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ABSTRACT

This paper studies the problem of protecting individualvay
when continuously publishing a stream of location tracex aai-
lected from a population of users. Fundamentally, this detmd
the new challenge of anonymizing data that evolvegratictable

waysover time. Our main technical contribution is a novel formal

framework for reasoning about privacy in this setting. Wcar

late a new privacy principle calle@mporal unlinkability Then,
by incorporating a probabilistic model of data change (i tase,
user motion), we are able to quantify the risk of privacy atans.
Within this framework, we develop an initial set of algorith for
continuous privacy-preserving publishing. Finally, ogperiments
demonstrate the shortcomings of previous publishing tiecies
that do not account for inference based on predictable datage,
and they demonstrate the feasibility of the new approach.

Categories and Subject Descriptors
H.2.7 Information Systems: Security, integrity, and protection

General Terms
Security

1. INTRODUCTION

Streaming location data from sensors and GPS devices iaglriv

a broad new class of applications. This paper considersgamir
zation that collects and continuously publishes a streaiwcation
trace information from a population of users. For exampdutar
phone providers can track users’ locations using the GPBeakev
attached to modern phones. Often, there is a compellingmetas
share or sell this information to a third party. For exam@&S
traces provide valuable real-time traffic information. Aetsame
time, there are also concerns for the privacy of GPS users.

Much of the past work in location-based privacy has focused o

static snapshots, applying techniques like spdtiahonymity to
mask the locations of users at a single point in time [10, 0422].
However, we are interested in repeatedly publishing thations of

users as they move, across an indeterminate amount of tinis. T

poses a difficult challenge because users’ locations changays
that are often predictable, which means that it is often iptesso
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{Alice, Bob, Charlie} {Alice, Bob, Charlie}
Figure 1: Example of Motion Prediction Inference

infer the location of a user by analyzing historical locapeven if
individual snapshots satisfy conventional notions of griv This
basic idea, which we cathotion-prediction inferences illustrated
with a simple example.

ExampPLE 1.1. Consider the scenario in Figure 1, where three
users (Alice, Bob, and Charlie) live in the same neighboch@nd
their locations are being tracked via GPS devices. At 7:45 AM
three are at their homes, but in the interest of privacy, #léghone
company releases a “bucketized" snapshot of their location-
cluding theanonymization group{ Alice, Bob, Charlie}, {1, 2, 3}),
indicating that Alice, Bob, and Charlie are at locations 1a&d 3,
but eliminating the association between users and location

Through access tauxiliary information an adversary can of-
ten associate certain individuals with unique locationsdertain
points in time). For example, using the telephone book, tvera
sary may determine that location 1 is Alice’s home.

Suppose that at 7:50 AM, the phone company releases another
snapshot containing{ Alice, Bob, Charlie}, {4,5,6}). By con-
ventional definitions, this snapshot would be consid8radonymous.
However, this approach is clearly flawed. By carefully exang
locations 4, 5, and 6, the adversary may discover based on his
knowledge of motion patterns (e.g., speed limits and traffic
terns) that locations 5 and 6 are too far away from locatiorol t
have been reached in 5 minutes. Thus, he can infer that Aliae i
location 4.

1.1 Contributions

Motion-prediction inference is a significant challenge liivacy-
preserving online location-trace publishing. While weatise our
results in this context, this is just one example of a moresgan
class of problems in which it is necessary to repeatedlyipublata
that evolves in semi-predictable way#n this paper, we propose a

'As a second example, consider a longitudinal social scistucky

that tracks a set of subjects over several years, and in whish
important to publish new data every year. Just as the latatio
Alice at 7 AM is correlated with her location at 7:05, certaier-

sonal attributes (e.g., age, residence, personal habitd)to vary
in predictable ways over time.



formal framework for dealing with this problem. The framew

highli%ted by the foIIov_vingI key contributions;
1. We formalize a high-level privacy principle calléeimporal

unlinkability for dynamically-evolving data. (Section 2.1)

. To address the challenge of motion-prediction inferenoe
framework incorporates an extensible (“plug-and-play9-
tion modelthat probabilistically describes the movements of
users. (Section 3) This approach is more flexible and gen-
eral than past work, which was only capable of expressing
inference based on maximum speed [11].

. Using the motion model, we can computéreach proba-
bility, which measures the certainty with which an adversary
can violate temporal unlinkability. (Section 3)

. Finally, we propose two protocols for continuously psb#i
ing location traces without causing breaches. (Section 4)

Our experimental study (Section 5) confirms that static sumira-
tion tools (e.g., spatiat-anonymity) are indeed vulnerable to pri-
vacy breaches if we fail to account for motion-predictiofenence.
However, the experiments indicate that our protocols candeel
to mitigate this problem.

2. PRELIMINARIES
2.1 Threat Model & Privacy Principle

In our problem setting, we expect to encounter an advershoy w
has access to some sourcexakiliary informationassociating spe-
cific users with particular locations at specific points imei For
example, the Yellow Pages list the home addresses of mampygeo
and can be used to identify their locations during the nigbre
generally, auxiliary information can associate individusers with
spatio-temporal paths, such as a user’s route home fronffibe.o
Of course, the data publisher does not always have full kedgé
of the auxiliary information available to the adversary.

