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ABSTRACT
This paper studies the problem of protecting individual privacy
when continuously publishing a stream of location trace data col-
lected from a population of users. Fundamentally, this leads to
the new challenge of anonymizing data that evolves inpredictable
waysover time. Our main technical contribution is a novel formal
framework for reasoning about privacy in this setting. We articu-
late a new privacy principle calledtemporal unlinkability. Then,
by incorporating a probabilistic model of data change (in this case,
user motion), we are able to quantify the risk of privacy violations.
Within this framework, we develop an initial set of algorithms for
continuous privacy-preserving publishing. Finally, our experiments
demonstrate the shortcomings of previous publishing techniques
that do not account for inference based on predictable data change,
and they demonstrate the feasibility of the new approach.

Categories and Subject Descriptors
H.2.7 [Information Systems]: Security, integrity, and protection

General Terms
Security

1. INTRODUCTION
Streaming location data from sensors and GPS devices is driving

a broad new class of applications. This paper considers an organi-
zation that collects and continuously publishes a stream oflocation
trace information from a population of users. For example, cellular
phone providers can track users’ locations using the GPS devices
attached to modern phones. Often, there is a compelling reason to
share or sell this information to a third party. For example,GPS
traces provide valuable real-time traffic information. At the same
time, there are also concerns for the privacy of GPS users.

Much of the past work in location-based privacy has focused on
static snapshots, applying techniques like spatialk-anonymity to
mask the locations of users at a single point in time [10, 14, 20, 24].
However, we are interested in repeatedly publishing the locations of
users as they move, across an indeterminate amount of time. This
poses a difficult challenge because users’ locations changein ways
that are often predictable, which means that it is often possible to
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Figure 1: Example of Motion Prediction Inference

infer the location of a user by analyzing historical locations, even if
individual snapshots satisfy conventional notions of privacy. This
basic idea, which we callmotion-prediction inferenceis illustrated
with a simple example.

EXAMPLE 1.1. Consider the scenario in Figure 1, where three
users (Alice, Bob, and Charlie) live in the same neighborhood, and
their locations are being tracked via GPS devices. At 7:45 AM, all
three are at their homes, but in the interest of privacy, the cell phone
company releases a “bucketized" snapshot of their locations, in-
cluding theanonymization group({Alice, Bob, Charlie}, {1, 2, 3}),
indicating that Alice, Bob, and Charlie are at locations 1, 2, and 3,
but eliminating the association between users and locations.

Through access toauxiliary information, an adversary can of-
ten associate certain individuals with unique locations (at certain
points in time). For example, using the telephone book, the adver-
sary may determine that location 1 is Alice’s home.

Suppose that at 7:50 AM, the phone company releases another
snapshot containing({Alice, Bob, Charlie}, {4, 5, 6}). By con-
ventional definitions, this snapshot would be considered3-anonymous.
However, this approach is clearly flawed. By carefully examining
locations 4, 5, and 6, the adversary may discover based on his
knowledge of motion patterns (e.g., speed limits and trafficpat-
terns) that locations 5 and 6 are too far away from location 1 to
have been reached in 5 minutes. Thus, he can infer that Alice is at
location 4.

1.1 Contributions
Motion-prediction inference is a significant challenge in privacy-

preserving online location-trace publishing. While we describe our
results in this context, this is just one example of a more general
class of problems in which it is necessary to repeatedly publish data
that evolves in semi-predictable ways.1 In this paper, we propose a
1As a second example, consider a longitudinal social sciencestudy
that tracks a set of subjects over several years, and in whichit is
important to publish new data every year. Just as the location of
Alice at 7 AM is correlated with her location at 7:05, certainper-
sonal attributes (e.g., age, residence, personal habits) tend to vary
in predictable ways over time.



formal framework for dealing with this problem. The framework is
highlighted by the following key contributions:

1. We formalize a high-level privacy principle calledtemporal
unlinkability for dynamically-evolving data. (Section 2.1)

2. To address the challenge of motion-prediction inference, our
framework incorporates an extensible (“plug-and-play")mo-
tion modelthat probabilistically describes the movements of
users. (Section 3) This approach is more flexible and gen-
eral than past work, which was only capable of expressing
inference based on maximum speed [11].

3. Using the motion model, we can compute abreach proba-
bility, which measures the certainty with which an adversary
can violate temporal unlinkability. (Section 3)

4. Finally, we propose two protocols for continuously publish-
ing location traces without causing breaches. (Section 4)

Our experimental study (Section 5) confirms that static anonymiza-
tion tools (e.g., spatialk-anonymity) are indeed vulnerable to pri-
vacy breaches if we fail to account for motion-prediction inference.
However, the experiments indicate that our protocols can beused
to mitigate this problem.

2. PRELIMINARIES
2.1 Threat Model & Privacy Principle

In our problem setting, we expect to encounter an adversary who
has access to some source ofauxiliary informationassociating spe-
cific users with particular locations at specific points in time. For
example, the Yellow Pages list the home addresses of many people,
and can be used to identify their locations during the night.More
generally, auxiliary information can associate individual users with
spatio-temporal paths, such as a user’s route home from the office.
Of course, the data publisher does not always have full knowledge
of the auxiliary information available to the adversary.

