
Estimating Answer Sizes for XML Queries

Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish

Univ. of Michigan, Ann Arbor, MI, USA�

{yuwu,jignesh,jag}@eecs.umich.edu

Abstract. Estimating the sizes of query results, and intermediate re-
sults, is crucial to many aspects of query processing. In particular, it is
necessary for effective query optimization. Even at the user level, pre-
dictions of the total result size can be valuable in “next-step” decisions,
such as query refinement. This paper proposes a technique to obtain
query result size estimates effectively in an XML database.
Queries in XML frequently specify structural patterns, requiring specific
relationships between selected elements. Whereas traditional techniques
can estimate the number of nodes (XML elements) that will satisfy a
node-specific predicate in the query pattern, such estimates cannot easily
be combined to provide estimates for the entire query pattern, since
element occurrences are expected to have high correlation.
We propose a solution based on a novel histogram encoding of element
occurrence position. With such position histograms, we are able to obtain
estimates of sizes for complex pattern queries, as well as for simpler in-
termediate patterns that may be evaluated in alternative query plans, by
means of a position histogram join (pH-join) algorithm that we introduce.
We extend our technique to exploit schema information regarding allow-
able structure (the no-overlap property) through the use of a coverage
histogram.
We present an extensive experimental evaluation using several XML
data sets, both real and synthetic, with a variety of queries. Our re-
sults demonstrate that accurate and robust estimates can be achieved,
with limited space, and at a miniscule computational cost. These tech-
niques have been implemented in the context of the TIMBER native
XML database [22] at the University of Michigan.

1 Introduction

XML data [2] is becoming ubiquitous, and an XML document (or database) is
naturally modeled as a (collection of) node-labeled tree(s). In such a tree, each
node represents an XML element, and each tree edge represents an element-
subelement inclusion relationship.

A natural way to query such hierarchically organized data is by using small
node-labeled trees, referred to as twigs, that match portions of the hierarchical
� H.V. Jagadish and Yuqing Wu were supported in part by NSF under grant IIS-
9986030 and DMI-0075447. Jignesh M. Patel was supported in part by a research
gift donation from NCR Corporation.

C.S. Jensen et al. (Eds.): EDBT 2002, LNCS 2287, pp. 590–608, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Estimating Answer Sizes for XML Queries 591

data. Such queries form an integral component of query languages proposed for
XML (for example, [4]), and for LDAP directories [11]. For example, the XQuery
expression

FOR $f IN document(“personnel.xml”)//department/faculty
WHERE count($f/TA) > 0 AND count($f/RA) > 0
RETURN $f

matches all faculty members that has at least one TA and one RA, in the example
data set shown in Fig. 1. This query can be represented as a node-labeled tree,
with the element tags department and faculty as labels of non-leaf nodes in the
tree, and the element tags TA and RA as labels of leaf nodes in the tree, as shown
in Fig. 2.

A fundamental problem in this context is to accurately and quickly estimate
the number of matches of a twig query pattern against the node-labeled data
tree.

An obvious use is in the cost-based optimization of such queries: knowing se-
lectivities of various sub-queries can help in identifying cheap query evaluation
plans. For example, the query of Fig. 2 can be evaluated by identifying all facul-
ties with RAs, and joining this set with the set of departments, then joining the
result of this with the set of all the TAs. An alternative query plan is to join the
faculties and RAs first, and then join the result set with TAs, then, departments.
Depending on the cardinalities of the intermediate result set, one plan may be
substantially better than another. Accurate estimates for the intermediate join
result are essential if a query optimizer is to pick the optimal plan. Furthermore,
if there are multiple join algorithms, the optimizer will require accurate esti-
mates to enable it to choose the more efficient algorithm. Similar choices must
be made whether the underlying implementation is a relational or a native XML
database.

department

faculty staff faculty lecturer

name RA name name secretary RA RA RA name TA TA TA

faculty research scientist

name secretary TA RA RA TA name secretary RA RA RA RA

department

faculty

TA RA

Fig. 1. Example XML document Fig. 2. Pattern Tree

Result size estimation has additional uses in an Internet context. For instance,
there may be value in providing users with quick feedback about expected result
sizes before evaluating the full query result. Even when the query involved is an
on-line query where only partial results are requested, it is helpful to provide an
estimate of the total number of results to the user along with the first subset

592 Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish

of results, to help the user choose whether to request more results of the same
query or to refine the query. Similarly, result size estimation can be very useful
when space allocation or parallelism are involved.

