
Efficient Aggregation for Graph Summarization

Yuanyuan Tian
University of Michigan
Ann Arbor, MI, USA

ytian@eecs.umich.edu

Richard A. Hankins
Nokia Research Center

Palo Alto, CA, USA
rich.hankins@nokia.com

Jignesh M. Patel
University of Michigan
Ann Arbor, MI, USA

jignesh@eecs.umich.edu

ABSTRACT
Graphs are widely used to model real world objects and their
relationships, and large graph datasets are common in many
application domains. To understand the underlying charac-
teristics of large graphs, graph summarization techniques
are critical. However, existing graph summarization meth-
ods are mostly statistical (studying statistics such as degree
distributions, hop-plots and clustering coefficients). These
statistical methods are very useful, but the resolutions of
the summaries are hard to control.

In this paper, we introduce two database-style operations
to summarize graphs. Like the OLAP-style aggregation
methods that allow users to drill-down or roll-up to con-
trol the resolution of summarization, our methods provide
an analogous functionality for large graph datasets. The
first operation, called SNAP, produces a summary graph by
grouping nodes based on user-selected node attributes and
relationships. The second operation, called k-SNAP, fur-
ther allows users to control the resolutions of summaries and
provides the “drill-down” and “roll-up” abilities to navigate
through summaries with different resolutions. We propose
an efficient algorithm to evaluate the SNAP operation. In
addition, we prove that the k-SNAP computation is NP-
complete. We propose two heuristic methods to approxi-
mate the k-SNAP results. Through extensive experiments
on a variety of real and synthetic datasets, we demonstrate
the effectiveness and efficiency of the proposed methods.

Categories and Subject Descriptors
H.2.4 [Systems]: Query Processing; H.2.8 [Database Ap-
plications]: Data Mining

General Terms
Algorithms, Experimentation, Performance

Keywords
Graphs, Social Networks, Summarization, Aggregation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

1. INTRODUCTION
Graphs provide a powerful primitive for modeling data in

a variety of applications. Nodes in graphs usually represent
real world objects and edges indicate relationships between
objects. Examples of data modeled as graphs include social
networks, biological networks, and dynamic network traffic
graphs. Often, nodes have attributes associated with them.
For example, in Figure 1(a), a node representing a student
may have attributes: gender and department. In addition,
a graph may contain many different types of relationships,
such as the friends and classmates relationships shown in
Figure 1(a).

In many applications, graphs are very large, with thou-
sands or even millions of nodes and edges. As a result, it
is almost impossible to understand the information encoded
in large graphs by mere visual inspection. Therefore, ef-
fective graph summarization methods are required to help
users extract and understand the underlying information.

Most existing graph summarization methods use simple
statistics to describe graph characteristics [6, 7, 13]; for ex-
ample, researchers plot degree distributions to investigate
the scale-free property of graphs, employ hop-plots to study
the small world effect, and utilize clustering coefficients to
measure the“clumpiness”of large graphs. While these meth-
ods are useful, the summaries contain limited information
and can be difficult to interpret and manipulate. Meth-
ods that mine graphs for frequent patterns [11, 19, 20, 23]
are also employed to understand the characteristics of large
graphs. However, these algorithms often produce a large
number of results that can easily overwhelm the user. Graph
partitioning algorithms [14, 18, 22] have been used to detect
community structures (dense subgraphs) in large networks.
However, the community detection is based purely on nodes
connectivities, and the attributes of nodes are largely ig-
nored. Graph drawing techniques [3, 10] can help one bet-
ter visualize graphs, but visualizing large graphs quickly be-
comes overwhelming.

What users need is a more controlled and intuitive method
for summarizing graphs. The summarization method should
allow users to freely choose the attributes and relationships
that are of interest, and then make use of these features
to produce small and informative summaries. Furthermore,
users should be able to control the resolution of the resulting
summaries and“drill-down”or“roll-up”the information, just
like the OLAP-style aggregation methods in a traditional
database systems.

In this paper, we propose two operations for graph sum-
marization that fulfills these requirements. The first opera-

���������	�
�����	
������

������������������������

����������

��	����

��	�������

����������

����������

��	����

����
���

��

��

��

��

�������

��	����

��	�������

����������

��� ���

�
�
�
�
��
���
	

����
����

���

����

�� ��

��� ���

���

�����

���

�����

�����

���

Figure 1: Graph Summarization by Aggrega-
tion

Figure 2: Illustration of
Multi-resolution Summaries

Figure 3: Construction of Φ3

in the Proof of Theorem 2.4

tion, called SNAP (Summarization by Grouping Nodes on
Attributes and Pairwise Relationships), produces a sum-
mary graph of the input graph by grouping nodes based on
user-selected node attributes and relationships. Figure 1
illustrates the SNAP operation. Figure 1(a) is a graph
about students (with attributes: gender, department and
so on) and the relationships (classmates and friends) be-
tween them. Note that only few of the edges are shown
in Figure 1(a). Based on user-selected gender and depart-
ment attributes, and classmates and friends relationships,
the SNAP operation produces a summary graph shown in
Figure 1(b). This summary contains four groups of stu-
dents and the relationships between these groups. Students
in each group have the same gender and are in the same de-
partment, and they relate to students belonging to the same
set of groups with friends and classmates relationships. For
example, in Figure 1(b), each student in group G1 has at
least a friend and a classmate in group G2. This compact
summary reveals the underlying characteristics about the
nodes and their relationships in the original graph.

The second operation, called k-SNAP, further allows users
to control the resolutions of summaries. This operation is
pictorially depicted in Figure 2. Here using the slider, a user
can “drill-down” to a larger summary with more details or
“roll-up” to a smaller summary with less details.

Our summarization methods have been applied to ana-
lyze real social networking applications. In one example,
by summarizing the coauthorship graphs in database and
AI communities, different coauthorship patterns across the
two areas are displayed. In another application, interesting
linking behaviors among liberal and conservative blogs are
discovered by summarizing a large political blogs network.

The main contributions of this paper are:
(1) We introduce two database-style graph aggregation

operations SNAP and k-SNAP for summarizing large graphs.
We formally define the two operations, and prove that the
k-SNAP computation is NP-complete.

(2) We propose an efficient algorithm to evaluate the SNAP
operation, and also propose two heuristic methods (the top-
down approach and the bottom-up approach) to approxi-
mately evaluate the k-SNAP operation.

(3) We apply our graph summarization methods to a vari-
ety of real and synthetic datasets. Through extensive exper-
imental evaluation, we demonstrate that our methods pro-
duce meaningful summaries. We also show that the top-
down approach is the ideal choice for k-SNAP evaluation
in practice. In addition, the evaluation algorithms are very
efficient even for very large graph datasets.

The remainder of this paper is organized as follows: Sec-
tion 2 defines the SNAP and the k-SNAP operations. Sec-
tion 3 introduces the evaluation algorithms for these op-
erations. Experimental results are presented in Section 4.
Section 5 describes related work, and Section 6 contains our
concluding remarks.

2. GRAPH AGGREGATION OPERATIONS
In a graph, objects are represented by nodes, and relation-

ships between objects are modeled as edges. In this paper,
we support a general graph model, where objects (nodes)
have associated attributes and different types of relation-
ships (edges). Formally, we denote a graph G as (V, Υ)
where V is the set of nodes, and Υ = {E1, E2, ..., Er} is the
set of edge types, with each Ei ⊆ V × V representing the
set of edges of a particular type.

Nodes in a graph have a set of associated attributes, which
is denoted as Λ = {a1, a2, ..., at}. Each node has a value
for each attribute. These attributes are used to describe
the features of the objects that the nodes represent. For
example, in Figure 1(a), a node representing a student may
have attributes that represent the student’s gender and de-
partment. Different types of edges in a graph correspond
to different types of relationships between nodes, such as
friends and classmates relationships shown in Figure 1(a).
Note that two nodes can be connected by different types of
edges. For example, in Figure 1(a), two students can be
classmates and friends at the same time.

For ease of presentation, we denote the set of nodes of
graph G as V (G), the set of attributes as Λ(G), the actual
value of attribute ai for node v as ai(v), the set of edge
types as Υ(G), and the set of edges of type Ei as Ei(G). In
addition, we denote the cardinality of a set S as |S|.

Our methods are applicable for both directed and undi-
rected graphs. For ease of presentation, we only consider
undirected graphs in this paper. Adaptations of our method
for directed graphs are fairly straightforward, and omitted
in the interest of space.

2.1 SNAP Operation
The SNAP operation produces a summary graph through

a homogeneous grouping of the input graph’s nodes, based
on user-selected node attributes and relationships. We now
formally define this operation.

To begin the formal definition of the SNAP operation, we
first define the concept of node-grouping.

Definition 2.1. (Node-Grouping of a Graph) For a
graph G, Φ = {G1, G2, ..., Gk} is called a node-grouping of G,

if and only if:
(1) ∀Gi ∈ Φ, Gi ⊆ V (G) and Gi 6= ∅,
(2)

S

Gi∈Φ Gi = V (G),

(3) for ∀Gi, Gj ∈ Φ and (i 6= j), Gi ∩ Gj = ∅.