Fundamentally, we view the association between individualusers
and locations as private. However, because of auxiliary informa-
tion, we recognize that we will not be able to prevent an adversary
from determining the location of a particular user at a time when
this information is already known as part of the auxiliary informa-
tion. (In Example 1.1, the adversaryalready knowsAlice’s location
at 7:45 AM.) However, we should be able to prevent the adversary
from further leveraging this information to learn the locations of
users atother points in time. (In Example 1.1, the adversary was
able to infer Alice’s location at 7:50 AM.)

Formally, we consider location information collected froma fi-
nite population ofn users, each with a unique identifier in{u1, ..., un}.
We assume that the system publishes location-based data in discrete
time epochslabeledt0, t1, ....

DEFINITION 1 (PRINCIPLE OFTEMPORAL UNLINKABILITY ).
Consider an adversary who knows the location of a target user
u during m sequential epochsti, ..., ti+m. Using the published
data, and under reasonable assumptions of inference, the adver-
sary should not be able, with high confidence, to determine the lo-
cation ofu during some other epochtj /∈ {ti, ..., ti+m}.

Given this guiding principle, it is instructive to considera cou-
ple of naive publishing protocols, which illustrate the challenge in
satisfying temporal unlinkability:
• First, consider a strawman in which unique identifiersu1, ..., un

are replaced with pseudonymsp1, ..., pn in the published data.
For example, Alice’s name can be replaced with a unique hash
value. Clearly, this approach violates temporal unlinkability;
once an adversary “unmasks" a user (learns her pseudonym us-
ing auxiliary information), he is able to learn the user’s location
during all other epochs.

• A more clever strawman would eliminate the use of pseudonyms.
However, this approach must still be applied with caution. Using
multi-target tracking tools (which implicitly model user motion),
it is often still possible to track a particular user across epochs
[15, 21], again violating temporal unlinkability.

In the remainder of this paper, we will develop a framework for
reasoning about temporal unlinkability in the presence of motion
prediction, as well as publishing tools to prevent violations thereof.

2.2 Cloaking Mechanism
In privacy, like security, it is useful to draw a distinctionbetween

the privacypolicy (i.e., the desired set of formal guarantees) and
the mechanismused to enforce the policy. The primary focus of
this paper is in developing an appropriate policy for time-evolving
data. However, out of necessity, we chose to work with a particular
mechanism, which we selected because it generalizes several other
proposals.

Consider a finite population of users, and suppose that each user
has been assigned a unique pseudonym in{p1, ..., pn}. These val-
ues do not identify the users externally, but they are consistent
across time. During each epoch, alocation snapshotassociates
each user’s pseudonym with the user’s location.

DEFINITION 2 (LOCATION SNAPSHOT). A location snapshot
associates each user with a single location during a particular
epoch. During epochtj , D(tj) = {(p1, l

(j)
1 ), ..., (pn, l

(j)
n )} in-

dicates that userpi is at locationl
(j)
i .

Throughout this paper, we consider “bucketized" location snap-
shots. Arelease candidateis modeled as a set ofanonymization
groups. Each anonymization group contains a non-overlapping set
of pseudonyms and a multiset of locations, but within each group,
the association between pseudonyms and locations is broken.

DEFINITION 3 (RELEASE CANDIDATE ). A release candidate
D∗(tj) for location snapshotD(tj) is of the form{(C1(tj), L1(tj)),
..., (CB(tj), LB(tj))}, such that∪i=1..BCi(tj) = {p1, ..., pn},
Ci(tj)∩Cm(tj) = ∅ for i 6= m, andLi(tj) contains the locations
at timetj of all users with pseudonyms inCi(tj).

Of course, a variety of masking mechanisms have been proposed
in the literature; we are careful to note the relationship between this
approach and other proposals:

• Spatial Cloaking Spatial cloaking techniques replace the pre-
cise locations of individuals with coarsened regions. Suchrep-
resentations (e.g., minimum bounding rectangles [10]) canbe
computed from the anonymization groups in our release candi-
dates, and thus reveal no more information. Further, cloaking
techniques may still be vulnerable to attacks based on motion
models. In Example 1.1, if we replaced the precise locationsin
each anonymization group with bounding regions, it is stillpos-
sible to infer that Alice could not have reached the lower portion
of the second region by 7:50 AM.

• No PseudonymsAnother approach would eliminate the use of
pseudonyms entirely. This can be modeled as a special case of
our mechanism, where eachD∗(Tj) contains just one anonymiza-
tion group. Again, this approach may still be vulnerable to mo-
tion prediction inference, as illustrated by Example 1.1.

• Location DensitiesA third alternative would publish maps of
user-densities. For example, such a map might indicate thatat
7:45 AM, there are three users in a particular region. Such maps,
at epochTj , can be computed from a release candidateD∗(Tj)
that contains just one anonymization group.



2.3 Data Quality
When anonymizing data, there is often a tradeoff between pri-

vacy and thequality or utility of the resulting data. In the case
of the bucketization mechanism, there are two dimensions ofdata
quality to be considered: On one hand, we want to publish datawith
spatially-compact anonymization groups (maximizespatial preci-
sion). On the other hand, we would like to publish a release can-
didate during as many epochs as possible (maximizepublication
frequency). To maintain temporal unlinkability, however, an in-
crease in spatial precision often leads to a reduction in publication
frequency. The relative importance of these two dimensionsvaries
based on the application. While this tradeoff is largely orthogonal
to our framework for reasoning about privacy, we will revisit data
quality when describing publication protocols in Section 4.3.

