, find the node(s)
with the largest fanout. 1/64 of the nodes are at level 11. Selectivity is 0.02%.

QA5. Structural aggregate selection. Select elements that have at least two
children that satisfy aFour = 1. Selectivity is 3.1%.

QA6. Structural exploration. For each node at level 7 (have aLevel= 7,
determine the height of the sub-tree rooted at this node. Selectivity is 0.4%.

There are also other functionalities, such as casting, which can be significant
performance factors for engines that need to convert data types. However, in this
benchmark, we focus on testing the core functionality of the XML engines.

4.5 Updates
� QU1. Point Insert. Insert a new node BaseType node below the node with

aUnique1 = 10102. The new node has attributes identical to its parent,
except for aUnique1, which is set to some new large, unique value.

� QU2. Point Delete. Delete the node with aUnique1 = 10102 and transfer
all its children to its parent.

� QU3. Bulk Insert. Insert a new BaseType node below each node with
aSixtyFour = 1. Each new node has attributes identical to its parent, except
for aUnique1, which is set to some new large, unique value.

� QU4. Bulk Delete. Delete all leaf nodes with aSixteen = 3.

� QU5. Bulk Load. Load the original data set from a (set of) document(s).

� QU6. Bulk Reconstruction. Return a set of documents, one for each sub-
tree rooted at level 11 (have aLevel=11) and with a child of type eOcca-
sional.

� QU7. Restructuring. For a node � of type eOccasional, let � be the parent
of � , and � be the parent of � in the database. For each such node � , make
� a direct child of � in the same position as � , and place � (along with the
sub-tree rooted at � ) under � .

17



5 Using the Benchmark

Since the goal of this benchmark is to test individual XML query operations, we do
not propose a single benchmark number that can be computed from the individual
query execution times. While having a single benchmark number can be very
effective in summarizing the performance of an application benchmark, for a non-
application specific benchmark, such as this benchmark, it may be meaningless.

Similarly, it may be useful to run the benchmark queries in both hot and cold
modes, corresponding to running the queries using a buffer pool that is warmed
up by a previous invocation of the same query, and running the query with no
previously cached data in the buffer pool respectively.

Group Group Description Queries
A Returned Structure QR1-QR4
B Exact Match Attribute Value Selection QS1-QS7
C Element Name Selection QS8
D Order-Based Selection QS9-QS10
E Element Content Selection QS11-QS12
F String Distance Selection QS13-QS14
G Parent-Child Selection QS15-QS17
H Order-Sensitive Parent-Child Selection QS18-QS20
I Ancestor-Descendant Selection QS21-QS23
J Ancestor Nesting in Ancestor-Descendant Selection QS24-QS26
K Parent-Child Complex Pattern Selection QS27-QS30
L Ancestor-Descendant Complex Pattern Selection QS31-QS34
M Negated Selection QS35
N Value-Based Join QJ1-QJ2
O Pointer-Based Join QJ3-QJ4
P Value-Based Aggregation QA1-QA3
Q Structural Aggregation QA4-QA6
R Point Updates QU1-QU2
S Bulk Updates QU3-QU7

Figure 5: Benchmark Groups

In our own use of the benchmark, we have found it useful to produce two tables:
a summary table which presents a single number for a group of related queries, and
a detail table that shows the query execution time for each individual query. For
the summary table, we use the groups that are shown in Figure 5. For each group,
we compute the geometric mean of the execution times of the queries in that group.
When comparing different systems, or when evaluating the scalability of a system

18



using the benchmark, the summary table quickly identifies the key strengths and
weaknesses of the system(s) being evaluated. The detailed table then provides
more precise information on the performance of the individual query operations.
We expect that this approach of using two tables to summarize the benchmark
results, will also be useful to other users of this benchmark.