Fundamentally, we view the association between individeals
and locations as private. However, because of auxiliargrimé-
tion, we recognize that we will not be able to prevent an aghsr
from determining the location of a particular user at a tinfeew
this information is already known as part of the auxiliarforma-
tion. (In Example 1.1, the adversaaready know®\lice’s location
at 7:45 AM.) However, we should be able to prevent the adwersa
from further leveraging this information to learn the laoas of
users abther points in time. (In Example 1.1, the adversary was
able to infer Alice’s location at 7:50 AM.)

Formally, we consider location information collected franfi-
nite population of: users, each with a unique identifierdin, ..., u, }.
We assume that the system publishes location-based dasziaté
time epochdabeledto, t1, ....

DEFINITION 1 (PRINCIPLE OF TEMPORAL UNLINKABILITY ).
Consider an adversary who knows the location of a target user
u during m sequential epochs,, ..., t;+. Using the published
data, and under reasonable assumptions of inference, therad
sary should not be able, with high confidence, to determiadah
cation ofu during some other epodh) ¢ {t;, ..., titm}-

Given this guiding principle, it is instructive to consideicou-
ple of naive publishing protocols, which illustrate the iidwage in
satisfying temporal unlinkability:
e First, consider a strawman in which unique identifiers..., u,
are replaced with pseudonyms, ..., p. in the published data.
For example, Alice’s name can be replaced with a unique hash
value. Clearly, this approach violates temporal unlinkghi

once an adversary “unmasks" a user (learns her pseudonym us-

ing auxiliary information), he is able to learn the user'sdtion
during all other epochs.

e A more clever strawman would eliminate the use of pseudonyms
However, this approach must still be applied with cautiosing
multi-target tracking tools (which implicitly model useration),
it is often still possible to track a particular user acropsahs
[15, 21], again violating temporal unlinkability.

In the remainder of this paper, we will develop a framewornk fo
reasoning about temporal unlinkability in the presence ofiom
prediction, as well as publishing tools to prevent violatohereof.

2.2 Cloaking Mechanism

In privacy, like security, it is useful to draw a distinctibetween
the privacypolicy (i.e., the desired set of formal guarantees) and
the mechanisnused to enforce the policy. The primary focus of
this paper is in developing an appropriate policy for tirvebeing
data. However, out of necessity, we chose to work with aq@aetr
mechanism, which we selected because it generalizes tetleza
proposals.

Consider a finite population of users, and suppose that esarh u
has been assigned a unique pseudony#pin..., p, }. These val-
ues do not identify the users externally, but they are coersis
across time. During each epoch/acation snapshoassociates
each user’s pseudonym with the user’s location.

DEFINITION 2 (LOCATION SNAPSHOT). Alocation snapshot
associates each user with a single location during a pafticu
epoch. During epoct;, D(t;) = {(p1,1"), ..., (pn,15")} in-

dicates that usep; is at Iocationlgj).

Throughout this paper, we consider “bucketized" locatioaps
shots. Arelease candidatés modeled as a set @nonymization
groups Each anonymization group contains a non-overlapping set
of pseudonyms and a multiset of locations, but within eachugy
the association between pseudonyms and locations is hroken

DEFINITION3 (RELEASECANDIDATE). Arelease candidate
D*(t;) for location snapshaoD(¢; ) is of the form{ (C1 (¢;), L1 (¢;)),
ey (CB(tj), LB(tj))}, such thatUi:L_BCi(tj) = {p1, ..4,[)”},
Ci(t;)NCr(t;) = O fori # m, and L;(t;) contains the locations
at timet; of all users with pseudonyms @ (¢;).

Of course, a variety of masking mechanisms have been prdpose
in the literature; we are careful to note the relationshigveen this
approach and other proposals:

e Spatial Cloaking Spatial cloaking techniques replace the pre-
cise locations of individuals with coarsened regions. Segh
resentations (e.g., minimum bounding rectangles [10]) lman
computed from the anonymization groups in our release eandi
dates, and thus reveal no more information. Further, ctagpki
techniques may still be vulnerable to attacks based on motio
models. In Example 1.1, if we replaced the precise locations
each anonymization group with bounding regions, it is ptils-
sible to infer that Alice could not have reached the lowetipar
of the second region by 7:50 AM.

No PseudonymsAnother approach would eliminate the use of
pseudonyms entirely. This can be modeled as a special case of
our mechanism, where eaéli' () contains just one anonymiza-
tion group. Again, this approach may still be vulnerable @ m
tion prediction inference, as illustrated by Example 1.1.

e Location DensitiesA third alternative would publish maps of
user-densities. For example, such a map might indicateathat
7:45 AM, there are three users in a particular region. Sugbsma
at epochr;, can be computed from a release candidatg?;)
that contains just one anonymization group.