Histograms are by far the most popular summary data structures used for
estimating query result sizes in (relational) databases. When used in the XML
context, they could indeed be used to estimate accurately the number of nodes
satisfying a specified node predicate. One could build a histogram for the pred-
icate associated with each node in a query pattern, and obtain individual esti-
mates for the number of occurrences of each. However, structural relationship
information is not captured in traditional histograms, and it is not obvious how
to combine estimates for individual nodes into estimates for the whole query tree
pattern.

The central contribution of this paper is the introduction of position his-
tograms to capture this structural information. A position histogram is built
over “base” predicates, such as “elementtag = faculty”. The position histograms
on two base predicates, P1 and P2, can be used to accurately estimate the se-
lectivity of queries with the pattern P1//P2, which matches all “P2” nodes that
are descendants of all “P1” nodes in the data tree. Some special features of
predicates, such as no-overlap property, which dramatically affects the selectiv-
ity of the pattern matching, are also considered. Even though these histograms
are two-dimensional, they behave like one-dimensional histograms for many pur-
poses, including in their storage requirements.

We formally define our problem in Section 2, and summarize our overall so-
lution approach in Section 3. We also establish various properties of this new
summary data structure, and show how to use this to obtain query result sizes
estimates efficiently in Section 3. Schemata often impose constraints on allowed
structural relationships. In Section 4, we show how, at least in some key cases,
such schema information can be exploited to obtain better estimates. We exper-
imentally demonstrate the value of our proposal in Section 5, considering not
just the quality of the estimate, but also issues such as computation time and
storage requirement. And related work is discussed in Section 6. Conclusions and
directions for future work are outlined in Section 7.

2 Problem Definition

We are given a large rooted node-labeled tree T = (VT , ET), representing the
database.

We are given a set of boolean predicates, P: {v : v ∈ T}→{0, 1}. For each
predicate α ∈ P, for each node v ∈ T , we have either α(v) is true or α(v) is false.
(See Sec 3.4 for a discussion of how to obtain this set P for a real database).

A query is a smaller, rooted, node-labeled tree Q = (VQ, EQ). The goal is to
determine the number of “matches” of Q in T . The labels at the nodes of Q are
boolean compositions of predicates from P.

A match of a pattern query Q in a T is a total mapping h : {u : u ∈ Q}→{x :
x ∈ T} such that:

Estimating Answer Sizes for XML Queries 593

– For each node u ∈ Q, the predicate node label of u is satisfied by h(u) in T .
– For each edge (u, v) in Q, h(v) is a descendant of h(u) in T .

Fig. 1 shows a very simple XML document. The personnel of a department
can be faculty, staff, lecturer or research scientist. Each of them has a name as
identification. They may or may not have a secretary. Each faculty may have both
TAs and RAs. A lecturer can have more than one TAs, but no RA. A research
scientist can have numerous RAs, but no TA. Consider a simple twig pattern with
only two nodes, faculty and TA, with parent-child relationship among them.
There are three faculty nodes and five TA nodes in the XML document. The
schema says that a faculty can have any number of TAs. Without any further
schema information, the best we can do in estimating the result size is to compute
the product of the cardinality of these two nodes, which yields 15. Consider the
fact that faculty nodes are not nested, one TA can only be the child of one faculty
node, we can tell that the upper-bound of the result number is the cardinality
of TA nodes, which is 5. But as we can see from the figure, the real result size
is 2. The question we address in this paper is how to capture the structure
information of the XML document to get a better estimation.