Intuitively, a node-grouping partitions the nodes in a graph
into non-overlapping subsets. Each subset Gi is called a
group. When there is no ambiguity, we simply call a node-
grouping a grouping. For a given grouping Φ of G, the group
that node v belongs to is denoted as Φ(v). We further define
the size of a grouping as the number of groups it contains.

Now, we define a partial order relation 4 on the set of all
groupings of a graph.

Definition 2.2. (Dominance Relation) For a graph
G, the grouping Φ dominates the grouping Φ′, denoted as
Φ′

4 Φ, if and only if ∀G
′
i ∈ Φ′, ∃Gj ∈ Φ s.t. G

′
i ⊆ Gj.

It is easy to see that the dominance relation 4 is reflexive,
anti-symmetric and transitive, hence it is a partial order
relation. Next we define a special kind of grouping based on
a set of user-selected attributes.

Definition 2.3. (Attributes Compatible Grouping)
For a set of attributes A ⊆ Λ(G), a grouping Φ is compatible
with attributes A or simply A-compatible, if it satisfies the
following: ∀u, v ∈ V, if Φ(u) = Φ(v), then ∀ai ∈ A, ai(u) =
ai(v).

If a grouping Φ is compatible with A, we simply denote
it as ΦA. In each group of a A-compatible grouping, every
node has exactly the same values for the set of attributes A.
Note that there could be more than one grouping compatible
with A. In fact a trivial grouping in which each node is a
group is always compatible with any set of attributes.

Next, we prove that amongst all the A-compatible group-
ings of a graph, there is a global maximum grouping with
respect to the dominance relation 4.

Theorem 2.4. In the set of all the A-compatible group-
ings of a graph G, denoted as SA, ∃ΦA ∈ SA, s.t. ∀Φ′

A ∈ SA,
Φ′

A 4 ΦA.

Proof. We prove by contradiction. Assume that there is
no global maximum A-compatible grouping, but more than
one maximal grouping. Then, for every two of such maximal
groupings Φ1 and Φ2, we will construct a new A-compatible
grouping Φ3 such that Φ1 4 Φ3 and Φ2 4 Φ3, which con-
tradicts the assumption that Φ1 and Φ2 are maximal A-
compatible groupings.

Assume that Φ1 = {G1
1, G

1
2, ..., G

1
s} and Φ2 = {G2

1, G
2
2, ..., G

2
t}.

We construct a bipartite graph on Φ1 ∪Φ2 as shown in Fig-
ure 3. The nodes in the bipartite graph are the groups from
Φ1 and Φ2. And there is an edge between G

1
i ∈ Φ1 and

G
2
j ∈ Φ2 if and only if G

1
i ∩ G

2
j 6= ∅. After constructing the

bipartite graph, we decompose this graph into connected
components C1, C2, ..., Cm. For each connected compo-
nent Ck, we union the groups inside this component and
get a group ∪(Ck). Now, we can construct a new group-
ing Φ3 = {∪(C1),∪(C2), ...,∪(Cm)}. It is easy to see that
Φ1 4 Φ3 and Φ2 4 Φ3. Now we prove that Φ3 is com-
patible with A. From the definition of A-compatible group-
ings, if G

1
i ∩ G

2
j 6= ∅, nodes in G

1
i ∪ G

2
j all have the same

attributes values. Therefore, every node in ∪(Ck) has the
same attributes values. Now, we have constructed a new
A-compatible grouping Φ3 such that Φ1 4 Φ3 and Φ2 4 Φ3.
This contradicts our assumption that Φ1 and Φ2 are two dif-
ferent maximal A-compatible groupings. Therefore, there is
a global maximum A-compatible grouping.

We denote this global maximum A-compatible grouping
as Φmax

A . Φmax
A is also the A-compatible grouping with the

minimum cardinality. In fact, if we consider each node in
a graph as a data record, then Φmax

A is very much like the
result of a group-by operation for these data records on the
attributes A in the relational database systems.

The A-compatible groupings only account for the node
attributes. However, nodes do not just have attributes, but
also participate in pairwise relationships represented by the
edges. Next, we consider relationships when grouping nodes.

For a grouping Φ, we denote the neighbor-groups of node
v in Ei as NeighborGroupsΦ,Ei(v) = {Φ(u)|(u, v) ∈ Ei}.

Now we define groupings compatible with both node at-
tributes and relationships.

Definition 2.5. (Attributes and Relationships Com-
patible Grouping) For a set of attributes A ⊆ Λ(G) and
a set of relationship types R ⊆ Υ(G), a grouping Φ is com-
patible with attributes A and relationship types R or simply
(A, R)-compatible, if it satisfies the following:
(1) Φ is A-compatible,
(2) ∀u, v ∈ V (G), if Φ(u) = Φ(v), then ∀Ei ∈ R,
NeighborGroupsΦ,Ei(u) = NeighborGroupsΦ,Ei(v).

If a grouping Φ is compatible with A and R, we also de-
note it as Φ(A,R). In each group of an (A, R)-compatible
grouping, all the nodes are homogeneous in terms of both
attributes A and relationships in R. In other words, ev-
ery node inside a group has exactly the same values for
attributes A, and is adjacent to nodes in the same set of
groups for all the relationships in R.

As an example, assume that the summary in Figure 1(b)
is a grouping compatible with gender and department at-
tributes, and classmates and friends relationships. Then,
for example, every student (node) in group G2, has the same
gender and department attributes values, and is a friend of
some student(s) in G3, a classmate of some student(s) in G4,
and a friend to some student(s) as well as a classmate to
some student(s) in G1.

Given a grouping Φ(A,R), we can infer relationships be-
tween groups from the relationships between nodes in R. For
each edge type Ei ∈ R, we define the corresponding group
relationships as Ei(G, Φ(A,R)) = {(Gi, Gj)| Gi, Gi ∈ Φ(A,R)

and ∃u ∈ Gi, v ∈ Gj s.t. (u, v) ∈ Ei}. In fact, by the defini-
tion of (A, R)-compatible groupings, if there is one node in
a group adjacent to some node(s) in the other group, then
every node in the first group is adjacent to some node(s) in
the second.

Similarly to attributes compatible groupings, there could
be more than one grouping compatible with the given at-
tributes and relationships. The grouping in which each node
forms a group is always compatible with any given attributes
and relationships.

Next we prove that among all the (A, R)-compatible group-
ings there is a global maximum grouping with respect to the
dominance relation 4.

Theorem 2.6. In the set of all the (A, R)-compatible group-
ings of a graph G, denoted as S(A,R), ∃Φ(A,R) ∈ S(A,R), s.t.
∀Φ′

(A,R) ∈ S(A,R), Φ′
(A,R) 4 Φ(A,R).

Proof. Again we prove by contradiction. Assume that
there is no global maximum (A, R)-compatible grouping, but
more than one maximal grouping. Then, for every two of
such maximal groupings Φ1 and Φ2, we use the same con-

struction method to construct Φ3 as in the proof of Theo-
rem 2.4. We already know that Φ3 is A-compatible, Φ1 4 Φ3

and Φ2 4 Φ3. Using similar arguments as in Theorem 2.4,
we can also prove that Φ3 is compatible with R. This con-
tradicts our assumption that Φ1 and Φ2 are two different
maximal (A, R)-compatible groupings.

From the construction of Φ3, we know that if G
1
i ∩G

2
j 6= ∅,

then the nodes in G
1
i ∪ G

2
j belong to the same group in Φ3.

Next, we prove that every node in G
1
i ∪ G

2
j is also adjacent

to nodes in the same set of groups in Φ3.
Again we prove by contradiction. Assume that there are

two nodes u, v ∈ G
1
i ∪ G

2
j , u is adjacent to ∪(Ck) in Φ3 but

v is not. First, if both u, v ∈ G
1
i or both u, v ∈ G

2
j , then as

both Φ1 and Φ2 are (A, R)-compatible groupings, and the
construction of Φ3 does not decompose any groups in Φ1 or
Φ2, u, v should always be adjacent to the same set of groups
in Φ3. This contradicts our assumption. Second, the two
nodes can come from different groupings. For simplicity,
assume u ∈ G

1
i and v ∈ G

2
j . As G

1
i ∩ G

2
j 6= ∅, a node w ∈

G
1
i ∩G

2
j is adjacent to the same set of groups as u in Φ1 and

adjacent to the same set of groups as v in Φ2. As a result,
every group that u is adjacent to in Φ1 should intersect with
some group that v is adjacent to in Φ2. Since u is adjacent
to ∪(Ck), then u must be adjacent to at least one group in
Φ1 that is later merged to ∪(Ck). This group should also
intersect with a group G

2
l in Φ2 that v is adjacent to. Then,

by the construction algorithm of Φ3, G
2
l should belong to

the connected component Ck, thus should be later merged
in ∪(Ck). As a result, v is also adjacent to ∪(Ck) in Φ3,
which contradicts our assumption.