2.3 Data Quality

When anonymizing data, there is often a tradeoff between pri
vacy and thequality or utility of the resulting data. In the case
of the bucketization mechanism, there are two dimensioratf
quality to be considered: On one hand, we want to publishwlilte
spatially-compact anonymization groups (maximspatial preci-

sion). On the other hand, we would like to publish a release can-

didate during as many epochs as possible (maximpiggication
frequency. To maintain temporal unlinkability, however, an in-
crease in spatial precision often leads to a reduction itigatton
frequency. The relative importance of these two dimensianigs
based on the application. While this tradeoff is largelhogonal
to our framework for reasoning about privacy, we will revidata
quality when describing publication protocols in SectioB. 4

3. LOCATION TRACE PRIVACY

In this section, we describe our framework for reasoninguabo
location trace privacy. The framework involves two compuisea
probabilisticmotion modeland abreach probability function

The motion model describes the adversary’s knowledge with r
spect to user motion patterns. While recent work has coreside
very specific and rudimentary forms of knowledge about nmtio
patterns (e.g., [11] assumed that the adversary knows lbalmax-
imum speed of users), our framework is flexible enough tourapt
a much broader class of motion patterns. Specifically, wanall
the motion model to be “plugged-in" to the framework, pr@add
that it satisfies a general form. This enables us to capturerkn
edge about speed (as in [11]), but also an array of other lohds
knowledge, including directionality (e.g., objects tendcbntinue
moving in the same directions), minimum speed, and speéd-dis
bution, that still pose a threat in existing work.

Using the motion model, we formalize the idea ofpavacy
breach based on the temporal unlinkability principle.

3.1 Motion Models

Central to our framework is a probabilisticotion model As il-
lustrated in Example 1.1, the location of a user at epgadh often
correlated with the user’s location at surrounding pointgime.
We use the motion model to define the probability distributid
locations for a particular user at tintg, given the location of the
user at the precedinig epochs forward motion modg¢] or the fol-
lowing h epochs lpackward motion modjgf

In the following definitions we use capital letters to dencde-
ables (locations, epochs, and users), and we use loweltettss
to denote instances.

DEFINITION4 (FORWARD MOTION MODEL TEMPLATE). A
forward motion model is a conditional probability mass ftioo of
the following form, wheré < h < j and Loc(P,T;) = L; indi-
cates that the location of usét at epochT} is L;:

Pr[LOC(P, Tj) = LJ‘ ‘ LOC(P, ijl) = Ljfl, ceny

Loc(P, Tj—pn) = Lj—p]

We will view the forward motion model as &ri"-order Markov
chain. That is, we assunier[Loc(P,T;) = Lj;|Loc(P,T;-1) =
Lj_1,.., |_OC(.P7 ijh) = Ljfh] = PI"[LOC(P, Tj) = le
LOC(F’7 Tj71) = Ljfl, ceey |_0C(1:’7 To) = Lo].

Similarly, we define the backward motion model, which we will
also view as am'"-order Markov chain.

DEFINITION5 (BACKWARD MOTION MODEL TEMPLATE).
A backward motion model is a conditional probability masscfu

2Note that this assumes the movements of specific users ae ind
pendent of one another.

tion of the following form, wheré < h < j:

Loc(P, Tj41) = Ljt1, s
Loc(P, Tj4n) = Ljtn]

PI‘[LOC(P7 Tj) = Lj |

The symmetry propertypays that a motion model can be read
forwards and backwards.

DEFINITION6 (MOTION MODEL SYMMETRY ). Backwards and
forwards motion models are said to be symmetric if

Pr[LOC(P7 Tj) = LJ‘ | LOC(P7 ijl) = Ljfl, ey
Loc(P, Tj—p) = Lj—p]
|_OC(})7 Tj*h«‘ﬁl) = Lj7h+17 ey

Loc(P, Tj) = Lj]

= PI‘[LOC(P, Tj*h) = Ljfh |

The motion model is an independent and replaceable componen
of our framework. In our experiments (Section 5), we will @se
sample linear motion model, which instantiates the moreeggn
template forh = 1. The sample motion model is based on veloc-
ity (speed and directionality) distribution assumptioassuming
that the speed of each usBris uniformly distributed in the range
[v1,v2], and that the angle of motion is uniformly distributed in
[01,62]. The sample motion model satisfies the symmetry prop-
erty; details can be found in the extended paper [19].

Of course, there are many ways of modeling user motion (e.g.,
[16, 28, 18]). Many of these models rely on using the previous
locations of an object to predict future locations, and darstbe
plugged into our framework.

3.2 Privacy Breaches

Using the motion model as a building block, we formally de-
fine what constitutes a breach of privacy, based on the wmink
bility principle. Intuitively, the forward (respectivelypackward)
breach probabilityrepresents the certainty with which an adver-
sary can identify the location associated with a particukser P
during epocHr’;, using the motion model, given that he knows the
locations ofall usersduring them preceding (respectively, follow-
ing) sequential epochs, as described by fully-identifieapshots
D(Tj-1), ..., D(Tj—m) (respectively,D(Tj+1), ..., D(Tj1+m))-

DEFINITION 7 (FORWARD BREACH PROBABILITY ). The for-
ward breach probability for useP, epochT}; and locationL; is
defined by the conditional probability

PI‘[LOC(FJ7 TJ) = LJ'|D(YWJ'71)7 veey D(jjjfm)7 D*(T])] (l)

The forward breach probability can be expressed in termiseof t
forward motion model. Note that the snapshbt&l;_1), ..., D(Tj—m)
identify the locations of each pseudonyat them previous epochs.