3. LOCATION TRACE PRIVACY
In this section, we describe our framework for reasoning about

location trace privacy. The framework involves two components: a
probabilisticmotion model, and abreach probability function.

The motion model describes the adversary’s knowledge with re-
spect to user motion patterns. While recent work has considered
very specific and rudimentary forms of knowledge about motion
patterns (e.g., [11] assumed that the adversary knows only the max-
imum speed of users), our framework is flexible enough to capture
a much broader class of motion patterns. Specifically, we allow
the motion model to be “plugged-in" to the framework, provided
that it satisfies a general form. This enables us to capture knowl-
edge about speed (as in [11]), but also an array of other kindsof
knowledge, including directionality (e.g., objects tend to continue
moving in the same directions), minimum speed, and speed distri-
bution, that still pose a threat in existing work.

Using the motion model, we formalize the idea of aprivacy
breach, based on the temporal unlinkability principle.

3.1 Motion Models
Central to our framework is a probabilisticmotion model. As il-

lustrated in Example 1.1, the location of a user at epochtj is often
correlated with the user’s location at surrounding points in time.
We use the motion model to define the probability distribution of
locations for a particular user at timetj , given the location of the
user at the precedingh epochs (forward motion model), or the fol-
lowing h epochs (backward motion model).2

In the following definitions we use capital letters to denotevari-
ables (locations, epochs, and users), and we use lower-caseletters
to denote instances.

DEFINITION 4 (FORWARD MOTION MODEL TEMPLATE). A
forward motion model is a conditional probability mass function of
the following form, where1 ≤ h ≤ j andLoc(P, Tj) = Lj indi-
cates that the location of userP at epochTj is Lj :

Pr[Loc(P, Tj) = Lj | Loc(P, Tj−1) = Lj−1, ...,

Loc(P, Tj−h) = Lj−h]

We will view the forward motion model as anhth-order Markov
chain. That is, we assumePr[Loc(P, Tj) = Lj |Loc(P, Tj−1) =
Lj−1, ..., Loc(P, Tj−h) = Lj−h] = Pr[Loc(P, Tj) = Lj |
Loc(P, Tj−1) = Lj−1, ..., Loc(P, T0) = L0].

Similarly, we define the backward motion model, which we will
also view as anhth-order Markov chain.

DEFINITION 5 (BACKWARD MOTION MODEL TEMPLATE).
A backward motion model is a conditional probability mass func-

2Note that this assumes the movements of specific users are inde-
pendent of one another.

tion of the following form, where1 ≤ h ≤ j:

Pr[Loc(P, Tj) = Lj | Loc(P, Tj+1) = Lj+1, ...,

Loc(P, Tj+h) = Lj+h]

The symmetry propertysays that a motion model can be read
forwards and backwards.

DEFINITION 6 (MOTION MODEL SYMMETRY ). Backwards and
forwards motion models are said to be symmetric if

Pr[Loc(P, Tj) = Lj | Loc(P, Tj−1) = Lj−1, ...,

Loc(P, Tj−h) = Lj−h]

= Pr[Loc(P, Tj−h) = Lj−h | Loc(P, Tj−h+1) = Lj−h+1, ...,

Loc(P, Tj) = Lj ]

The motion model is an independent and replaceable component
of our framework. In our experiments (Section 5), we will usea
sample linear motion model, which instantiates the more general
template forh = 1. The sample motion model is based on veloc-
ity (speed and directionality) distribution assumptions,assuming
that the speed of each userP is uniformly distributed in the range
[v1, v2], and that the angle of motion is uniformly distributed in
[θ1, θ2]. The sample motion model satisfies the symmetry prop-
erty; details can be found in the extended paper [19].

Of course, there are many ways of modeling user motion (e.g.,
[16, 28, 18]). Many of these models rely on using the previous
locations of an object to predict future locations, and can thus be
plugged into our framework.

3.2 Privacy Breaches
Using the motion model as a building block, we formally de-

fine what constitutes a breach of privacy, based on the unlinka-
bility principle. Intuitively, the forward (respectively, backward)
breach probabilityrepresents the certainty with which an adver-
sary can identify the location associated with a particularuserP
during epochTj , using the motion model, given that he knows the
locations ofall usersduring them preceding (respectively, follow-
ing) sequential epochs, as described by fully-identified snapshots
D(Tj−1), ..., D(Tj−m) (respectively,D(Tj+1), ..., D(Tj+m)).

DEFINITION 7 (FORWARD BREACH PROBABILITY ). The for-
ward breach probability for userP , epochTj and locationLj is
defined by the conditional probability

Pr[Loc(P, Tj) = Lj |D(Tj−1), ..., D(Tj−m), D∗(Tj)] (1)

The forward breach probability can be expressed in terms of the
forward motion model. Note that the snapshotsD(Tj−1), ..., D(Tj−m)
identify the locations of each pseudonymP at them previous epochs.
(Denote these locationslPj−1, ..., l

P
j−m.) Assumingh ≤ m, based

on theh-step Markov assumption, we have:

Pr[Loc(P, Tj) = L|D(Tj−1), ...,D(Tj−m)]

= Pr[Loc(P, Tj) = L|Loc(P, Tj−1) = lPj−1, ..., Loc(P, Tj−h) = lPj−h]

In order to compute the breach probability, we must also condi-
tion onD∗(Tj):

Pr[Loc(P, Tj) = L|D(Tj−1), ...,D(Tj−m), D∗(Tj)]

=
Pr[Loc(P, Tj) = L ∧ D∗(Tj )|D(Tj−1), ...,D(Tj−m)]

Pr[D∗(Tj)|D(Tj−1), ...,D(Tj−m)]

The resulting probabilities can be computed based on the for-
ward motion model. In the following, for simplicity of notation,
the past locations of each pseudonymP are assumed, and we will
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Figure 2: Example of breach probability computation

simply refer to the conditional probability that the location of P is
L atTj (as computed form the motion model) asPr[(P, L)].