Now we know if Gi∩Gj 6= ∅, nodes in Gi∪Gj are all adjacent
to the same set of groups in Φ3. In each Ck, ∀Gi ∈ Ck,
∃Gj ∈ Ck such that Gi ∩ Gj 6= ∅. As a result, every node in
∪(Ck) is adjacent to the same set of groups in Φ3.

We have constructed a new (A, R)-compatible grouping
Φ3 such that Φ1 4 Φ3 and Φ2 4 Φ3. This contradicts
the fact that Φ1 and Φ2 are two different maximal (A, R)-
compatible groupings. Therefore, there is a global maximum
(A, R)-compatible grouping.

We denote the global maximum (A, R)-compatible group-
ing as Φmax

(A,R). Φmax
(A,R) is also the (A, R)-compatible group-

ing with the minimum cardinality. Due to its compactness,
this maximum grouping is more useful than other (A, R)-
compatible groupings.

Now, we define our first operation for graph summariza-
tion, namely SNAP.

Definition 2.7. (SNAP Operation) The SNAP opera-
tion takes as input a graph G, a set of attributes A ⊆ Λ(G),
and a set of edge types R ⊆ Υ(G), and produces a summary
graph Gsnap, where V (Gsnap) = Φmax

(A,R), and Υ(Gsnap) =
{Ei(G, Φmax

(A,R))|Ei ∈ R}.

Intuitively, the SNAP operation produces a summary graph
of the input graph based on user-selected attributes and re-
lationships. The nodes of this summary graph correspond
to the groups in the maximum (A, R)-compatible grouping.
And the edges of this summary graph are the group rela-
tionships inferred from the node relationships in R.

2.2 k-SNAP Operation
The SNAP operation produces a grouping in which nodes

of each group are homogeneous with respect to user-selected

attributes and relationships. Unfortunately, homogeneity is
often too restrictive in practice, as most real life graph data
is subject to noise and uncertainty; for example, some edges
may be missing because of the failure in the detection pro-
cess, and some edges may be spurious because of errors.
Applying the SNAP operation on noisy data can result in a
large number of small groups, and, in the worst case, each
node may end up an individual group. Such a large sum-
mary is not very useful in practice. A better alternative
is to let users control the sizes of the results to get sum-
maries with the resolutions that they can manage (as shown
in Figure 2). Therefore, we introduce a second operation,
called k-SNAP, which relaxes the homogeneity requirement
for the relationships and allows users to control the sizes of
the summaries.

The relaxation of the homogeneity requirement for the re-
lationships is based on the following observation. For each
pair of groups in the result of the SNAP operation, if there
is a group relationship between the two, then every node in
both groups participates in this group relationship. In other
words, every node in one group relates to some node(s) in
the other group. On the other hand, if there is no group rela-
tionship between two groups, then absolutely no relationship
connects any nodes across the two groups. However, in re-
ality, if most (not all) nodes in the two groups participate
in the group relationship, it is often a good indication of a
strong relationship between the two groups. Likewise, it is
intuitive to mark two groups as being weakly related if only
a tiny fraction of nodes are connected between these groups.

Based on these observations, we relax the homogeneity
requirement for the relationships by not requiring that ev-
ery node participates in a group relationship. But we still
maintain the homogeneity requirement for the attributes,
i.e. all the groupings should be compatible with the given
attributes. Users control how many groups are present in
the summary by specifying the required number of groups,
denoted as k. There are many different groupings of size
k compatible with the attributes, thus we need to measure
the qualities of the different groupings. We propose the ∆-
measure to assess the quality of an A-compatible grouping
by examining how different it is to a hypothetical (A, R)-
compatible grouping.

We first define the set of nodes in group Gi that participate
in a group relationship (Gi, Gj) of type Et as PEt,Gj

(Gi) =
{u|u ∈ Gi and ∃v ∈ Gj s.t. (u, v) ∈ Et}. Then we define
the participation ratio of the group relationship (Gi, Gj) of

type Et as pt
i,j =

|PEt,Gj
(Gi)|+|PEt,Gi

(Gj)|

|Gi|+|Gj |
. For a group re-

lationship, if its participation ratio is greater than 50%, we
call it a strong group relationship, otherwise, we call it a
weak group relationship. Note that in an (A, R)-compatible
grouping, the participation ratios are either 0% or 100%.

Given a graph G, a set of attributes A and a set of rela-
tionship types R, the ∆-measure of ΦA = {G1, G2, ..., Gk} is
defined as follows:

∆(ΦA) =
X

Gi,Gj∈ΦA

X

Et∈R

(δEt,Gj
(Gi) + δEt,Gi

(Gj)) (1)

δEt,Gj
(Gi) =

(

|PEt,Gj
(Gi)| if pt

i,j ≤ 0.5

|Gi| − |PEt,Gj
(Gi)| otherwise

(2)

Intuitively, the ∆-measure counts the minimum number of
differences in participations of group relationships between

the given A-compatible grouping and a hypothetical (A, R)-
compatible grouping of the same size. The measure looks at
each pairwise group relationship: If this group relationship
is weak (pt

i,k ≤ 0.5), then it counts the participation differ-
ences between this weak relationship and a non-relationship
(pt

i,k = 0); on the other hand, if the group relationship is
strong, it counts the differences between this strong rela-
tionship and a 100% participation-ratio group relationship.
The δ function, defined in Equation 2, evaluates the part
of the ∆ value contributed by a group Gi with one of its
neighbors Gj in a group relationship of type Et.

It is easy to prove that ∆(ΦA) ≥ 0. The smaller ∆(ΦA)
value is, the more closer ΦA is to a hypothetical (A, R)-
compatible grouping. ∆(ΦA) = 0 if and only if ΦA is (A, R)-
compatible. We can also prove that ∆(ΦA) is bounded by
2|ΦA||V ||R|, as each δEt,Gj

(Gi) ≤ |Gi|.
Now we will formally define the k-SNAP operation.

Definition 2.8. (k-SNAP Operation) The k-SNAP op-
eration takes as input a graph G, a set of attributes A ⊆
Λ(G), a set of edge types R ⊆ Υ(G) and the desired number
of groups k, and produces a summary graph Gk-snap, where
V (Gk-snap) = ΦA, s.t. |ΦA| = k and ΦA = arg minΦ′

A
{∆(Φ′

A)},

and Υ(Gk-snap) = {Ei(G, ΦA) | Ei ∈ R}.

Given the desired number of groups k, the k-SNAP opera-
tion produces an A-compatible grouping with the minimum
∆ value. Unfortunately, as we prove below, this optimiza-
tion problem is NP-complete. To prove this, we first formally
define the decision problem associated with this optimiza-
tion problem and then prove it to be NP-complete.

Theorem 2.9. Given a graph G, a set of attributes A, a
set of relationship types R, a user-specified number of groups
k (|Φmax

A | ≤ k ≤ |V (G)|), and a real number D (0 ≤ D <

2k|V ||R|), the problem of finding an A-compatible grouping
ΦA of size k with ∆(ΦA) ≤ D is NP-complete.

Proof. We use proof by restriction to prove the NP-
completeness of this problem.

(1) This problem is in NP, because a nondeterministic
algorithm only needs to guess an A-compatible grouping ΦA

of size k and check in polynomial time that ∆(ΦA) ≤ D.
And an A-compatible grouping ΦA of size k can be generated
by a polynomial time algorithm.

(2) This problem contains a known NP-complete problem
2-Role Assignability (2RA) [16] as a special case. By re-
stricting A = ∅, |R| = 1, k = 2 and D = 0, this problem
becomes 2RA (which decides whether the nodes in a graph
can be assigned with 2 roles, each node with one of the roles,
such that if two nodes are assigned with the same role, then
the sets of roles assigned to their neighbors are the same.)
As proved in [16], 2RA is NP-complete.

Given the NP-completeness, it is infeasible to find the
exact optimal answers for the k-SNAP operation. Therefore,
we propose two heuristic algorithms to evaluate the k-SNAP
operation approximately.

3. EVALUATION ALGORITHMS
In this section, we introduce the evaluation algorithms

for SNAP and k-SNAP. It is computationally feasible to ex-
actly evaluate the SNAP operation, hence the proposed eval-
uation algorithm produces exact summaries. In contrast,
k-SNAP computation was proved to be NP-complete and,

��

��

��

���

����������� � � � ��

��

����������� � � � ��

�	

����������� � � � ��

��

����������� � � � ��

��
������� ��������

�����������������������

��������� � � ��

���������
��
���� ��!��

��������� � �
����������� � � � ��

����������� � � � ��

����������� � � � ��

����������� � � � ��

� � � � ��

Figure 4: Data Structures Used in the Evaluation Al-
gorithms

therefore, we propose two heuristic algorithms for efficiently
approximating the solution. Before discussing the details of
the algorithms, we first introduce the evaluation architec-
ture and the data structures used for the algorithms. Note
that, for ease of presentation, all algorithms discussed in this
section are assumed to work on one type of relationship; ex-
tending these algorithms for multiple relationship types is
straightforward, hence is omitted in the interest of space.