(Denote these locationi$’ ,, ..., 15 ,,.) Assumingh < m, based
on theh-step Markov assumption, we have:
Pr[Loc(P,Tj) = LID(Tj—1), s D(Tj—m)]
= Pr[Loc(P,Ty) = L|Loc(P,Tj_1) =1}y, ..., Loc(P, Tj_p) = 1I_}]

In order to compute the breach probability, we must also ieond
tion onD*(T}):
Pr[Loc(P,T;) = L|D(Tj-1), ..., D(Tj—m), D*(T})]
Pr{Loc(P, Tj) = L A D*(T;)|D(Tj-1), -, D(Tj—m)]
Pr[D*(T5)|D(Tj-1), s D(Tj—m)]

The resulting probabilities can be computed based on the for
ward motion model. In the following, for simplicity of notan,
the past locations of each pseudonytrare assumed, and we will
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Figure 2: Example of breach probability computation

simply refer to the conditional probability that the logatiof P is

L atT; (as computed form the motion model) Bs[( P, L)].
Consider the anonymization group In*(73) that contains the

pseudonyn?, and IetC,Sj) andLSﬁ) denote the sets of pseudonyms

and locations, respectively, contained in this anonyromagroup.

LetM : CY —

to locations. Notice that there age= |L(])|' such functions, and

D™ (Ty;) implies that one such mapping must be true.
Each unique mapping/ can be viewed as a disjoint event. Since

we assume that the movements of users are independent ofione a time complexny |sO( nogl) =

other, the probability of one such mappinfi = {(c1, ¢1), ..., (ck, k) }
is Pr[M] = Pr[(c1,41)] - ... - Pr[(ck, k)]

Finally, the forward breach probability for pseudonyfhand
locationL can be computed as the sum of probabilities of mappings
M; such thatV; (P) = L, divided by the sum of probabilities over
all such mappings. In the followind( M) is an indicator variable,
which takes the value 1 #/;(P) = L, and 0 otherwise.

i1 Pr[Mi] - I(M;)
{1 Pr[M]

BP = )

ExamMPLE 3.1. Consider the simple example in Figure 2, and
supposen = h = 1. Suppose that the true snapshot at epacis
D(to) = {(p1, 1), (P2, 12), (p3,13), (P4, 1a) }.

Using the 1-step forward motion model, we can compute the fol
lowing:

el = Pr[LOC(pL t1

el = Pr[LOC(pL t1

eg5 = Pr[LOC(pZ t1
e26 = Pr[Loc(p2, t1

=I5 \Loc(pl,to) =N

= lG‘LOC(pl,tO)

= l5‘LOC(p2,t0)
= lg|Loc(p2, to) =

_11

I
I
l2];
l2].

e

Then, we can compute the breach probabilities.

PY[LOC(pl,tl) =15|D(to), D*(t1)] = 220
Pr[Loc(pa, t1) = l6|D(to), D* (t1)] = 15528 —;

Pr[Loc(p1,t1) = I|D(to), D* (t1)] = 25518 —;

Pr[LOC(pQ,tl) = l5‘D(t0),D*(t1)} €25°16

e15ez6teaseis

In addition to the forward breach probability, we have theksa
ward probability, which is similarly defined, and can be caomnepol
in terms of the backward motion model.

DEFINITION 8 (BACKWARD BREACHPROBABILITY). The back-
ward breach probability for useP, epoch7}; and locationL; is
defined by the conditional probability

Pr[Loc(P, Tj) = Lj|D(Tj+1), .-, D(Tj4m), D" (T5)]  (3)

Finally, a release candidate is said to cause a privacy breac
if there is some (forward or backward) breach probabilitst tis
higher than a user-specified threshold.

DEFINITION9  (PRIVACY BREACH). Arelease candidat®*(7})
is said to cause a privacy breach if either of the followingtst
ments is true for user-defined breach threshbtd(This definition
is also easily adapted to use a different threshold for easdr.u
mazxp,r; Pr[Loc(P,Tj) = Lj|D(Tj-1), ..., D(Tj-m), D*(Tj)] > T
mazp,z, Pr{Loc(P,T;) = L;|D(Tj11), ., D(Tj4m), D*(T3)] > T

In the remainder of the paper, we will refer to a release ahaidi
D™ (T5) that fails to satisfy the first condition as causinfpeward

breach similarly, if it fails to satisfy the second condition, ikases
abackward breach

4. PUBLISHING LOCATION TRACES

Using the framework described in the last section, the reimgi
challenge is to develop a protocol for continuously putitighoca-
tion traces in a way that does not breach privacy. In this@gcive
first discuss how to check a release candidate for breachem, T
we present some initial ideas for publishing protocols thaintain
data utility without compromising privacy.

L be a one-to-one function mapping pseudonyms4.1  Checking for Breaches: Brute-Force

Algorithm 1 provides a brute-force method for checking a re-
lease candidat®* (7}) for forward privacy breaches, given snap-
shotsD(T;_), ..., D(T;—1), using the forward motion model. The
O(nk"), wherek is the maximum
size of an anonymlzatlon group. In some cagess a small con-
stant, in which case the complexityG¥n). To manage cases when
this is not true, we provide some additional heuristic oations
in Section 4.2.

noend 1Forward Check (Brute-Force)
Input: D*(T3), D(Tj-1), ..., D(Tj—n), T
Output: true if there is a breachfalse otherwise
1: for each anonymization groupC' < L) € D*(Tj) do

2: denom=0
3:  numer[C|][|L]] = initialize all entries to 0
4:  for eachunique mapping/ : C — L do
5: Pr[M] =(compute from forward motion model)
6: for eachp € C do
7 numerp][ M (p)] += Pr[M]
8: denom +=Pr[M]
9: foreachp € C do

10: foreach?¢ € L do

11: BP = numenj][¢] / denom

12: if BP > T then

13: return true

14: return false

The brute-force algorithm for checking for backward bresgis
analogous, but takes as inpt (1), D(Tj+1), ..., D(T;+r), and

uses the backward motion model.