Our problem can be stated succinctly as follows:

Define a summary data structure T ′ corresponding to a node-labeled
data tree T , and a set of primitive predicates of interest P, such that
the size of T ′ is a small percentage of the size of T ; and for any query
Q, defined as a structural pattern of nodes satisfying combinations of
predicates from P, correctly estimate the total number of matches of Q
in T , using only Q and the summary data structure T ′.

3 Our Proposal

3.1 The Basic Idea

We associate a numeric start and end label with each node in the database, defin-
ing a corresponding interval between these labels. We require that a descendant
node has an interval that is strictly included in its ancestors’ intervals.

This numbering scheme is inspired by, and quite similar to, the node num-
bering based on document position frequently used in information retrieval and
adopted for XML database use by Univ. of Wisconsin researchers in the course
of the Niagara [18] project.

We obtain these labels as follows. First, we merge all documents in the
database into a single mega-tree with a dummy element as the root, and each
document as a child subtree. We number nodes in this tree to obtain the desired
labels – the start label by a pre-order numbering and the end label of a node is
assigned to be at least as large as its own start label and larger than the end
label of any of its descendant.

Given a limited set P of predicates of interest, one should expect that there
will be index structures that identify lists of nodes satisfying each predicate in P.
For many, even most, predicates, these lists can be very long. While queries may

594 Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish

be answered through manipulating such lists, the effort involved is far too great
for an answer size estimation task. The standard data structure for maintaining
summary data in a database is a histogram. We compress each such list into a
two-dimensional histogram summary data structure, as we describe next.

We take the pairs of start and end pair of values associated with the nodes
that satisfy a predicate α, and construct a two-dimensional histogram Histα
with them. Each grid cell in the histogram represents a range of start position
values and a range of end position values. The histogram Histα maintains a
count of the number of nodes satisfying α that have start and end positions
within the specified ranges. We call such a data structure a position histogram.

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

(x,y)

0

y1

y2

Max(y)

II

I

X2X1

Start Position
Max(X)

End
Position

A
��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
�����������������

�������������
�������������
�������������

�������������
�������������
�������������
�������������

����
����
����
����

����
����
����
����

0

Empty Grid Cells

R8

R1

R2

R3

R4

R7R6

R5 (R0)
A

End
Position

Start Position

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
����������������������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

A

B

D

F

E

C

0

F

GH

End
Position

Start Position

Fig. 3. Forbidden Regions in
a Position Histogram due to
one node

Fig. 4. Layout of Posi-
tion Histogram

Fig. 5. Estimating Join
Counts with Position
Histogram

Position histograms, even though defined over a two-dimensional space, have
considerable structure, as shown in Fig. 3.

Since the start position and end position of a node always satisfies the formula
that start <= end, none of the nodes can fall into the area below the diagonal
of the matrix. So, only the grid cells to the upper left of the diagonal can have
count of more than zero.

Given a point A with coordinates (x,y), the regions marked I and II are
guaranteed to be empty, since the start and end ranges of any two nodes can
either have no overlap, or the range of one node fully contained within the range
of the other node. This leads to the following Lemma:

Lemma 1 In a position histogram for any predicate, a non-zero count in grid
cell (i, j) implies a zero count in each grid cell (k, l) with (a) i < k < j and
j < l, or (b) i < l < j and k < i.

3.2 Primitive Estimation Algorithm

Each document node is mapped to a point in two dimensional space (in each
position histogram corresponding to a predicate satisfied at the node) . Node u
is an ancestor of node v iff the start position of u is less than the start position of

Estimating Answer Sizes for XML Queries 595

v and the end position of u is no less than the end position of v. In other words,
u is to the left of and above every node v that it is an ancestor of, and vice versa.