3.1 Architecture and Data Structures
All the evaluation algorithms employ an architecture as

follows. The input graphs reside in the database on disk.
A chunk of memory is allocated as a buffer pool for the
database. It is used to buffer actively used content from
disk to speed up the accesses. Every access of the eval-
uation algorithms to the nodes and edges of graphs goes
through the buffer pool. If the content is buffered, then the
evaluation algorithms simply retrieve the content from the
buffer pool; otherwise, the content is read from disk into the
buffer pool first. Another chunk of memory is allocated for
the evaluation algorithms as the working memory, similar to
the working memory space used by traditional database al-
gorithms such as hash join. This working memory is used to
hold the data structures used in the evaluation algorithms.

The evaluation algorithms share some common data struc-
tures as shown in Figure 4. The group-array data structure
keeps track of the groups in the current grouping. Each en-
try in groups-array stores the id of a group and also points
to a node-set, which contains the nodes in the correspond-
ing group. Each node in the node-set points to one row of
the neighbor-groups bitmap. This bitmap is the most mem-
ory consuming data structure in the evaluation algorithms.
Each row of the bitmap corresponds to a node, and the bits
in the row store the node’s neighbor-groups. If bit position
i is 1, then we know that this node has at least one neighbor
belonging to group Gi with id i; otherwise, this node has
no neighbor in group Gi. For each group Gi in the current
grouping, we also keep a participation-array which stores
the participation counts |PE,Gj

(Gi)| for each neighbor group.
Note that the participation-array of a group can be inferred
from the nodes’ corresponding rows in the neighbor-groups
bitmap. For example, in Figure 4, the participation-array of
group G1 can be computed by counting the number of 1s in
each column of the bitmap rows corresponding to n12, n4,
n9 and n2. All the data structures shown in Figure 4 change
dynamically during the evaluation algorithms. An increase
in the number of groups leads to the growth of the group-
array size, which also results in an increase of the width of

Algorithm 1 SNAP(G, A, R)

Input: G: a graph; A ⊆ Λ(G): a set of attributes; R =
{E} ⊆ Υ(G): a set containing one relationship type E

Output: A summary graph.
1: Compute the maximum A-compatible grouping by sort-

ing nodes in G based on values of attributes A

2: Initialize the data structures
3: while there is a group Gi with participation array con-

taining values other than 0 or |Gi| do
4: Divide Gi into subgroups by sorting nodes in Gi based

on their corresponding rows in the bitmap
5: Update the data structures
6: end while
7: Form the summary graph Gsnap

8: return Gsnap

the bitmap, as well as the sizes of the participation-arrays.
The set of nodes for a group also change dynamically.

For most of this paper, we will assume that all the data
structures needed by the evaluation algorithms can fit in the
working memory. This is often a reasonable assumption in
practice for a majority of graph datasets. However, we also
consider the case when this memory assumption does not
hold (see Section 4.4.3).

3.2 Evaluating SNAP Operation
In this section, we introduce the evaluation algorithm for

the SNAP operation. This algorithm also serves as a foun-
dation for the two k-SNAP evaluation algorithms.

The SNAP operation tries to find the maximum (A, R)-
compatible grouping for a graph, a set of nodes attributes,
and the specified relationship type. The evaluation algo-
rithm starts from the maximum A-compatible grouping, and
iteratively splits groups in the current grouping, until the
grouping is also compatible with the relationships.

The algorithm for evaluating the SNAP operation is shown
in Algorithm 1. In the first step, the algorithm groups the
nodes based only on the attributes by a sorting on the at-
tributes values. Then the data structures are initialized by
this maximum A-compatible grouping. Note that if a group-
ing is compatible with the relationships, then all nodes in-
side a group should have the same set of neighbor-groups,
which means that they have the same values in their rows
of the bitmap. In addition, the participation array of each
group should then only contain the values 0 or the size of the
group. This criterion has been used as the terminating con-
dition to check whether the current grouping is compatible
with the relationships in line 3 of Algorithm 1. If there ex-
ists a group whose participation array contains values other
than 0 or the size of this group, the nodes in this group
are not homogeneous in terms of the relationships. We can
split this group into subgroups, each of which contains nodes
with the same set of neighbor-groups. This can be achieved
by sorting the nodes based on their corresponding entries
in the bitmap. (The radix sort is a perfect candidate for
this task.) After this division, new groups are introduced.
One of them continues to use the same group id of the split
group, and the remaining groups are added to the end of
the group-array. Accordingly, each row of the bitmap has
to be widened. The nodes of this split group are distributed
among the new groups. As the group memberships of these

Algorithm 2 k-SNAP-Top-Down(G, A, R, k)

Input: G: a graph; A ⊆ Λ(G): a set of attributes; R =
{E} ⊆ Υ(G): a set containing one relationship type E;
k: the required number of groups in the summary

Output: A summary graph.
1: Compute the maximum A-compatible grouping by sort-

ing nodes in G based on values of attributes A

2: Initialize the data structures and let Φc denote the cur-
rent grouping

3: SplitGroups(G, A, R, k, Φc)
4: Form the summary graph Gk-snap

5: return Gk-snap

nodes are changed, the bitmap entries for them and their
neighbor nodes have to be updated. Then the algorithm
goes to the next iteration. This process continues until the
condition in line 3 does not hold anymore.

It can be easily verified that the grouping produced by Al-
gorithm 1 is the maximum (A, R)-compatible grouping. The
algorithm starts from the maximum A-compatible group-
ing, and it only splits existing groups, so the grouping after
each iteration is guaranteed to be A-compatible. In addi-
tion, each time we split a group, we always keep nodes with
same neighbor-groups together. Therefore, when the algo-
rithm stops, the grouping should be the maximum (A, R)-
compatible grouping.

After we get the maximum (A, R)-compatible grouping,
we can construct the summary graph. The nodes in the sum-
mary graph corresponds to the groups in the result grouping.
The edges in the summary graph are the group relationships
inferred from the node relationships in the original graph.

Now we will analyze the complexity of this evaluation al-
gorithm. Sorting by the attributes values takes O(|V | log |V |)
time, assuming the number of attributes is a small constant.
The initialization of the data structures takes O(|E|) time,
where E is the only edge type in R (for simplicity, we only
consider one edge type in our algorithms). At each itera-
tion of the while loop, the radix sort takes O(ki|Gi|) time,
where ki is the number of groups in the current group-
ing and Gi is the group to be split. Updating the data
structures takes |Edges(Gi)|, where Edges(Gi) is the set of
edges adjacent to nodes in Gi. Note that ki is monotoni-
cally increasing, and that the number of iterations is less
than the size of the final grouping, denoted as k. There-
fore, the complexity for all the iterations is bounded by
O(k2|V | + k|E|). Constructing the summary takes O(k2)
time. To sum up, the upper-bound complexity of the SNAP
algorithm is O(|V | log |V | + k2|V | + k|E|).

As the evaluation algorithm takes inputs from the graph
database on disk, we also need to analyze the number of
disk accesses to the database. We assume all the accesses to
the database are in the units of pages. For simplicity, we do
not distinguish whether an access is a disk page access or a
buffer pool page access. We assume that all the nodes infor-
mation of the input graph takes ‖V ‖ pages in the database,
and all the edges information takes ‖E‖ pages. Then the
SNAP operation incurs ‖V ‖ page accesses to read all the
nodes with their attributes, ‖E‖ page accesses to initialize
the data structures, and at most ‖E‖ page accesses each
time it updates the data structures. So, the total number of
page accesses is bounded by ‖V ‖+(k +1)‖E‖. Note that in

Algorithm 3 SplitGroups(G, A, R, k, Φc)

Input: G: a graph; A ⊆ Λ(G): a set of attributes; R =
{E} ⊆ Υ(G): a set containing one relationship type E;
k: the required number of groups in the summary; Φc:
the current grouping.

Output: Splitting groups in Φc until |Φc| = k.
1: Build a heap on the CT value of each group in Φc

2: while |Φc| < k do
3: Pop the group Gi with the maximum CT value from

the heap
4: Split Gi into two based on the neighbor group Gt =

arg maxGj
{δE,Gj

(Gi)}
5: Update data structures (Φc is updated)
6: Update the heap
7: end while

practice, not every page access results in an actual disk IO.
Especially for the updates of the data structures discussed
in Section 3.1, most of the edges information will be cached
in the buffer pool.