4.2 Checking for Breaches: Pruning

The brute-force checking algorithm is exponentiakjthe max-
imum size of an anonymization group. In this section we des@
fast pruning algorithm that is often able to identify anorigation
groups that do and do not cause breaches (have breach pittdsbi
above and below threshofd, respectively), heuristically reducing
the amount of computation.

Recall the formula for computing the breach probability qui-
tion 2. If k is the size of the anonymization group, then the numer-
ator of this formula is the sum @k — 1)! elements, each of which
is the product of different Pr[(C, L)] values: Pr[(c1,11)] - ... -



Pr[(ck,lx)]. The denominator is the sum &f elements, each of
which is the produce té different Pr[(C, L)] values. By choos-
ing the maximum and minimum values Bf-[(C, L)], we can find

(loose) upper and lower bounds for the breach probability.in

4.2.1 Basic Pruning Approach

The basic pruning procedure consists of the following tisteps.
(For simplicity, we describe forward breach probabilityngmuta-
tion, but the procedure for backward breach probabilit,esam-
pletely analogous.)

1. Consider the locationg, ..., 1. for the set of objectgy, ...,ci in
anonymization grouis at7;. Applying the forward motion model,
we computePR; = {Pr[(c1,1;)],...,Pr[(ck, ;)] } forl < i <
k atT;. (Again, we assume that the locations of each object at the
previousm epochs are known, so these probabilities are easily ob-
tained from the motion model.) This step takegk?).

2. Forl <i <k, let P, = max(PR;), and letp; = min(PR;).

3. Finally, we can obtain (loose) upper and lower boundshfeireach
probability B P in anonymization groug-.

E—1)!-P-...-P, 1 Py-...-P
BP ( IER ! e _ 1 B e
Kl p1-... pg k p1-...-pk
Bp > L.PL-Pk
k Pi-...-P

Since there are, on average/k anonymization groups, the total
time complexity isO(% - k?) = O(nk).

ExampPLE 4.1. To illustrate the pruning procedure, consider a
simple example. Suppose the following probabilities arepated
during Step .’].PI‘[(C17 l1)] = 0.5, PI"[(CQ7 ll)] = 0.357 PI‘[(Cg7 l1)] =
0.4, Pr[(cl, lg)] = 0.317 PI‘[(CQ, lg)] = 0.45, PI‘[(Cg7 lz)] = 0.35,
F’I‘[(Cl7 lg)] = 0.197 PI‘[(CQ7 lg)] = 0.2, PI‘[(C?,7 lg)] =0.25

Upper and lower bounds can be computed as follows:

1 05-045-0.25

BP<L - ——————— =90.9%
3 0.35-0.31-0.19

BP > 1 ) 0.35-0.31-0.19 — 12.9%
3 0.5-0.45-0.25

Suppose that the breach threshdld = 95%. SinceBP <
90.9% < T, we know that there is not a breach.

4.2.2 An Improvement

The basic pruning approach usés. . .- P andp; -. . .-px to es-
timate the probabilities of the most and least likely assignts of
objects to locations. By plugging these values into EquaZiowe
can obtain upper and lower bounds for the breach probakibyv-
ever, if the difference between the maximum and minimum- esti
mates is large, the estimated bounds can be quite loose.pFovm
these bounds, we make the following observation: In Eqoaio
notice that each\/; (assignment of objects to locations) must be
unique. Rather then finding the single maximum- and minimum-
probability assignment, we can improve the tightness obthends
by finding thex most-probable and least-probable assignments,
and incorporating these into the bound. The improved pgualn
gorithm consists of the following steps:

1. LetS = {s1-...-sp : s1 € PR1,...,s; € PRy} denote
the multiset of probabilities obtained by assigning onesobper
location. Letmazx[z] denote thex*” largest value inS, and let
min[x] denote thert” smallest value irf.

2. Next, we must computeaz[1], ..., maz[z] andmin[1], ..., min[z].
There is a polynomial-time algorithm. We omit the detailsdpace,
but they can be found in [19].

3. Finally, we can compute upper and lower bounds. (Theatig
assumes that < (k — 1)!.)
maz(l] + ...+ mazz] + ((k — 1)! — z) - maz|x]
min[l] + ... + min[z] + (k! — z) - min[z]
min[l] + ...+ minfz] + ((k — 1)! — ) - min[z]
maz[l] + ...+ maz[z] + (k! — z) - maz|x]

BP

BP

ExXamMPLE 4.2. Consider again the probabilities in Example 4.1,
and suppose = 2. In this case, we compute the following:

maz[1] = 0.5 - 0.45 - 0.25 = 0.05625
maz([2] = 0.4-0.45-0.25 = 0.045
min[l] = 0.35-0.31-0.19 = 0.020615
min[2] = 0.35-0.31-0.2 = 0.0217

Then, upper and lower bounds can be computed as follows. No-
tice that the bounds are tighter than those obtained usiedtsic
pruning approach in Example 4.1.