6 Conclusions and Future Work

The Michigan benchmark that is described in this chapter, is a micro-benchmark
that can be used to tune the performance of XML query processing systems. In
formulating this benchmark we paid careful attention to the techniques that we
use in generating the data and the query specification, so as to make it very easy
for a benchmark user to identify any performance problems. The data generation
process uses random numbers sparingly and still captures key characteristics of
XML data sets, such as varying fanout and depth of the data tree. The queries
are carefully chosen to focus on individual query operations and to demonstrate
any performance problems related to the implementation of the algorithms used
to evaluate the query operation. With careful analysis of the benchmark results,
engineers can diagnose the strengths and weaknesses of their XML databases, and
quantitatively examine the impact of different implementation techniques, such as
data storage structures, indexing methods, and query evaluation algorithms. The
benchmark can also be used to examine the effect of scaling up the database size
on the performance of the individual queries. In addition, the benchmark can also
be used to compare the performance of various primitive query operations across
different systems. Thus, this benchmark is a simple and effective tool to help
engineers to be able to improve the performance of XML query processing engines.

In designing the benchmark, we paid careful attention to the key criteria for
a successful domain-specific benchmark that have been proposed in [7]. These
key criteria are: relevant, portable, scalable, and simple. The proposed Michigan
benchmark is relevant to testing the performance of XML engines because pro-
posed queries are the core basic components of typical application-level operations
of XML application. Michigan benchmark is portable because it is easy to im-
plement the benchmark on many different systems. In fact, the data generator for
this benchmark data set is freely available for download from the Michigan bench-
mark’s web site [13]. It is scalable through the use of a scaling parameter. It is
simple since it comprises only one data set and a set of simple queries, each with a
distinct functionality test purpose.

We are continuing to use the benchmark to evaluate a number of native XML
data management systems, and traditional (object) relational database systems. We

19



plan on publishing the most up-to-date results using the benchmark, at the web site
for this benchmark [13].

References

[1] A. Aboulnaga and J. Naughton and C. Zhang. Generating Synthetic Complex-
structured XML Data. In International Workshop on the Web and Databases, Santa
Barbara, California, May 2001.

[2] A. Schmidt and F. Wass and M. Kersten and D. Florescu and M. J. Carey and I.
Manolescu and R. Busse. Why And How To Benchmark XML Databases. SIGMOD
Record, 30(3), September 2001.

[3] D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons. ToXgene:An Extensible
Templated-based Data Generator for XML. In Fifth International Workshop on the
Web and Databases, pages 49–54, Madison, WI, 2002.

[4] T. Böhme and E. Rahm. XMach-1: A Benchmark for XML Data Management.
In Proceedings of German Database Conference BTW2001, Oldenburg, Germany,
March 2001.

[5] D. J. DeWitt. The Wisconsin Benchmark: Past, Present, and Future. In J. Gray,
editor, The Benchmark Handbook for Database and Transaction Systems. Morgan
Kaufmann, second edition, 1993.

[6] R. Goldman, J. McHugh, and J. Widom. From Seminstructured Data to XML: Mi-
grating to the Lore Data Model and Query Language. In International Workshop on
the Web and Databases, pages 25–30, Philadelphia, Pennsylvania, June 1999.

[7] J. Gray. Introduction. In J. Gray, editor, The Benchmark Handbook for Database and
Transaction Systems. Morgan Kaufmann, second edition, 1993.

[8] M. J. Carey and D. J. DeWitt and J. F. Naughton. The OO7 Benchmark. SIGMOD
Record (ACM Special Interest Group on Managment of Data), 22(2):12–21, 1993.

[9] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Wid om. Lore: A Database
Management System for Semistructured Data. SIGMOD Record, 26(3):54–66,
September 1997.

[10] S. Bressan and G. Dobbie and Z. Lacroix and M. L. Lee and Y. G. Li and U. Nambiar
and B. Wadhwa . XOO7: Applying OO7 Benchmark to XML Query Processing
Tools. In Proceedings of the ACM International Conference on Information and
Knowledge Management (CIKM), Atlanta, Georgia, November 2001.

[11] A. Sahuguet, L. Dupont, and T. L. Nguyen. Querying XML in the New Millennium.
http://db.cis.upenn.edu/KWEELT/.

[12] A.R. Schmidt, F. Wass, M.L. Kersten, D. Florescu, I. Manolescu, M.J. Carey, and
R. Busse. The XML Benchmark Project. Technical report, CWI, Amsterdam, The
Netherlands, April 2001.

20



[13] The Michigan Benchmark Team. The Michigan Benchmark Homepage. http:
//www.eecs.umich.edu/db/mbench.

21