3.3 Evaluating k-SNAP Operation
The k-SNAP operation allows a user to choose k, the num-

ber of groups that are shown in the summary. For a given
graph, a set of nodes attributes A and the set of relationship
types R, a meaningful k value should fall in the range be-
tween |Φmax

A | and |Φmax
(A,R)|. However, if the user input is be-

yond the meaningful range, i.e. k < |Φmax
A | or k > |Φmax

(A,R)|,
then the evaluation algorithms will return the summary cor-
responding to Φmax

A or Φmax
(A,R), respectively. For simplicity,

we will assume that the k values input to the algorithms
are always meaningful. By varying the k values, users can
produce multi-resolution summaries. A larger k value corre-
sponds to a higher resolution summary. The finest summary
corresponds to the grouping Φmax

(A,R); and the coarsest sum-
mary corresponds to the grouping Φmax

A .
As proved in Section 2.2, computing the exact answers

for the k-SNAP operation is NP-complete. In this paper,
we propose two heuristic algorithms to approximate the an-
swers. The top-down approach starts from the maximum
grouping only based on attributes, and iteratively splits groups
until the number of groups reaches k. The other approach
employs a bottom-up scheme. This method first computes
the maximum grouping compatible with both attributes and
relationships, and then iteratively merges groups until the
result satisfies the user defined k value. In both approaches,
we apply the same principle: nodes of a same group in the
maximum (A, R)-compatible grouping should always remain
in a same group even in coarser summaries. We call this
principle KEAT (Keep the Equivalent Always Together)
principle. This principle guarantees that when k = |Φmax

(A,R)|,
the result produced by the k-SNAP evaluation algorithms
is the same as the result of the SNAP operation with the
same inputs.

3.3.1 Top-Down Approach
Similar to the SNAP evaluation algorithm, the top-down

approach (see Algorithm 2) also starts from the maximum
grouping based only on attributes, and then iteratively splits
existing groups until the number of groups reaches k. How-
ever, in contrast to the SNAP evaluation algorithm, which
randomly chooses a splittable group and splits it into sub-

Algorithm 4 k-SNAP-Bottom-Up(G, A, R, k)

Input: G: a graph; A ⊆ Λ(G): a set of attributes; R =
{E} ⊆ Υ(G): a set containing one relationship type E;
k: the required number of groups in the summary.

Output: A summary graph.
1: Gsnap=SNAP(G, A, R)
2: Initialize the data structures using the grouping in Gsnap

and let Φc denote the current grouping
3: MergeGroups(G, A, R, k, Φc)
4: Form the summary graph Gk-snap

5: return Gk-snap

groups based on its bitmap entries, the top-down approach
has to make the following decisions at each iterative step: (1)
which group to split and (2) how to split it. Such decisions
are critical as once a group is split, the next step will operate
on the new grouping. At each step, we can only make the
decision based on the current grouping. We want each step
to make the smallest move possible, to avoid going too far
away from the right direction. Therefore, we split one group
into only two subgroups at each iterative step. There are
different ways to split one group into two. One natural way
is to divide the group based on whether nodes have relation-
ships with nodes in a neighbor group. After the split, nodes
in the two new groups either all or never participate in the
group relationships with this neighbor group. This way of
splitting groups also ensures that the resulting groups follow
the KEAT principle.

Now, we introduce the heuristic for deciding which group
to split and how to split at each iterative step. As defined in
Section 2.2, the k-SNAP operation tries to find the grouping
with a minimum ∆ measure (see Equation 1) for a given k.
The computation of the ∆ measure can be broken down into
each group with each of its neighbors (see the δ function in
Equation 2). Therefore, our heuristic chooses the group that
makes the most contribution to the ∆ value with one of its
neighbor groups. More formally, for each group Gi, we define
CT (Gi) as follows:

CT (Gi) = max
Gj

{δE,Gj
(Gi)} (3)

Then, at each iterative step, we always choose the group
with the maximum CT value to split and then split it based
on whether nodes in this group Gi have relationships with
nodes in its neighbor group Gt, where

Gt = arg max
Gj

{δE,Gj
(Gi)}

As shown in Algorithm 3, to speed up the decision pro-
cess, we build a heap on the CT values of groups. At each
iteration, we pop the group with the maximum CT value
to split. At the end of each iteration, we update the heap
elements corresponding to the neighbors of the split group,
and insert elements corresponding to the two new groups.

The time complexity of the top-down approach is similar
to the SNAP algorithm, except that it takes O(k2

0 + k0)
time to compute the CT values and build the heap, and
at most O(k2

i + ki log ki) time to update the heap at each
iteration, where k0 is the number of groups in the maximum
A-compatible grouping, and ki is the number of groups at
each iteration. As k < |V |, the upper-bound complexity of
the top-down approach is still O(|V | log |V |+ k2|V |+ k|E|).

Algorithm 5 MergeGroups(G, A, R, k, Φc)

Input: G: a graph; A ⊆ Λ(G): a set of attributes; R =
{E} ⊆ Υ(G): a set containing one relationship type E;
k: the required number of groups in the summary; Φc:
the current grouping.

Output: Merging groups in Φc until |Φc| = k.
1: Build a heap on (MergeDist, Agree, MinSize) for pairs

of groups
2: while |Φc| > k do
3: Pop the pair of groups with the best (MergeDist,

Agree, MinSize) value from the heap
4: Merge the two groups into one
5: Update data structures (Φc is updated)
6: Update the heap
7: end while

Following the same method of analyzing the page accesses
for the SNAP algorithm, the number of page accesses in-
curred by the top-down approach is bounded by ‖V ‖+(k +
1)‖E‖.

3.3.2 Bottom-Up Approach
The bottom-up approach first computes the maximum

(A, R)-compatible grouping using Algorithm 1, and then it-
eratively merges two groups until grouping size is k (see
Algorithm 4). Choosing which two groups to merge in each
iterative step is crucial for the bottom-up approach. First,
the two groups are required to have the same attributes val-
ues. Second, the two groups must have similar group rela-
tionships with other groups. Now, we formally define this
similarity between two groups.

The two groups to be merged should have similar neigh-
bor groups with similar participation ratios. We define a
measure called MergeDist to assess the similarity between
two groups in the merging process.

MergeDist(Gi, Gj) =
X

k 6=i,j

|pi,k − pj,k| (4)

MergeDist accumulates the differences in participation ra-
tios between Gi and Gj with other groups. The smaller this
value is, the more similar the two groups are.

If two pairs of groups have the same MergeDist, we need
to further distinguish which pair is “more similar”. We look
at each common neighbor Gk of Gi and Gj , and consider
the group relationships (Gi, Gk) and (Gj , Gk). If both group
relationships are strong (pi,k > 0.5 and pj,k > 0.5) or weak
(pi,k ≤ 0.5 and pj,k ≤ 0.5), then we call it an agreement
between Gi and Gj . The total number of agreements between
Gi and Gj is denoted as Agree(Gi, Gj). Having the same
MergeDist, the pair of groups with more agreements is a
better candidate to merge.

If both of the above criteria are the same for two pairs of
groups, we always prefer merging groups with smaller sizes
(in the number of nodes). More formally, we choose the pair
with smaller MinSize(Gi, Gj) = min{|Gi|, |Gj |}, where Gi

and Gj are in this pair.
In Algorithm 5, we utilize a heap to store pairs of groups

based on the values of the triple (MergeDist, Agree, MinSize).
At each iteration, we pop the group pair with the best
(MergeDist, Agree, MinSize) value from the heap, and
then merge the pair into one group. At the end of each
iteration, we remove the heap elements (pairs of groups) in-

volving either of the two merged groups, update elements
involving neighbors of the merged groups, and insert ele-
ments involving this new group.

The time cost of the bottom-up approach is the cost of
the SNAP algorithm plus the merging cost. The algorithm
takes O(k3

snap + k2
snap) to initialize the heap, then at each

iteration at most O(k3
i + k2

i log ki) time to update the heap,
where ksnap is the size of the grouping resulting from the
SNAP operation, and ki is the size of the grouping at each
iteration. Therefore, the time complexity of the bottom-up
approach is bounded by O(|V | log |V |+k2

snap|V |+ksnap|E|+
k4

snap). Note that updating the in memory data structures
in the bottom-up approach does not need to access the
database (i.e. no IOs). All the necessary information for
the updates can be found in the current data structures.
Therefore, the upper bound of the number of page accesses
for the bottom-up approach is ‖V ‖ + (ksnap + 1)‖E‖.

3.3.3 Drill-Down and Roll-Up Abilities
The top-down and the bottom-up approaches introduced

above both start from scratch to produce the summaries.
However, it is easy to build an interactive querying scheme,
where the users can drill-down and roll-up based on the cur-
rent summaries. The users can first generate an initial sum-
mary using either the top-down approach or the bottom-up
approach. However, as we will show in Section 4.3, the top-
down approach has significant advantage in both efficiency
and summary quality in most practical cases. We suggest us-
ing the top-down approach to generate the initial summary.
The drill-down operation can be simply achieved by call-
ing the SplitGroups function (Algorithm 3). To roll up to a
coarser summary, the MergeGroups function (Algorithm 5)
can be called. However, when the number of groups in the
current summary is large, the MergeGroups function be-
comes expensive, as it needs to compare every pair of groups
to calculate the MergeDist (see Section 3.3.2). Therefore,
using the top-down approach to generate a new summary
with the decreased resolution is a better choice to roll-up
when the current summary is large.