0.05625 + 0.045
0.020615 + 0.0217 4 4 - 0.0217
.02061 .021
> 0.020615 + 0.0217 — 15.05%
0.05625 + 0.045 + 4 - 0.045

4.3 Publishing Protocols

Recall that we selected the cloaking mechanism in Secti®n 2.
for flexibility. Generally-speaking, this mechanism giugs two
tools to work with in order to guarantee that a publishedastre
of location trace data does not breach privacy. First, weigan
crease the size, or vary the composition, of anonymizationgs.
Second, we can limit the frequency with which we publish aaeé
candidate. (We can also use these two tools in combinatiomhjs
section, we provide an initial exploration of the space,sidering
the problem from the perspective of a fixed publication saked
and from the perspective of a fixed set of anonymization gsoup

4.3.1 Fixed Publication Schedule

First, consider the case in which we publish release catefida
on a fixed schedule. In other words, we must pubdismerelease
candidate at every epody (assuming, of course, that there exists
a release candidate that does not cause a breach), but wargan v
the size and composition of anonymization groups.

In this case, if we want to publish a release candidat¢7;) at
epochTj;, we need to check for backward breaches, and we must
have future snapshot®(7j+1), ..., D(Tj+5) in hand to do this.

A simple solution is to delay publishing fér subsequent epochs,
after whichD*(T}) is easily checked for (forward and backward)
breaches.

For the case of the fixed publication schedule, we can them vie
the problem of selecting a release candidate in terms oti@ined
optimization: Given an objective function (i.e., a measofeitil-
ity), find the bestrelease candidate that does not cause a breach.
There are many ways to measure utility, one of which is based o
the idea ofspatial precisionor the idea that anonymization groups
should be spatially compattin this case, the optimization prob-
lem can be stated as follows:

PrRoBLEM 1. Given current snapshab(7}), historical snap-
shotsD(T;_), ..., D(T;—1), future snapshot® (T} 1), ..., D(Tjyn),
forward and backward motion models, and breach threstglfind
D*(T;) = {(C1(T3), L1(T})), .. .. (Cs(T}), Lr(T}))} such that

BP = 78.42%

BP

1. D*(7;) does not cause a (forward or backward) privacy
breach, and

®Related objective functions, based on area or volume ofthegu
clusters, have been used in prior work [2, 3].



2. The objectivenax;—1..z R(C;) is minimized, wher&(C})
is the radius ofC;.

THEOREM 1. Problem 1 is NP-hard. (The proof can be found
in the extended paper [19].)

In light of this result, and the combinatorial nature of tineck-
ing algorithms described in Sections 4.1 and 4.2, it is tketyi that
we will be able to provide an optimal solution to Problem lorfra
practical perspective, a compromise solution leveragesxasting
(heuristic or approximation) algorithm féranonymity (e.g., [2, 3,
10, 22)]) to generate a release candidgte7;). If D*(7;) does
not cause a breach, it can be published; otherwise, do ndishub
during epocHr;.

4.3.2 Durable Anonymization Groups

While the last section considered a fixed publication scleedu
in this section we consider the case in which the anonynoizati
groups are fixed, and the only decision to be made at each é&poch
whether or not to publish the release candidate. We wilkriefan
anonymization group aurableif it contains the same pseudonyms
at all epochs across time. That (S, is considered durable across

epochsty, ..., t; if Ci(t;) = ... = Ci(t;). Intuitively, in this case,
the data utility goal is simply to publish a release candicet often
as possible.

Publication protocols involving only durable clusters daev-
eral appealing properties. In particular, while the apphode-
scribed in the previous section (for evolving anonymizatiooups)
requires that we check for forward and backward breachés, th
is not necessary in the case where we require durable grawps a
where the motion model is symmetric. Not checking for baakiva
breaches has several advantages: (1) It reduces the chetkim
by half, and (2) More importantly, there is no need to delal-pu
lishing for h epochs as in the general case.

THEOREM 2. If all anonymization groups are durable, and the
forward and backward motion models are symmetric, thensitifs
ficient to check just for forward breaches. (The proof candaeél
in the extended paper [19].)

EXAMPLE 4.3. Again, consider the example in Figure 2, and
notice that the anonymization grouge:,p2} and {ps,ps} are
durable acrosg, andt;. If the one-step motion model is symmet-
ric, then the forward breach probabilities &t are the same as the
backward breach probabilities at. Thus, it is sufficient to check
only for forward breaches.

In practice, when using a durable approach, a “burn-in"qukeri
can be used to discovéocksof users with similar motion patterns.
(We could use an existing trajectory clustering algorithmbisas
[29] to find the flocks.) Also, note that these anonymizatioougs
do not need to be durable in perpetuity. It is possible to re-cluste
the users, temporarily reverting to the general case (fiahaad
backward checks).