Consider the grid cell labeled A in Fig. 4. There are nine regions in the plane
to consider, marked A (R0), R1 through R8 in the Figure. All points v in region
R2 are descendants of each point u in the grid cell A. All points v in region R6
are ancestors of each point u in grid cell A. No point in region R4 and R8 is a
descendant or ancestor of any point in the grid cell A. Points in region R1 and
R3 may be descendants of points in grid cell A. Similarly, points in region R5
and R7 may be ancestors of points in grid cell A. To estimate how many, we
exclude the forbidden region, and then assume a uniform distribution over the
remainder of each grid cell. For this purpose, we overlap Fig. 3 with Fig. 4 to
get Fig. 5.

Given predicates P1 and P2, both in P, we show how to estimate the number
of pairs of nodes u, v in the database such that u satisfies P1, v satisfies P2 and
u is an ancestor of v, using two position histograms, one for predicate P1 and
one for predicate P2.

When computing the estimate of a join, we can compute the estimate based
on either the ancestor or the descendant. When computing an ancestor-based
estimate, for each grid cell of the ancestor we estimate the number of descendants
that join with the ancestor grid cell. Similarly, for the descendant-based estimate,
for each grid cell of the descendant we estimate the number of ancestors that
join with the grid cell.

The formulae for these two types of estimation are different, and are derived
in the next two subsections. But first, we need the following definition:

Definition 1 A grid cell in a position histogram is said to be on-diagonal if the
intersection of the start-position interval (X-axis) and end-position interval (Y
axis) is non-empty. Otherwise, the grid cell is said to be off-diagonal.

Ancestor-Based Join Estimation. If A is off-diagonal, as shown in Fig. 5,
all points in the grid cells in region B are descendants of all points in grid cell A.
Using the position histogram for predicate P2, we can simply add up the counts
of all grid cells in this region. Now consider region E. Each point in grid cell A
introduces two forbidden regions. No points in region E can fall in the forbidden
regions of the right-most point in A (as shown in Fig. 5), so all points in region
E must be descendants of all points in grid cell A. Similarly, for a given point
in grid cell A, part of region F is forbidden; the points that fall in the right
triangle of F are descendants of A, and the points in the left triangle are not.
Integrating over the points in region F, we estimate that half the points in F, on
average, are descendants of any specific point in grid cell A. Similar discussions
apply to regions C and D. For the points in the same grid cell (grid cell A) in
the histogram for predicate P2, for each point in grid cell A of the histogram for
the predicate P1, only the points in the bottom-right region can be descendants.
Assuming a uniform distribution and performing the necessary integrals in each
dimension, we derive on average a quarter chance. Putting all these estimates

596 Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish

together, the ancestor-based estimation for each off-diagonal grid cell can be
expressed as the first formula in Fig. 6.

When grid cell A is on-diagonal, regions B, C, D, E, F don’t exist. Since
a diagonal grid cell is a triangle rather than a rectangle, the chance that a
descendant point can join with an ancestor point is 1/12.

Primitive Estimation: ancestor-based
For off-diagonal grid cell A:

EstP12 [A] = HistP1 [A] × { 1
4 × HistP2 [A] + HistP2 [B] + HistP2 [C] + HistP2 [E]

+ 1
2 × (HistP2 [D] + HistP2 [F])}

For on-diagonal grid cell A:
EstP12 [A] = 1

12 × HistP1 [A] × HistP2 [A]
Primitive Estimation: descendant-based

For off-diagonal grid cell A:
EstP12 [A] = HistP2 [A] × {HistP1 [F] + HistP1 [G] + HistP1 [H] + 1

4 × HistP1 [A]}
For on-diagonal grid cell A:

EstP12 [A] = HistP2 [A] × {HistP1 [F] + HistP1 [G] + HistP1 [H] + 1
12 × HistP1 [A]}

Notation:
HistP : position histogram for predicate P
EstP12: estimation histogram of a twig pattern, where the ancestor

satisfies P1 and the descendant satisfies P2.
H[A] : summation of the grid cells in region A in histogram H.