4. EXPERIMENTAL EVALUATION
In this section, we present experimental results evaluating

the effectiveness and efficiency of the SNAP and the k-SNAP
operations on a variety of real and synthetic datasets. All
algorithms are implemented in C++ on top of PostgreSQL
(http://www.postgresql.org) version 8.1.3. Graphs are
stored in a node table and an edge table in the database,
using the following schema: NodeTable(graphID, nodeID, at-
tributeName, attributeType, attributeValue) and EdgeTable(
graphID, node1ID, node2ID, edgeType). Nodes with multiple
attributes have multiple entries in the node table, and edges
with multiple types have multiple entries in the edge table.
Accesses to nodes and edges of graphs are implemented by
issuing SQL queries to the PostgreSQL database. All exper-
iments were run on a 2.8GHz Pentium 4 machine running
Fedora 2, and equipped with a 250GB SATA disk. For all ex-
periments (except the one in Section 4.4.3), we set the buffer
pool size to 512MB and working memory size to 256MB.

4.1 Experimental Datasets
In this section, we describe the datasets used in our empir-

ical evaluation. We use two real datasets and one synthetic
dataset to explore the effect of various graph characteristics.

Publications
0 20 40 60 80

Fr
eq

ue
nc

y

0

1000

2000

3000

4000

5000

Figure 5: DBLP DB Coauthor-
ship Graph

Figure 6: The Distribution of the Num-
ber of DB Publications (Avg: 2.6,
Stdev: 5.1)

Figure 7: The SNAP Result for
the DBLP DB Dataset

Description #Nodes #Edges Avg. Degree
D1 DB 7,445 19,971 5.4
D2 D1+AL 14,533 37,386 5.1
D3 D2+OS+CC 22,435 55,007 4.9
D4 D3+AI 30,664 70,669 4.6

Table 1: The DBLP Datasets for the Efficiency Ex-
periments

DBLP Dataset This dataset contains the DBLP Bibli-
ography data [12] downloaded on July 30, 2007. We use this
data for both effectiveness and efficiency experiments. In
order to compare the coauthorship behaviors across differ-
ent research areas and construct datasets for the efficiency
experiments, we partition the DBLP data into different re-
search areas. We choose the following five areas: Database
(DB), Algorithms (AL), Operating Systems (OS), Compiler
Construction (CC) and Artificial Intelligence (AI). For each
of the five areas, we collect the publications of a number
of selected journals and conferences in this area1. These
journals and conferences are selected to construct the four
datasets with increasing sizes for the efficiency experiments
(see Table 1). These four datasets are constructed as follows:
D1 contains the selected DB publications. We add into D1
the selected AL publications to form D2. D3 is D2 plus the
selected OS and CC publications. And finally, D4 contains
the publications of all the five areas we are interested in.
We construct a coauthorship graph for each dataset. The
nodes in this graph correspond to authors and edges indi-
cate coauthorships between authors. The statistics for these
four datasets are shown in Table 1.

Political Blogs Dataset This dataset is a network of
1490 webblogs on US politics and 19090 hyperlinks between
these webblogs [1] (downloaded from http://www-personal.

umich.edu/~mejn/netdata/). Each blog in this dataset has
an attribute describing its political leaning as either liberal
or conservative.

1
DB: VLDB J., TODS, KDD, PODS, VLDB, SIGMOD; AL:

STOC, SODA, FOCS, Algorithmica, J. Algorithms, SIAM J.
Comput., ISSAC, ESA, SWAT, WADS; OS: USENIX, OSDI,
SOSP, ACM Trans. Comput. Syst., HotOS, OSR, ACM SIGOPS
European Workshop; CC: PLDI, POPL, OOPSLA, ACM Trans.
Program. Lang. Syst., CC, CGO, SIGPLAN Notices, ECOOP;
AI: IJCAI, AAAI, AAAI/IAAI, Artif. Intell.

Synthetic Dataset Most real world graphs show power-
law degree distributions and small-world characteristics [13].
Therefore, we use the R-MAT model [8] in the GTgraph
suites [2] to generate graphs with power-law degree distribu-
tions and small-world characteristics. Based on the statistics
in Table 1, we set the average node degree in each synthetic
graph to 5. We used the default values for the other pa-
rameters in the R-MAT based generator. We also assign an
attribute to each node in a generated graph. The domain
of this attribute has 5 values. For each node we randomly
assign one of the five values.

4.2 Effectiveness Evaluation
We first evaluate the effectiveness of our graph summa-

rization methods. In this section, we use only the top-down
approach to evaluate the k-SNAP operation, as we compare
the top-down and the bottom-up approaches in Section 4.3.

4.2.1 DBLP Coauthorship Networks
In this experiment, we are interested in analyzing how

researchers in the database area coauthor with each other.
As input, we use the DBLP DB subset (see D1 of Table 1 and
Figure 5). Each node in this graph has one attribute called
PubNum, which is the number of publications belonging to
the corresponding author. By plotting the distribution of
the number of publications of this dataset in Figure 6, we
assigned another attribute called Prolific to each author in
the graph indicating whether that author is prolific: authors
with ≤ 5 papers are tagged as low prolific (LP), authors with
> 5 but ≤ 20 papers are prolific (P), and the authors with
> 20 papers are tagged as highly prolific (HP).

We first issue a SNAP operation on the Prolific attribute
and the coauthorships. The result is visualized in Figure 7.
Groups with the HP attribute value are colored in yellow,
groups with the P value are colored in light blue, and the
remaining groups with the attribute value LP are in white.
The SNAP operation results in a summary with 3569 groups
and 11293 group relationships. This summary is too big to
analyze. On the other hand, if we apply the SNAP operation
on only the Prolific attribute (i.e. not considering any re-
lationships in the SNAP operation), we will get a summary
with only 3 groups as visualized in the top left figure in Ta-
ble 2. The bold edges between two groups indicate strong
group relationships (with more than 50% participation ra-

Attribute Only k = 4 k = 5 k = 6 k = 7
DB

LP
Size: 6826 0.84

P
Size: 509

0.48

HP
Size: 110

0.29
0.91

0.84
0.95

LP
Size: 3047 0.80

P
Size: 509

1.00

HP
Size: 110

0.41

LP
Size: 3779

0.19

0.91

0.84
0.95

0.22

0.80

LP
Size: 1192 0.76

P
Size: 509

0.94

HP
Size: 110

1.00

LP
Size: 3779

0.15

0.91

0.84

LP
Size: 1855

0.96

0.95

0.22

0.80

0.11

0.18

0.75

LP
Size: 1192 0.76

P
Size: 509

0.94

HP
Size: 110

1.00

LP
Size: 3018

0.14

LP
Size: 7610.11

0.91

0.84

LP
Size: 1855

0.96

0.95

0.20 0.37

1.00

0.10

0.18

0.75

0.06

LP
Size: 1192 0.76

P
Size: 509

0.94

HP
Size: 110

1.00

LP
Size: 7610.11

LP
Size: 2497

0.08

0.91

0.84

LP
Size: 1855

0.96

0.95

LP
Size: 521

0.97

0.37

0.16

0.93

0.18

0.01

0.75

0.06
0.10

0.08

0.98

AI

LP
Size: 8874 0.78

P
Size: 545

0.37

0.80

HP
Size: 760.54

0.13

0.92

LP
Size: 2975 0.72

P
Size: 545

0.99

LP
Size: 58990.15

0.80

HP
Size: 760.54

0.17

0.92

0.12

0.75

LP
Size: 2975 0.72

P
Size: 545

0.99

LP
Size: 43970.13

LP
Size: 1502

0.10

0.80

HP
Size: 760.54

0.17

0.92

0.100.22

1.00

LP
Size: 2138 1.00

P
Size: 545

0.97

LP
Size: 43970.11

LP
Size: 1502

0.09

0.80

HP
Size: 760.54

0.19

0.92

0.100.22

LP
Size: 837

0.18

1.00

0.06

0.91

0.04

LP
Size: 2138 1.00

P
Size: 545

0.97

LP
Size: 5170.28

0.80

HP
Size: 760.54

0.19

0.92

0.18

LP
Size: 1502

0.22

LP
Size: 837

0.18

0.92

LP
Size: 3880

0.07

0.09

0.06

0.91

0.02

0.09

0.04

0.98

Table 2: The Aggregation Results for the DBLP DB and AI Subsets

tio), while dashed edges are weak group relationships. This
summary shows that the HP researchers as a whole have
very strong coauthorship with the P group of researchers.
Researchers within both groups also tend to coauthor with
people within their own groups. However, this summary
does not provide a lot of information for the LP researchers:
they tend to coauthor strongly within their group and they
have some connection with the HP and P groups.

Now we make use of the k-SNAP operation to produce
summaries with multiple resolutions. The first row of figures
in Table 2 shows the k-SNAP results for k =4, 5, 6 and 7.
As k increases, more details are shown in the summaries.

When k = 7, the summary shows that there are 5 sub-
groups of LP researchers. One group of 1192 LP researchers
strongly collaborates with both HP and P researchers. One
group of 521 only strongly collaborates with HP researchers.
One group of 1855 only strongly collaborates with P re-
searchers. These three groups also strongly collaborate within
their groups. There is another group of 2497 LP researchers
that has very weak connections to other groups but strongly
cooperates among themselves. The last group has 761 LP
researchers, who neither coauthor with others within their
own group nor collaborate strongly with researchers in other
groups. They often write single author papers.