5. EXPERIMENTAL RESULTS
This section describes our experiments, which investitjage
following issues:

e We use our framework to analyze the occurrence of the motion
prediction inference problem. Much prior work has focused o
applyingk-anonymous cloaking to protect the locations of users
at a single point in time [10, 12, 14, 20, 24]. However, to the
best of our knowledge, all of these tools are vulnerable te mo
tion prediction inference. Analyzing the output of two repen-
tative k-anonymization algorithms illustrates the importance of
explicitly considering this threat.

e We evaluate the effectiveness of our publishing algorithims
cluding the pruning approach and the effect of using durable
non-durable clusters.

5.1 Experimental Data
For the experiments presented in this paper, we used real GPS

traces from a study conducted by a Transportation Research |
stitute at Michigan. The dataset contains two-hour traces37
users. The data sampling rate is one centisecond (0.01d®con
From these 87 trajectories, we were only able to use 72 toajes
because this is the maximum number of trajectories that tewe
mon time ranges. For the motion model, we assumed a uniform
distribution over a range of speeds (0 to 170 km/hr) and an@e
to 180 degrees), which were computed from the trajectorysat

We also conducted a similar set of experiments using the dl&tw
based Generator of Moving Objects (NG-MO) [6], which sinteta
points moving in a road network. The results are omitted farce,
but can be found in the extended paper [19].

5.2 Implementation and Experimental Setup
We implemented two protocols for data publication:

e Durable Clusters In the first protocol, the data is initially clus-
tered into anonymization groups at epoch 1 using the ciaster
method in [2], which we calk-Condense. This method takes as
input a parametek, and uses a heuristic to cluster the points into
groups based on their proximity, such that each resultiogmr
contains at least points. With durable clusters, once the cluster
is produced at the first epoch, the clusters are retainediand s
ply checked at subsequent epochs for forward breaches. Data
is published if the forward breach probability for each tuss
below the threshold’. (see Definition 9 and Theorem 2)

e Reclustering In the second protocol, the data is reclustered at
each epoch, using the-Condense algorithm. At each epoch
the breach probability is computed and the snapshot at athepo
is published if the forward and backward breach probabibty
each cluster is below the threshadld

In addition, to illustrate the motion prediction inferengeb-
lem, we also tried the-Gather algorithm [3]. Likek-Condense,
r-Gather was proposed for clustering generic microdata ietien
space. The algorithm clusterspoints into a set of groups, each
of which contains at leagt points. (In other words, the algorithm
guaranteeg-anonymity fork = r.) We chose these two partic-
ular algorithms as representatives of the class of statiighing
techniques that do not consider motion prediction infeeenc

All of our code is written in C++, and all experiments were run
on an Intel Pentium 4 2.2 GHz duo workstation with 2GB of main
memory and a 160 GB hard disk, running Windows Vista Ultimate

In our experiments we use a 1-step linear motion model, incor
porating both speed and directionality, as described iti&e8.1.

5.3 Motion Prediction Inference in Practice
Much prior work on location privacy has focused on applyting

anonymity to protect the locations on users at a single poitirne.
However, these techniques are all potentially vulnerabl@adtion
prediction inference. To illustrate this point, we ran thatis k-
anonymization algorithms on location snapshots for epdcis
10. (In order to effectively check for breaches at epoch laise
generated an initial snapshot at an epoch 0, which is notghal.)

The results for the GPS data are shown in Figure 3, which plots
the proportion of anonymization groups generated by:t@®ndense
method at each epoch that result in a privacy breach. These re
sults are shown fok = 4,8 and for breach probability threshold
T = 25%. From this figure, we observe that every published snap-
shot results in a privacy breach! We also observe that théauof
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Figure 3: % of groups exceeding breach threshold T, k-Condese,
k=4 and k=8, T=25%

groups exceeding the breach probability threshold is selgmpro-
portional to the value of; the release candidate with smalkehas
more clusters that exceed breach probability This is intuitive;
we expect larger clusters to provide better anonymization.

In addition tok-Condense, we performed the same experiment

mK=4
mK=8

% of groups that breach

Epoch

Figure 4: % of groups exceeding breach threshold T, r-Gather
k=4 and k=8, T=25%

in significant performance improvements (by 2X or more in mos
cases). The reason for this is that the pruning method cantkav
(expensive) computation of the exact maximum breach piibtyab
Notice that in Figure 7, when not using the pruning method, re
gardless of the durable or the non-durable case, when sestea-

usingr-Gather, and we observed similar results (see Figure 4). The didate can be published, the processing time is the sameex-or

small difference between the two results can be attributedsim-
ple observation: while the cluster size constraint is thmesan
both cases, on averageGather generally produces clusters that
are larger than those produced B¥Condense. Nonetheless, some
clusters produced by-Gather still exceed the breach probability
threshold at all epochs.

5.4 Publishing with Durable and Non-Durable
Clusters

Next, we tested the effectiveness of our publishing prdtase
ing both durable and non-durable clusters, as describeceén S
tion 4.3.2. (For the results reported in this section, wethegrun-
ing techniques described in Section 4.2.)

For non-durable clusters, we generated a new clustereaseele
candidate at epochs 1to 10, and we tested to see whethelgasae
candidate could be published. For non-durable clusteisctieck
involved both forward and backward checks. For durabletefas
we generated a single clustering at epoch 1; in this casenlye o
need to check for forward breaches.