Consider the anonymization group inD∗(Tj) that contains the
pseudonymP , and letC(j)

P andL
(j)
P denote the sets of pseudonyms

and locations, respectively, contained in this anonymization group.
LetM : C

(j)
P → L

(j)
P be a one-to-one function mapping pseudonyms

to locations. Notice that there areg = |L(j)
P |! such functions, and

D∗(Tj) implies that one such mapping must be true.
Each unique mappingM can be viewed as a disjoint event. Since

we assume that the movements of users are independent of one an-
other, the probability of one such mappingM = {(c1, ℓ1), ..., (ck, ℓk)}
is Pr[M ] = Pr[(c1, ℓ1)] · ... · Pr[(ck, ℓk)].

Finally, the forward breach probability for pseudonymP and
locationL can be computed as the sum of probabilities of mappings
Mi such thatMi(P ) = L, divided by the sum of probabilities over
all such mappings. In the following,I(Mi) is an indicator variable,
which takes the value 1 ifMi(P ) = L, and 0 otherwise.

BP =

Pg

i=1 Pr[Mi] · I(Mi)
Pg

i=1 Pr[Mi]
(2)

EXAMPLE 3.1. Consider the simple example in Figure 2, and
supposem = h = 1. Suppose that the true snapshot at epocht0 is
D(t0) = {(p1, l1), (p2, l2), (p3, l3), (p4, l4)}.

Using the 1-step forward motion model, we can compute the fol-
lowing:

e15 = Pr[Loc(p1, t1) = l5|Loc(p1, t0) = l1];
e16 = Pr[Loc(p1, t1) = l6|Loc(p1, t0) = l1];
e25 = Pr[Loc(p2, t1) = l5|Loc(p2, t0) = l2];
e26 = Pr[Loc(p2, t1) = l6|Loc(p2, t0) = l2].

Then, we can compute the breach probabilities.
Pr[Loc(p1, t1) = l5|D(t0), D∗(t1)] = e15e26

e15e26+e25e16

;

Pr[Loc(p2, t1) = l6|D(t0), D∗(t1)] = e15e26

e15e26+e25e16

;

Pr[Loc(p1, t1) = l6|D(t0), D∗(t1)] = e25e16

e15e26+e25e16

;

Pr[Loc(p2, t1) = l5|D(t0), D∗(t1)] = e25e16

e15e26+e25e16

.

In addition to the forward breach probability, we have the back-
ward probability, which is similarly defined, and can be computed
in terms of the backward motion model.

DEFINITION 8 (BACKWARD BREACH PROBABILITY ). The back-
ward breach probability for userP , epochTj and locationLj is
defined by the conditional probability

Pr[Loc(P, Tj) = Lj |D(Tj+1), ..., D(Tj+m), D∗(Tj)] (3)

Finally, a release candidate is said to cause a privacy breach
if there is some (forward or backward) breach probability that is
higher than a user-specified threshold.

DEFINITION 9 (PRIVACY BREACH). A release candidateD∗(Tj)
is said to cause a privacy breach if either of the following state-
ments is true for user-defined breach thresholdT : (This definition
is also easily adapted to use a different threshold for each user.)

maxP,Lj
Pr[Loc(P, Tj) = Lj |D(Tj−1), ..., D(Tj−m), D∗(Tj)] > T

maxP,Lj
Pr[Loc(P, Tj) = Lj |D(Tj+1), ..., D(Tj+m), D∗(Tj)] > T

In the remainder of the paper, we will refer to a release candidate
D∗(Tj) that fails to satisfy the first condition as causing aforward
breach; similarly, if it fails to satisfy the second condition, it causes
a backward breach.

4. PUBLISHING LOCATION TRACES
Using the framework described in the last section, the remaining

challenge is to develop a protocol for continuously publishing loca-
tion traces in a way that does not breach privacy. In this section, we
first discuss how to check a release candidate for breaches. Then,
we present some initial ideas for publishing protocols thatmaintain
data utility without compromising privacy.

4.1 Checking for Breaches: Brute-Force
Algorithm 1 provides a brute-force method for checking a re-

lease candidateD∗(Tj) for forward privacy breaches, given snap-
shotsD(Tj−h), ..., D(Tj−1), using the forward motion model. The
time complexity isO(n

k
· k!) = O(nkk), wherek is the maximum

size of an anonymization group. In some cases,k is a small con-
stant, in which case the complexity isO(n). To manage cases when
this is not true, we provide some additional heuristic optimizations
in Section 4.2.

noend 1Forward Check (Brute-Force)

Input: D∗(Tj), D(Tj−1), ..., D(Tj−h), T
Output: true if there is a breach,false otherwise
1: for each anonymization group(C < L) ∈ D∗(Tj) do
2: denom = 0
3: numer[|C|][ |L|] = initialize all entries to 0
4: for each unique mappingM : C → L do
5: Pr[M ] =(compute from forward motion model)
6: for eachp ∈ C do
7: numer[p][M(p)] += Pr[M ]
8: denom +=Pr[M ]
9: for eachp ∈ C do

10: for each ℓ ∈ L do
11: BP = numer[p][ℓ] / denom
12: if BP> T then
13: return true
14: return false

The brute-force algorithm for checking for backward breaches is
analogous, but takes as inputD∗(Tj), D(Tj+1), ..., D(Tj+h), and
uses the backward motion model.