Now, in the k-SNAP result for k = 7, we are curious if
the average number of publications for each subgroup of the
LP researchers is affected by the coauthorships with other
groups. The above question can be easily answered by ap-
plying the avg operation on the PubNum attribute for each
group in the result of the k-SNAP operation.

With this analysis, we find that the group of LP researchers
who collaborate with both P and HP researchers has a high
average number of publications: 2.24. The group only col-
laborating with HP researchers has 1.66 publications on av-
erage. The group collaborating with only the P researchers
has on average 1.55 publications. The group that tends to
only cooperate among themselves has a low average number

of publications: 1.26. Finally, the group of mostly single
authors has on average only 1.23 publications. Not surpris-
ingly, these results suggest that collaborating with HP and
P researchers is very helpful for the low prolific (often be-
ginning) researchers.

Next, we want to compare the database community with
the AI community to see whether the coauthorship relation-
ships are different across these two communities. We con-
structed the AI coauthorship graph with 9495 authors and
16070 coauthorships from the DBLP AI subset. The distri-
bution of the number of publications of AI authors is similar
to the DB authors, thus we use the same method to assign
the Prolific attribute to these authors. The SNAP opera-
tion on the Prolific attribute and coauthorships results in
a summary with 3359 groups and 7091 group relationships.
The second row of figures in Table 2 shows the SNAP result
based only on the Prolific attribute and the k-SNAP results
for k =4, 5, 6 and 7. Comparing the summaries for the two
communities for k = 7, we can see the differences across the
two communities: The HP and P groups in the AI commu-
nity have a weaker cooperation than the DB community;
and there isn’t a large group of LP researchers who strongly
coauthor with both HP and P researchers in the AI area.

As this example shows, by changing the resolutions of
summaries, users can better understand the characteristics
of the original graph data and also explore the differences
and similarities across different datasets.

4.2.2 Political Blogs Network
In this experiment, we evaluate the effectiveness of our

graph summarization methods on the political blogs network
(1490 nodes and 19090 edges). The SNAP operation based
on the political leaning attribute and the links between blogs
results in a summary with 1173 groups and 16657 group
relationships. The SNAP result based only on the attribute
and the k-SNAP result based on both the attribute and the
links for k = 7 are shown in Table 3.

Attribute Only k = 7
L

Size: 758 0.76

C
Size: 732

0.42

0.86

L
Size: 320 0.95

C
Size: 303

 1.00

L
Size: 245

0.86

0.97

C
Size: 2050.89

C
Size: 128

0.56

0.51

L
Size: 193

0.09

1.00

0.01
C

Size: 96

Table 3: The Aggregation Results for
the Political Blogs Dataset

D
el

ta
/k

0
100
200
300
400
500
600
700
800
900

1000
1100

k (log scale)
8 16 32 64 128 256 512 1024 20483569

TopDown
BottomUp

Figure 8: Quality of Summaries:
Top-Down vs. Bottom-Up

k (log scale)
8 16 32 64 128 256 512 1024 20483569E

xe
cu

tio
n

Ti
m

e
(s

ec
, l

og
 s

ca
le

)

1

5

50

500

5000

16000

TopDown
BottomUp

Figure 9: Efficiency: Top-Down
vs. Bottom-Up

From the results, we see that there are a group of lib-
eral blogs and a group of conservative blogs that interact
strongly with each other (perhaps to refute each other).
Other groups of blogs only connect to blogs in their own
communities (liberal or conservative), if they do connect to
other blogs. There is a relatively large group of 193 lib-
eral blogs with almost no connections to any other blogs,
while such isolated blogs compose a much smaller portion
(96 blogs) of all the conservative blogs. Overall, conserva-
tive blogs show a slightly higher tendency to link with each
other than liberal blogs, which is consistent with the con-
clusion from the analysis in [1]. Given that the blogs data
was collected right after the US 2004 election, the authors
in [1] speculated that the different linking behaviors in the
two communities may be correlated with eventual outcome
of the 2004 election.

4.3 k-SNAP: Top-Down vs. Bottom-Up
In this section, we compare the top-down and the bottom-

up k-SNAP algorithms, both in terms of effectiveness and
efficiency. We use the DBLP DB subset (D1 in Table 1) and
apply both approaches for different k values.

For the effectiveness experiment, we use the ∆ measure in-
troduced in Section 2.2 to assess the qualities of summaries.
Note that for a given k value, smaller ∆ value means better
quality summary, but for different k values, comparing ∆
does not make sense, as a higher k value tends to result in
a higher ∆ value according to Equation 1. However, if we
normalize ∆ by k, we get the average contribution of each
group to the ∆ value, then we can compare ∆

k
for different

k values.
We acknowledge that ∆

k
is not a perfect measure for“quan-

titatively” evaluating the quality of summaries. However,
quality assessment is a tricky issue in general, and ∆

k
, though

crude, is an intuitive measure for this study.
Figure 8 shows the comparison of the summary qualities

between the top-down and the bottom-up approaches. Note
that the x-axis is in log scale and the y-axis is ∆

k
. First,

as k increases, both methods produce higher quality sum-
maries. For small k values, top-down approach produces
significantly higher quality summaries than the bottom-up
approach. This is because, the bottom-up approach starts
from the grouping produced by the SNAP operation. This
initial grouping is usually very large, in this case, it con-
tains 3569 groups. The bottom-up approach has to continu-
ously merge groups until the number of groups decreases to
a small k value. Each merge decision is only made based on
the current grouping, and errors can easily accumulate. In

Groups # Group Relationships Time(sec)
D1 3569 11293 6.4
D2 7892 26031 16.1
D3 11379 35682 27.9
D4 15052 44318 44.0

Table 4: The SNAP Results for the DBLP Datasets

contrast, the top-down approach starts from the maximum
A-compatible grouping, and only needs a small number of
splits to reach the result. Therefore, small amount of errors
is accumulated. As k becomes larger, the bottom-up ap-
proach shows slight advantage over the top-down approach.

The execution times for the two approaches are shown in
Figure 9. Note that both axes are in log scale. The top-down
approach significantly outperform the bottom-up approach,
except when k is equal to the size of the grouping resulting
from the SNAP operation. Initializing the heap takes a lot
of time for the bottom-up approach, as it has to compare
every pair of groups. This situation becomes worse, if the
size of the initial grouping is very large.

In practice, users are more likely to choose small k val-
ues to generate summaries. The top-down approach signif-
icantly outperforms the bottom-up approach in both effec-
tiveness and efficiency for small k values. Therefore, the top-
down approach is preferred for most practical uses. For all
the remaining experiments, we only consider the top-down
approach.

4.4 Efficiency Experiment
This section evaluates the efficiency the SNAP and the

k-SNAP operations.

4.4.1 SNAP Efficiency
In this section, we apply the SNAP operation on the four

DBLP datasets with increasing sizes (see Table 1). Ta-
ble 4 shows the number of groups and group relationships in
the summaries produced by the SNAP operation on the at-
tribute Prolific (defined in the same way as in Section 4.2.1)
and coauthorships, as well as the execution times. Even for
the largest dataset with 30664 nodes and 70669 edges, the
execution is completed in 44 seconds. However, all of the
SNAP results are very large. The summary sizes are com-
parable to the input graphs. Such large summaries are often
not very useful for analyzing the input graphs. This is an
anecdotal evidence of why the k-SNAP operation is often
more desired than the SNAP operation in practice.

k
8 16 32 64 128 256 512 1024 2048 3569

R
un

in
g

Ti
m

e
(s

ec
)

0

50

100

150

200

250

D1 D2 D3 D4

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Graphs Sizes (#nodes)
50k 200k 500k 800k 1000k

k=10
k=100
k=1000

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

0

500

1000

1500

2000

k
0 1000 2000 3000

No Bitmap
Bitmap in Memory

Figure 10: Efficiency of k-SNAP on the
DBLP Datasets

Figure 11: Efficiency of
k-SNAP on the Synthetic
Datasets

Figure 12: Bitmap in Mem-
ory vs. No Bitmap

4.4.2 k-SNAP Efficiency
This section evaluates the efficiency of the top-down k-

SNAP algorithm on both the DBLP and the synthetic datasets.
DBLP Data In this experiment, we apply the top-down

k-SNAP evaluation algorithm on the four DBLP datasets
shown in Table 1 (the k-SNAP operation is based on Pro-
lific attribute and coauthorships). The execution times with
increasing graph sizes and increasing k values are shown in
Figure 10. For these datasets, the performance behavior is
close to linear, since the execution times are dominated by
the database page accesses (as discussed in Section 3.3.1).

Synthetic Data We apply the k-SNAP operation on dif-
ferent sized synthetic graphs with three k values: 10, 100
and 1000. The execution times with increasing graph sizes
are shown in Figure 11. When k = 10, even on the largest
graph with 1 million nodes and 2.5 million edges, the eval-
uation algorithm finishes in about 5 minutes. For a given
k value, the algorithm scales nicely with increasing graph
sizes.