Fig. 6. Formulae for Primitive Join Estimation

Descendant-Based Join Estimation. Referring to Fig. 5, no matter whether
A is on-diagonal or off-diagonal, all ancestors of a point in the grid cell A will
be in the regions A, F, G, or H. Following argument similar to those in the
ancestor-based estimation above, all points in region F, G and H are guaranteed
to be ancestors of all points in grid cell A. For the points in the same grid cell
(grid cell A), the chance is 1/4 for an off-diagonal grid cell, while it is 1/12 for
an on-diagonal grid cell.

faculty 0

2

1 TA 0 3

2

Coverage
for (0.0)

Coverage
for (1,1)

0.3

0.5

Fig. 7. Position Histograms Fig. 8. Coverage Histogram for faculty

Let’s have a look at the example XML document in Fig. 1 again, with the
same query pattern we discussed in section 2. The 2×2 histograms of predicates
“element tag = faculty” and “element tag = TA” are shown in Fig. 7. Using the
primitive estimation algorithm introduced above, we estimate the result size to
be 0.6, much closer to the real result size. Note that the position histograms we
used here are 2 × 2. By refining the histogram to use more buckets, we can get
a more accurate estimate.

Estimating Answer Sizes for XML Queries 597

3.3 Analysis

The primary concern with any estimation technique, of course, is how good the
estimates are. We will perform an extensive evaluation in Section 5. However,
there are two other metrics of concern: the storage required and the time to
compute the estimate. We address these issues next.

Storage Requirement. There can only be O(g) non-zero grid cells in a g ×
g grid, unlike the O(g2) one might expect in general. Therefore the storage
requirements are quite modest. We establish this result as a theorem here, and
verify experimentally in Section 5.

Theorem 1 In a g × g grid, the number of position histogram grid cells with
non-zero counts is O(g)

Time Required. Based on the formulae for both ancestor-cased estimation
and descendant-based estimation, the procedure to compute the expected size
of result for a simple 2-node pattern is to loop through all grid cells for counts
of nodes satisfying the outer predicate, and for each grid cell loop through the
histogram for the inner predicate, adding up the regions as described in the
preceding section, and multiplying by the count of the outer grid cell. The grand
summation of all these is the desired result. We have a choice of which of the
two nodes in the pattern is the inner loop, and the other is the outer.

The summation work in the inner loop is repeated several times in the simple
nested loop algorithm outlined above. A small amount of storage for intermediate
results can result in the much more efficient algorithm shown in Fig. 9.

Algorithm pH-Join is a three-pass algorithm. In the first pass, column partial
summations (as on region E and columns in region B in Fig. 5) are obtained. In
the second pass, row partial summations (as in region C) , as well as region partial
summations (as in region B using column partial summations) are obtained. In
the third pass, these partial summations are used, along with the matrix entries
themselves, to obtain the necessary multiplicative coefficients derived from the
inner matrix operand and these can be multiplied by the corresponding elements
of the outer operand matrix and the summation taken.

Algorithm pH-Join, as stated, computes coefficients assuming that the in-
ner operand is the descendant node in the pattern. Obvious minor changes are
required if the inner operand is the ancestor node.

Observe also that all of Algorithm pH-Join, except for the final multiplica-
tion, deals with the histogram of only one predicate in the join operation. In
consequence, it is possible to run the algorithm on each position histogram ma-
trix in advance, pre-computing the multiplicative coefficients at each grid cell.
The additional storage required is approximately equal to that of the original
position histogram. So such pre-computation may provide a useful space-time
tradeoff in some situations. In any event, the time required for the computation
is simply O(g) for a g × g grid.