4.2 Checking for Breaches: Pruning
The brute-force checking algorithm is exponential ink, the max-

imum size of an anonymization group. In this section we describe a
fast pruning algorithm that is often able to identify anonymization
groups that do and do not cause breaches (have breach probabilities
above and below thresholdT , respectively), heuristically reducing
the amount of computation.

Recall the formula for computing the breach probability in Equa-
tion 2. If k is the size of the anonymization group, then the numer-
ator of this formula is the sum of(k − 1)! elements, each of which
is the product ofk differentPr[(C, L)] values:Pr[(c1, l1)] · . . . ·



Pr[(ck, lk)]. The denominator is the sum ofk! elements, each of
which is the produce tok differentPr[(C, L)] values. By choos-
ing the maximum and minimum values ofPr[(C, L)], we can find
(loose) upper and lower bounds for the breach probability inG.

4.2.1 Basic Pruning Approach
The basic pruning procedure consists of the following threesteps.

(For simplicity, we describe forward breach probability computa-
tion, but the procedure for backward breach probabilities is com-
pletely analogous.)

1. Consider the locationsl1, ..., lk for the set of objectsc1, ..., ck in
anonymization groupG atTj . Applying the forward motion model,
we computePRi = {Pr[(c1, li)], . . . , Pr[(ck, li)]} for 1 ≤ i ≤
k at Tj . (Again, we assume that the locations of each object at the
previousm epochs are known, so these probabilities are easily ob-
tained from the motion model.) This step takesO(k2).

2. For1 ≤ i ≤ k, let Pi = max(PRi), and letpi = min(PRi).

3. Finally, we can obtain (loose) upper and lower bounds for the breach
probabilityBP in anonymization groupG.

BP ≤
(k − 1)! · P1 · . . . · Pk

k! · p1 · . . . · pk

=
1

k
·

P1 · . . . · Pk

p1 · . . . · pk

BP ≥
1

k
·

p1 · . . . · pk

P1 · . . . · Pk

Since there are, on average,n/k anonymization groups, the total
time complexity isO(n

k
· k2) = O(nk).

EXAMPLE 4.1. To illustrate the pruning procedure, consider a
simple example. Suppose the following probabilities are computed
during Step 1:Pr[(c1, l1)] = 0.5, Pr[(c2, l1)] = 0.35, Pr[(c3, l1)] =
0.4, Pr[(c1, l2)] = 0.31, Pr[(c2, l2)] = 0.45, Pr[(c3, l2)] = 0.35,
Pr[(c1, l3)] = 0.19, Pr[(c2, l3)] = 0.2, Pr[(c3, l3)] = 0.25

Upper and lower bounds can be computed as follows:

BP ≤
1

3
·

0.5 · 0.45 · 0.25

0.35 · 0.31 · 0.19
= 90.9%

BP ≥
1

3
·
0.35 · 0.31 · 0.19

0.5 · 0.45 · 0.25
= 12.2%

Suppose that the breach thresholdT = 95%. SinceBP ≤
90.9% ≤ T , we know that there is not a breach.

4.2.2 An Improvement
The basic pruning approach usesP1 ·. . .·Pk andp1 ·. . .·pk to es-

timate the probabilities of the most and least likely assignments of
objects to locations. By plugging these values into Equation 2, we
can obtain upper and lower bounds for the breach probability. How-
ever, if the difference between the maximum and minimum esti-
mates is large, the estimated bounds can be quite loose. To improve
these bounds, we make the following observation: In Equation 2,
notice that eachMi (assignment of objects to locations) must be
unique. Rather then finding the single maximum- and minimum-
probability assignment, we can improve the tightness of thebounds
by finding thex most-probable andx least-probable assignments,
and incorporating these into the bound. The improved pruning al-
gorithm consists of the following steps:

1. Let S = {s1 · . . . · sk : s1 ∈ PR1, . . . , sk ∈ PRk} denote
the multiset of probabilities obtained by assigning one object per
location. Letmax[x] denote thexth largest value inS, and let
min[x] denote thexth smallest value inS.

2. Next, we must computemax[1], ...,max[x] andmin[1], ...,min[x].
There is a polynomial-time algorithm. We omit the details for space,
but they can be found in [19].

3. Finally, we can compute upper and lower bounds. (The following
assumes thatx ≤ (k − 1)!.)

BP ≤
max[1] + . . . + max[x] + ((k − 1)! − x) · max[x]

min[1] + . . . + min[x] + (k! − x) · min[x]

BP ≥
min[1] + . . . + min[x] + ((k − 1)! − x) · min[x]

max[1] + . . . + max[x] + (k! − x) · max[x]

EXAMPLE 4.2. Consider again the probabilities in Example 4.1,
and supposex = 2. In this case, we compute the following:

max[1] = 0.5 · 0.45 · 0.25 = 0.05625

max[2] = 0.4 · 0.45 · 0.25 = 0.045

min[1] = 0.35 · 0.31 · 0.19 = 0.020615

min[2] = 0.35 · 0.31 · 0.2 = 0.0217

Then, upper and lower bounds can be computed as follows. No-
tice that the bounds are tighter than those obtained using the basic
pruning approach in Example 4.1.