The results are shown in Figures 5 and 6 o= 4,7 = 75%
andk = 12,7 = 25%. (We conducted similar experiments for
additional values ok andT', but the results are omitted for space.)
In all cases, the time to check the breach probabilities iallem
with the durable clusters than with the non-durable clgsias ex-
pected. The performance measurements for non-durableeidus
include the cost of re-clustering at each epoch, as well asafal
and backward breach checking. In contrast, in the case abtkir
clusters, we only cluster the data once, at epoch 1. In thairéng
epochs, we must only perform a forward breach check.

We found that fork = 4,7 = 25% (not shown), we could not
publish any release candidates. However, if we incréase12,
or increasel” to 75% (both shown), we can publish during nearly
every epoch. We also observed that, when we Kepbnstant,
and increased’, the total computation time decreased due to more
effective pruning.

Next, we examine the effects of increasihg We found that
increasingk allows more release candidates to be published, but
that it also increases computation time. As discussed qusiy,
larger values of: tend to lead to better anonymization. However,
increasingk also increases the computational cost of checking for
privacy breaches.

5.5 Efficiency and Effectiveness of Pruning
The final set of experiments evaluate the effectiveness ef th

pruning described in Section 4.2. Due to space constraietsyill
only present results fok = 8 and7 = 50%. The results are
shown in Figure 7, and we observe that our pruning methodtsesu

ample, in the non-durable case (without pruning) when selean-
didates can be published, the processing time is about 2ohds.
The reason for this behavior is that in these cases the cartnput
cost is the same as exact breach probabilities have to beutechp
for all groups.

In addition, we found that pruning is more effective for larg@’
(e.q9.,75% vs. 25%) and smallek (e.g.,4 vs. 12).

6. RELATED WORK

Privacy and anonymity have drawn considerable recentdster
in location-aware applications. The majority of this workshfo-
cused on location-based services (LBS), applying teclesiguich
as spatiak-anonymity to disguise locations of individual users in
static snapshots (i.e., single points in time)[10, 12, 14,22, 30].

In contrast, relatively little work has considered the tages
posed by continuously publishing a stream of evolving liacat
data. Two of the first proposals for addressing this problesrew
mix-zone$4] anduncertainty-aware path cloakir{d 7], which sought
to maintain properties similar to temporal unlinkabilitya less for-
mal way, but neither provided any formal privacy guarantee.

Ghinita et al. considered an attack on static cloaking mecha
nisms, in which an adversary uses background knowledgeaaf
imum speedo infer more specific location information [11]. Our
framework is more flexible in that we can incorporate a vgradt
different types of motion-based background knowledge. (éng
cluding directionality, minimum speed, etc.) to which tleeh-
niques in [11] are not resilient. Our threat model (tempana
linkability) is also somewhat different from the threat nebih this
paper, which is based on reducing the size of cloaking region

Yarovoy et al. [33] also consider the online location-psihiing
problem. Their solution addresses the problem posed byaprer
ping cloaking regions, but it does not take into accountririee
based on motion prediction. In the context of anonymizing re
quests to location-based service providers, Bettini et[8].de-
scribe the problem posed service-request linkability ¢girgy that
two requests came from the same user), but they do not pranigle
formal guarantees against motion prediction inferencewCét al.

[8] consider a similar problem for continuous queries, Hsbao
not address the problem of motion prediction. Gkoulalagabis
et al. proposes anonymizing LBS request using frequerediaj
ries [13]. The idea is that the user’s location should not hes
k-anonymous at the time of the request, but also for a suringnd
window of time. It is not clear, however, whether this apmiva
can be applied in our setting, where location updates arkspell
frequently and in real-time.

The problem of continuous location-trace publishing isome
ways related to the problem &fanonymous trajectory publishing
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Figure 5: Durability Test, k=4, T=75%

[1, 25, 29]. However, there are some notable differencesctwh

prevent the application of these techniques to our problarpar-
ticular, this work is focused on anonymizing (offline) a detse of

fully-specifiedtrajectories. However, after doing this, it is unclear

whether we would be able to publish future location inforiorat
for the same users without causing a privacy breach.

Beyond spatial data, privacy has been studied extensively f

publishing generic personal data (e.g., in demographieares)
[23, 26, 27, 31]. Recently, several techniques have begropeal
to extend these static one-time publishing techniques gmardic
setting, involving incrementally-updated data sets [7hatiple
releases [32, 9]. While the locations in our work can be vibag
“quasi-identifiers," to the best of our knowledge, none @& past
work has considered the issue of tracking quasi-identif&dues
that evolve in predictable (non-random) ways over time.

Finally, considerable research has focused on motion rimugel

trajectory prediction, and tracking [28, 18, 16].
7. CONCLUSION

In this paper, we developed the first formal framework forrea

soning about privacy in the context of continuously pubtigho-
cation traces. Our framework is based on the idegwfporal un-

linkability: Given an adversary who already knows the location of

a user at certain points in time, we want to limit the certaimith
which he can identify this user at other times. Technicé#flg,main
challenge in achieving temporal unlinkabilityrisotion prediction

inference Our framework addresses this problem using a plug-
gable motion model, which predicts the movements of a pojoula
of users; using the motion model, we provide a formal charact

ization of what constitutes a violation of temporal unlibKay (a
privacy breach.

Using this framework, we developed several simple and effec

tive protocols for continuously publishing location trac®ur ex-
perimental results both confirm the problem of motion preoiic
inference and indicate the feasibility of our new approach.
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