598 Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish

Algorithm pH Join (histA, histB)
// Inputs: Two histograms histA and histB,
// Output: Estimation of answer of A join with B .
for (i=0; i<grid size; i++)

for (j=i; j<grid size; j++) {
pSum[i][j].self = HistB[i][j];
if (j == i) pSum[i][j].down = 0; // column summation
else if (j == i+1) pSum[i][j].down = pSum[i][j-1].self;
else pSum[i][j].down = pSum[i][j-1].self + pSum[i][j-1].down;

}
for (j=grid size-1; j>=0; j--)

for (i=j; i>=0; i--) {
if (i == j) {

pSum[i][j].right = 0;
pSum[i][j].descendant = 0;

}
else if (i == j-1) {

pSum[i][j].right = pSum[i+1][j].self; // row summation
pSum[i][j].descendant = pSum[i+1][j].down; // region summation

}
else{

pSum[i][j].right = pSum[i+1][j].self + pSum[i+1][j].right;
pSum[i][j].descendant = pSum[i+1][j].down + pSum[i+1][j].descendant;

}
}

for (i=0; i<grid size; i++)
for (j=i; j<grid size; j++){

if (i==j) rHist[i][j] = HistA[i][j] * pSum[i][j].self / 12;
else rHist[i][j] = HistA[i][j] * (pSum[i][j].descendant

+ pSum[i][j].self / 4 + pSum[i][j].down - pSum[i][i].self / 2
+ pSum[i][j].right - pSum[j][j].self / 2);

total+=rHist[i][j]
}

output(total);

Fig. 9. Algorithm pH-Join for Computing the Join Estimate

3.4 Predicate Set Selection

Often, the predicats applied at node may not belong to the set of basic pred-
icates P. In such a case, there may be no precomputed position histogram of
start and end positions for nodes satisfying the specified predicate. However, if
the specified predicate can be expressed as a boolean combination of basic pred-
icates, we can estimate a position histogram assuming independence (between
basic predicate components of the compound predicate) within a grid cell. To be
able to manipulate counts, we need to convert these into the appropriate proba-
bilities. For this purpose, we can compute a position histogram for the predicate
“TRUE”, including all elements in the database, and simply using their start
and end positions to obtain the needed grid cell counts. For each grid cell, this
count is the appropriate normalization constant to carry out the conversion.

Compound predicates can arise not only because the query expression has
a compound predicate in it, but also because of the choices made in defining
the set P of basic predicates. Predicates in XML queries fall into two general
categories:

Element-Tag Predicates. These predicates are defined on the element tags.
An example of such predicate is elementtag = faculty. Element tag predicates

Estimating Answer Sizes for XML Queries 599

are likely to be common in XML queries, and are a good candidates for building
position histograms on. Usually, there are not many element tags defined in an
XML document, so it is easy to justify the storage requirement of one histogram
for each such predicate and build a histogram on each one of these distinct
element tags.

Element-Content Predicates. These predicates specify either an exact or
partial match on the contents of element. For example, text nodes with a parent
node year are numerical values (integer) within a small range. It is not unrea-
sonable to build histogram for each of these values. In some cases, some part of
the content has some general meaning, and tends to be queried extensively. It
would be helpful to set a predicate that evaluates to true if the prefix (suffix)
of the content of a text element matches to a certain value. We will see some
examples of both in Section 5.

It is likely that such predicates far outnumber the element-tag predicates, and
position histograms will only be built on element-content predicates that occur
frequently. In any event, minimizing error in the estimation of these values is
likely to be more important than errors in estimates of less frequent items. The
value of this general concept has been amply demonstrated in the context of
end-biased histograms [8].

4 Factoring in Schema Information

Up to this point, we assumed that the data was uniformly distributed within
any grid cell, and this is indeed a reasonable thing to do if no other information
is available. However, we may frequently have information from the schema that
can substantially modify our estimate.