BP ≤
0.05625 + 0.045

0.020615 + 0.0217 + 4 · 0.0217
= 78.42%

BP ≥
0.020615 + 0.0217

0.05625 + 0.045 + 4 · 0.045
= 15.05%

4.3 Publishing Protocols
Recall that we selected the cloaking mechanism in Section 2.2

for flexibility. Generally-speaking, this mechanism givesus two
tools to work with in order to guarantee that a published stream
of location trace data does not breach privacy. First, we canin-
crease the size, or vary the composition, of anonymization groups.
Second, we can limit the frequency with which we publish a release
candidate. (We can also use these two tools in combination.)In this
section, we provide an initial exploration of the space, considering
the problem from the perspective of a fixed publication schedule
and from the perspective of a fixed set of anonymization groups.

4.3.1 Fixed Publication Schedule
First, consider the case in which we publish release candidates

on a fixed schedule. In other words, we must publishsomerelease
candidate at every epochTj (assuming, of course, that there exists
a release candidate that does not cause a breach), but we can vary
the size and composition of anonymization groups.

In this case, if we want to publish a release candidateD∗(Tj) at
epochTj , we need to check for backward breaches, and we must
have future snapshotsD(Tj+1), ..., D(Tj+h) in hand to do this.
A simple solution is to delay publishing forh subsequent epochs,
after whichD∗(Tj) is easily checked for (forward and backward)
breaches.

For the case of the fixed publication schedule, we can then view
the problem of selecting a release candidate in terms of constrained
optimization: Given an objective function (i.e., a measureof util-
ity), find the bestrelease candidate that does not cause a breach.
There are many ways to measure utility, one of which is based on
the idea ofspatial precision, or the idea that anonymization groups
should be spatially compact.3 In this case, the optimization prob-
lem can be stated as follows:

PROBLEM 1. Given current snapshotD(Tj), historical snap-
shotsD(Tj−h), ..., D(Tj−1), future snapshotsD(Tj+1), ..., D(Tj+h),
forward and backward motion models, and breach thresholdT , find
D∗(Tj) = {(C1(Tj), L1(Tj)), . . ., (CB(Tj), LB(Tj))} such that

1. D∗(Tj) does not cause a (forward or backward) privacy
breach, and

3Related objective functions, based on area or volume of resulting
clusters, have been used in prior work [2, 3].



2. The objectivemaxi=1..B R(Ci) is minimized, whereR(Ci)
is the radius ofCi.

THEOREM 1. Problem 1 is NP-hard. (The proof can be found
in the extended paper [19].)

In light of this result, and the combinatorial nature of the check-
ing algorithms described in Sections 4.1 and 4.2, it is not likely that
we will be able to provide an optimal solution to Problem 1. From a
practical perspective, a compromise solution leverages anexisting
(heuristic or approximation) algorithm fork-anonymity (e.g., [2, 3,
10, 22]) to generate a release candidateD∗(Tj). If D∗(Tj) does
not cause a breach, it can be published; otherwise, do not publish
during epochTj .

4.3.2 Durable Anonymization Groups
While the last section considered a fixed publication schedule,

in this section we consider the case in which the anonymization
groups are fixed, and the only decision to be made at each epochis
whether or not to publish the release candidate. We will refer to an
anonymization group asdurableif it contains the same pseudonyms
at all epochs across time. That is,Ci is considered durable across
epochsti, ..., tj if Ci(ti) = ... = Ci(tj). Intuitively, in this case,
the data utility goal is simply to publish a release candidate as often
as possible.

Publication protocols involving only durable clusters have sev-
eral appealing properties. In particular, while the approach de-
scribed in the previous section (for evolving anonymization groups)
requires that we check for forward and backward breaches, this
is not necessary in the case where we require durable groups and
where the motion model is symmetric. Not checking for backward
breaches has several advantages: (1) It reduces the checking time
by half, and (2) More importantly, there is no need to delay pub-
lishing forh epochs as in the general case.

THEOREM 2. If all anonymization groups are durable, and the
forward and backward motion models are symmetric, then it issuf-
ficient to check just for forward breaches. (The proof can be found
in the extended paper [19].)

EXAMPLE 4.3. Again, consider the example in Figure 2, and
notice that the anonymization groups{p1, p2} and {p3, p4} are
durable acrosst0 andt1. If the one-step motion model is symmet-
ric, then the forward breach probabilities att1 are the same as the
backward breach probabilities att0. Thus, it is sufficient to check
only for forward breaches.

In practice, when using a durable approach, a “burn-in" period
can be used to discoverflocksof users with similar motion patterns.
(We could use an existing trajectory clustering algorithm such as
[29] to find the flocks.) Also, note that these anonymization groups
do not need to be durable in perpetuity. It is possible to re-cluster
the users, temporarily reverting to the general case (forward and
backward checks).