4.4.3 Evaluation with Very Large Graphs
So far, we have assumed that the amount of working mem-

ory is big enough to hold all the data structures (shown in
Figure 4) used in the evaluation algorithms. This is often
the case in practice, as large multi GB memory configura-
tions are common and many graph datasets can fit in this
space (especially if a subset of large graph is selected for
analysis). However, our methods also work, when the graph
datasets are extremely large and this in-memory assumption
in not valid. In this section, we discuss the behaviors of our
methods for this case. We only consider the most practically
useful top-down k-SNAP algorithm for this experiment.

In the case when the most memory consuming data struc-
ture, namely the neighbor-groups bitmap (see Figure 4),
cannot fit in memory, the top-down approach drops the
bitmap data structure. Without the bitmap, each time the
algorithm splits a group, it has to query the edges informa-
tion in the database to infer the neighbor-groups. We have
implemented a version of the top-down k-SNAP algorithm
without the bitmap data structure, and compared it with
the normal top-down algorithm.

To keep this experiment manageable, we scaled down the
experiment settings. We used the DBLP D4 dataset in Ta-
ble 1, and set the buffer pool size and working memory size
to 16MB and 8MB, respectively. This “scaled-down” ex-
periment exposes the behaviors of the two versions of the
top-down algorithm, while keeping the running times rea-
sonable. As shown in Figure 12, the version of the top-down

approach without bitmap is much slower than the normal
version. This is not surprising as the former incurs more
disk IOs.

Given the graph size and the k value, our current imple-
mentation can decide in advance whether the bitmap can fit
in the working memory, by estimating the upper bound of
the bitmap size. It can then choose the appropriate version
of the algorithm to use. In the future, we plan on designing
a more sophisticated version of the top-down algorithm in
which part of the bitmap can be kept in memory when the
available memory is small.

5. RELATED WORK
Graph summarization has attracted a lot of interest from

both the sociology and the database research communities.
Most existing works on graph summarization use statisti-
cal methods to study graph characteristics, such as degree
distributions, hop-plots and clustering coefficients. Com-
prehensive surveys on these methods are provided in [6]
and [13]. A-plots [7] is a novel statistical method to sum-
marize the adjacency matrix of graphs for outlier detection.
Statistical summaries are useful but hard to control and nav-
igate. Methods for mining frequent graph patterns [11, 19,
23] are also used to understand the characteristics of large
graphs. Washio and Motoda [20] provide an elegant review
on this topic. However, these mining algorithms often pro-
duces an overwhelmingly large number of frequent patterns.
Various graph partitioning algorithms [14, 18, 22] are used
to detect community structures (dense subgraphs) in large
graphs. SuperGraph [17] employs hierarchical graph par-
titioning to visualize large graphs. However, graph parti-
tioning techniques largely ignore the node attributes in the
summarization. Studies on graph visualization are surveyed
in [3, 10]. For very large graphs, these visualization meth-
ods are still not enough. Unlike these existing methods, we
introduce two database-style operations to summarize large
graphs. Our method allows users to easily control and nav-
igate through summaries.

Previous research [4, 5, 15] have also studied the prob-
lem of compressing large graphs, especially Web graphs.
However, these graph compression methods mainly focus
on compact graph representation for easy storage and ma-
nipulation, whereas graph summarization methods aim at
producing small and understandable summaries.

Regular equivalence is introduced in [21] to study social
roles of nodes based on graphs structures in social networks.
It shares resemblance with the SNAP operation. However,
regular equivalence is defined only based on the relationships

between nodes. Node attributes are largely ignored. In ad-
dition, the k-SNAP operation relaxes the stringent equiva-
lence requirement of relationships between node groups, and
produces user controllable multi-resolution summaries.

The SNAP algorithm (Algorithm 1) shares similarity with
the automorphism partitioning algorithm in [9]. However,
the automorphism partitioning algorithm only partitions nodes
based on node degrees and relationships, whereas SNAP can
be evaluated based on arbitrary node attributes and rela-
tionships that a user selects.

6. CONCLUSIONS AND FUTURE WORK
This paper has introduced two aggregation operations SNAP

and k-SNAP for controlled and intuitive database-style graph
summarization. Our methods allow users to freely choose
node attributes and relationships that are of interest, and
produce summaries based on the selected features. Further-
more, the k-SNAP aggregation allows users to control the
resolutions of summaries and provides“drill-down”and“roll-
up” abilities to navigate through the summaries. We have
formally defined the two operations and proved that evalu-
ating the k-SNAP operation is NP-complete. We have also
proposed an efficient algorithm to evaluate the SNAP opera-
tion and two heuristic algorithms to approximately evaluate
the k-SNAP operation. Through extensive experiments on
a variety of real and synthetic datasets, we show that of the
two k-SNAP algorithms, the top-down approach is a better
choice in practice. Our experiments also demonstrate the ef-
fectiveness and efficiency of our methods. As part of future
work, we plan on designing a formal graph data model and
query language that allows incorporation of k-SNAP, along
with a number of other additional common and useful graph
matching methods.

7. ACKNOWLEDGMENT
This research was supported by the National Institutes

of Health under grant 1-U54-DA021519-01A1, the National
Science Foundation under grant DBI-0543272, and an unre-
stricted research gift from Microsoft Corp. We thank Taneli
Mielikainen and Yiming Ma for their valuable suggestions
during the early stage of this research. We also thank the
reviewers of this paper for their constructive comments on
a previous version of this manuscript.

8. REPEATABILITY ASSESSMENT RESULT
All the results in this paper were verified by the SIGMOD

repeatability committee.

9. REFERENCES
[1] L. A. Adamic and N. Glance. The political

blogosphere and the 2004 US Election: Divided they
blog. In Proceedings of the 3rd International Workshop
on Link Discovery, pages 36–43, 2005.

[2] D. A. Bader and K. Madduri. GTgraph: A suite of
synthetic graph generators.
http://www.cc.gatech.edu/~kamesh/GTgraph.

[3] G. Battista, P. Eades, R. Tamassia, and I. Tollis.
Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall, 1999.

[4] D. K. Blandford, G. E. Blelloch, and I. A. Kash.
Compact representations of separable graphs. In
Proceedings of SODA’03, pages 679–688, 2003.

[5] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In Proceedings of WWW’04,
pages 595–602, 2004.

[6] D. Chakrabarti and C. Faloutsos. Graph mining:
Laws, generators, and algorithms. ACM Comput.
Surv., 38(1), 2006.

[7] D. Chakrabarti, C. Faloutsos, and Y. Zhan.
Visualization of large networks with min-cut plots,
A-plots and R-MAT. Int. J. Hum.-Comput. Stud.,
65(5):434–445, 2007.

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. In Proceedings of
4th SIAM International Conference on Data Mining,
2004.

[9] D. G. Corneil and C. C. Gotlieb. An efficient algorithm
for graph isomorphism. J. ACM, 17(1):51–64, 1970.

[10] I. Herman, G. Melançon, and M. S. Marshall. Graph
visualization and navigation in information
visualization: A survey. IEEE Trans. Vis. Comput.
Graph., 6(1):24–43, 2000.

[11] J. Huan, W. Wang, J. Prins, and J. Yang. SPIN:
Mining maximal frequent subgraphs from graph
databases. In Proceedings of KDD’04, pages 581–586,
2004.

[12] M. Ley. DBLP Bibliography.
http://www.informatik.uni-trier.de/~ley/db/.

[13] M. E. J. Newman. The structure and function of
complex networks. SIAM Review, 45:167–256, 2003.

[14] M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Phys.
Rev. E, 69:026113, 2004.

[15] S. Raghavan and H. Garcia-Molina. Representing Web
graphs. In Proceedings of ICDE’03, pages 405–416,
2003.

[16] F. S. Roberts and L. Sheng. How hard is it to
determine if a graph has a 2-role assignment?
Networks, 37(2):67–73, 2001.

[17] J. F. Rodrigues, A. J. M. Traina, C. Faloutsos, and C.
Traina Jr. SuperGraph visualization. In Proceedings of
the 8th IEEE International Symposium on
Multimedia, pages 227–234, 2006.

[18] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is
more: Sparse graph mining with compact matrix
decomposition. Stat. Anal. Data Min., 1(1):6–22, 2008.

[19] W. Wang, C. Wang, Y. Zhu, B. Shi, J. Pei, X. Yan,
and J. Han. GraphMiner: A structural pattern-mining
system for large disk-based graph databases and its
applications. In Proceedings of SIGMOD’05, pages
879–881, 2005.

[20] T. Washio and H. Motoda. State of the art of
graph-based data mining. SIGKDD Explor. Newsl.,
5(1):59–68, 2003.

[21] D. R. White and K. P. Reitz. Graph and semigroup
homomorphisms on semigroups of relations. Social
Networks, 5(2):193–234, 1983.

[22] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger.
SCAN: A structural clustering algorithm for networks.
In Proceedings of KDD’07, pages 824–833, 2007.

[23] X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. In Proceedings of ICDM’02, pages
721–724, 2002.