5. EXPERIMENTAL RESULTS
This section describes our experiments, which investigatethe

following issues:

• We use our framework to analyze the occurrence of the motion
prediction inference problem. Much prior work has focused on
applyingk-anonymous cloaking to protect the locations of users
at a single point in time [10, 12, 14, 20, 24]. However, to the
best of our knowledge, all of these tools are vulnerable to mo-
tion prediction inference. Analyzing the output of two represen-
tativek-anonymization algorithms illustrates the importance of
explicitly considering this threat.

• We evaluate the effectiveness of our publishing algorithms, in-
cluding the pruning approach and the effect of using durablevs.
non-durable clusters.

5.1 Experimental Data
For the experiments presented in this paper, we used real GPS

traces from a study conducted by a Transportation Research In-
stitute at Michigan. The dataset contains two-hour traces for 87
users. The data sampling rate is one centisecond (0.01 seconds).
From these 87 trajectories, we were only able to use 72 trajectories
because this is the maximum number of trajectories that havecom-
mon time ranges. For the motion model, we assumed a uniform
distribution over a range of speeds (0 to 170 km/hr) and angles (0
to 180 degrees), which were computed from the trajectory dataset.

We also conducted a similar set of experiments using the Network-
based Generator of Moving Objects (NG-MO) [6], which simulates
points moving in a road network. The results are omitted for space,
but can be found in the extended paper [19].

5.2 Implementation and Experimental Setup
We implemented two protocols for data publication:

• Durable Clusters In the first protocol, the data is initially clus-
tered into anonymization groups at epoch 1 using the clustering
method in [2], which we callk-Condense. This method takes as
input a parameterk, and uses a heuristic to cluster the points into
groups based on their proximity, such that each resulting group
contains at leastk points. With durable clusters, once the cluster
is produced at the first epoch, the clusters are retained and sim-
ply checked at subsequent epochs for forward breaches. Data
is published if the forward breach probability for each cluster is
below the thresholdT . (see Definition 9 and Theorem 2)

• Reclustering In the second protocol, the data is reclustered at
each epoch, using thek-Condense algorithm. At each epoch
the breach probability is computed and the snapshot at an epoch
is published if the forward and backward breach probabilityfor
each cluster is below the thresholdT .

In addition, to illustrate the motion prediction inferenceprob-
lem, we also tried ther-Gather algorithm [3]. Likek-Condense,
r-Gather was proposed for clustering generic microdata in a metric
space. The algorithm clustersn points into a set of groups, each
of which contains at leastk points. (In other words, the algorithm
guaranteesk-anonymity fork = r.) We chose these two partic-
ular algorithms as representatives of the class of static publishing
techniques that do not consider motion prediction inference.

All of our code is written in C++, and all experiments were run
on an Intel Pentium 4 2.2 GHz duo workstation with 2GB of main
memory and a 160 GB hard disk, running Windows Vista Ultimate.

In our experiments we use a 1-step linear motion model, incor-
porating both speed and directionality, as described in Section 3.1.

5.3 Motion Prediction Inference in Practice
Much prior work on location privacy has focused on applyingk-

anonymity to protect the locations on users at a single pointin time.
However, these techniques are all potentially vulnerable to motion
prediction inference. To illustrate this point, we ran the static k-
anonymization algorithms on location snapshots for epochs1 to
10. (In order to effectively check for breaches at epoch 1, wealso
generated an initial snapshot at an epoch 0, which is not published.)

The results for the GPS data are shown in Figure 3, which plots
the proportion of anonymization groups generated by thek-Condense
method at each epoch that result in a privacy breach. These re-
sults are shown fork = 4, 8 and for breach probability threshold
T = 25%. From this figure, we observe that every published snap-
shot results in a privacy breach! We also observe that the number of



Figure 3: % of groups exceeding breach threshold T, k-Condense,
k=4 and k=8, T=25%

Figure 4: % of groups exceeding breach threshold T, r-Gather,
k=4 and k=8, T=25%

groups exceeding the breach probability threshold is inversely pro-
portional to the value ofk; the release candidate with smallerk has
more clusters that exceed breach probabilityT . This is intuitive;
we expect larger clusters to provide better anonymization.

In addition tok-Condense, we performed the same experiment
usingr-Gather, and we observed similar results (see Figure 4). The
small difference between the two results can be attributed to a sim-
ple observation: while the cluster size constraint is the same in
both cases, on average,r-Gather generally produces clusters that
are larger than those produced byk-Condense. Nonetheless, some
clusters produced byr-Gather still exceed the breach probability
threshold at all epochs.

5.4 Publishing with Durable and Non-Durable
Clusters

Next, we tested the effectiveness of our publishing protocol us-
ing both durable and non-durable clusters, as described in Sec-
tion 4.3.2. (For the results reported in this section, we usethe prun-
ing techniques described in Section 4.2.)

For non-durable clusters, we generated a new clustered release
candidate at epochs 1 to 10, and we tested to see whether the release
candidate could be published. For non-durable clusters, this check
involved both forward and backward checks. For durable clusters,
we generated a single clustering at epoch 1; in this case, we only
need to check for forward breaches.

The results are shown in Figures 5 and 6 fork = 4, T = 75%
andk = 12, T = 25%. (We conducted similar experiments for
additional values ofk andT , but the results are omitted for space.)
In all cases, the time to check the breach probabilities is smaller
with the durable clusters than with the non-durable clusters, as ex-
pected. The performance measurements for non-durable clusters
include the cost of re-clustering at each epoch, as well as forward
and backward breach checking. In contrast, in the case of durable
clusters, we only cluster the data once, at epoch 1. In the remaining
epochs, we must only perform a forward breach check.

We found that fork = 4, T = 25% (not shown), we could not
publish any release candidates. However, if we increasek to 12,
or increaseT to 75% (both shown), we can publish during nearly
every epoch. We also observed that, when we keptk constant,
and increasedT , the total computation time decreased due to more
effective pruning.

Next, we examine the effects of increasingk. We found that
increasingk allows more release candidates to be published, but
that it also increases computation time. As discussed previously,
larger values ofk tend to lead to better anonymization. However,
increasingk also increases the computational cost of checking for
privacy breaches.

5.5 Efficiency and Effectiveness of Pruning
The final set of experiments evaluate the effectiveness of the

pruning described in Section 4.2. Due to space constraints,we will
only present results fork = 8 and T = 50%. The results are
shown in Figure 7, and we observe that our pruning method results

in significant performance improvements (by 2X or more in most
cases). The reason for this is that the pruning method can save the
(expensive) computation of the exact maximum breach probability.

Notice that in Figure 7, when not using the pruning method, re-
gardless of the durable or the non-durable case, when a release can-
didate can be published, the processing time is the same. Forex-
ample, in the non-durable case (without pruning) when release can-
didates can be published, the processing time is about 2.4 seconds.
The reason for this behavior is that in these cases the computation
cost is the same as exact breach probabilities have to be computed
for all groups.

In addition, we found that pruning is more effective for largerT
(e.g.,75% vs. 25%) and smallerk (e.g.,4 vs. 12).

6. RELATED WORK
Privacy and anonymity have drawn considerable recent interest

in location-aware applications. The majority of this work has fo-
cused on location-based services (LBS), applying techniques such
as spatialk-anonymity to disguise locations of individual users in
static snapshots (i.e., single points in time)[10, 12, 14, 20, 24, 30].

In contrast, relatively little work has considered the challenges
posed by continuously publishing a stream of evolving location
data. Two of the first proposals for addressing this problem were
mix-zones[4] anduncertainty-aware path cloaking[17], which sought
to maintain properties similar to temporal unlinkability in a less for-
mal way, but neither provided any formal privacy guarantee.

Ghinita et al. considered an attack on static cloaking mecha-
nisms, in which an adversary uses background knowledge ofmax-
imum speedto infer more specific location information [11]. Our
framework is more flexible in that we can incorporate a variety of
different types of motion-based background knowledge (e.g., in-
cluding directionality, minimum speed, etc.) to which the tech-
niques in [11] are not resilient. Our threat model (temporalun-
linkability) is also somewhat different from the threat model in this
paper, which is based on reducing the size of cloaking regions.

Yarovoy et al. [33] also consider the online location-publishing
problem. Their solution addresses the problem posed by overlap-
ping cloaking regions, but it does not take into account inference
based on motion prediction. In the context of anonymizing re-
quests to location-based service providers, Bettini et al.[5] de-
scribe the problem posed service-request linkability (guessing that
two requests came from the same user), but they do not provideany
formal guarantees against motion prediction inference. Chow et al.
[8] consider a similar problem for continuous queries, but also do
not address the problem of motion prediction. Gkoulalas-Divanis
et al. proposes anonymizing LBS request using frequent trajecto-
ries [13]. The idea is that the user’s location should not just be
k-anonymous at the time of the request, but also for a surrounding
window of time. It is not clear, however, whether this approach
can be applied in our setting, where location updates are published
frequently and in real-time.

The problem of continuous location-trace publishing is in some
ways related to the problem ofk-anonymous trajectory publishing



Figure 5: Durability Test, k=4, T=75% Figure 6: Durability Test, k=12, T=25% Figure 7: Time Comparisons, k=8, T=50%

[1, 25, 29]. However, there are some notable differences, which
prevent the application of these techniques to our problem.In par-
ticular, this work is focused on anonymizing (offline) a database of
fully-specifiedtrajectories. However, after doing this, it is unclear
whether we would be able to publish future location information
for the same users without causing a privacy breach.

Beyond spatial data, privacy has been studied extensively for
publishing generic personal data (e.g., in demographic research)
[23, 26, 27, 31]. Recently, several techniques have been proposed
to extend these static one-time publishing techniques to a dynamic
setting, involving incrementally-updated data sets [7] ormultiple
releases [32, 9]. While the locations in our work can be viewed as
“quasi-identifiers," to the best of our knowledge, none of the past
work has considered the issue of tracking quasi-identifier values
that evolve in predictable (non-random) ways over time.

Finally, considerable research has focused on motion modeling,
trajectory prediction, and tracking [28, 18, 16].

7. CONCLUSION
In this paper, we developed the first formal framework for rea-

soning about privacy in the context of continuously publishing lo-
cation traces. Our framework is based on the idea oftemporal un-
linkability: Given an adversary who already knows the location of
a user at certain points in time, we want to limit the certainty with
which he can identify this user at other times. Technically,the main
challenge in achieving temporal unlinkability ismotion prediction
inference. Our framework addresses this problem using a plug-
gable motion model, which predicts the movements of a population
of users; using the motion model, we provide a formal character-
ization of what constitutes a violation of temporal unlinkability (a
privacy breach).

Using this framework, we developed several simple and effec-
tive protocols for continuously publishing location traces. Our ex-
perimental results both confirm the problem of motion prediction
inference and indicate the feasibility of our new approach.
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