For instance, if we know that no node that satisfies predicate P2 can be a
descendant of a node that satisfies P1, then the estimate for the number of results
for a query that asks for P1 satisfied at a node that is an ancestor of P2 is simply
zero – there is no need to compute histograms. Similarly, if we know that each
element with tag author must have a parent element with tag book, then the
number of pairs with book as ancestor and author as descendant is exactly equal
to the number of author elements.

We recommend that such schema information be brought to bear when pos-
sible. Our work here concerns itself with the vast majority of the cases where
schema information alone is insufficient.

4.1 No Overlap

We frequently know, for a given predicate, that two nodes satisfying the predi-
cate cannot have any ancestor-descendant relationship. For instance, in Fig. 1,
a faculty node cannot contain another faculty node. It follows that there can be
no node that is a descendant of two distinct faculty nodes. (For instance, a par-
ticular TA node can appear under at most one faculty node). In such situations,

600 Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish

the uniformity assumption within a histogram grid cell can lead to erroneous
estimates. We present, in this section, an alternative estimation technique ap-
propriate when the ancestor node predicate in a primitive two-node pattern has
the no-overlap property. It turns out that there is no impact on the estimation of
the descendant node in the pattern having a no-overlap property since multiple
descendants could still pair with the same (set of nested) ancestor node(s).

Definition 2 A predicate P is said to have the no-overlap property if for all
elements x, y such that P (x) and P (y) are TRUE, we have: endpos(x) <
startpos(y) or endpos(y) < startpos(x).

4.2 Summary Data Structure for Predicates with No-Overlap

For a primitive pattern with a no-overlap ancestor node a, the number of occur-
rences is upper-bounded by the count of the descendant node d in the pattern.
(Since each descendant node may join with at most one ancestor node). The
question is how to estimate the fraction of the descendant nodes that partic-
ipate in the join pattern. Within any one grid cell, the best one can do is to
determine what fraction of the total nodes in the cell are descendants of a, and
assume that the same fraction applies to d nodes. We call this fraction, the
coverage of a in that particular cell. Thus, our technique for dealing with the
no-overlap situation is to keep additional information, in the form of coverage.
Formally, we define the coverage histogram for predicate P : CvgP [i][j][m][n] to
be the fraction of nodes in grid cell (i, j) that are descendants of some node that
satisfies P and fall in grid cell (m,n).

At first glance, it may appear that the storage requirements here are exor-
bitant – rather than store counts for each grid cell, we are keeping information
for cell pairs. However, for a given grid cell r in the position histogram, and
consider its coverage in grid cell s, the coverage fraction is guaranteed to be one
whenever cell s is both to the right of and below r. And the coverage fraction
is obviously zero for cells that cannot include descendants of elements in r. As
such, it is only the cells s along the “border” for which one is required explicitly
to keep coverage information. In fact, one can establish the following theorem:

Theorem 2 In a g × g grid, the number of coverage histogram cell pairs with
partial (non-zero and non-one) coverage is O(g). In other words, the coverage
histogram requires only O(g) storage.

The proof relies on the fact that, due to the overlap property, if the grid cell
of focus is populated (by a node satisfying the “ancestor” predicate), then there
can be no node (satisfying this predicate) in any of the cells in the (black) region
with coverage = 1.

This, together with the algorithms we established for position histograms
in Section 3, estimation formulae for No-Overlap predicates can be derived, as
shown in Fig. 10.

Let’s go back to the example XML document again, and estimate the result
size for the same query pattern. This time, the no-overlap estimation algorithm

Estimating Answer Sizes for XML Queries 601

Ancestor-based pattern count estimate:

EstAB [i][j] = Jn FctA P1 [i][j] ×
∑

m=i..j,n=m..j
(CvgA P1 [m][n][i][j] × HistB P2 [[m][n]

×Jn FctB P2 [m][n])
Descendant-based pattern count estimate:

EstAB [i][j] = HistB P2 [i][j] × Jn FctB P2 [i][j] ×
∑

m=0..i,n=j..max y
(CvgA P1 [i][j][m][n]

×Jn FctA P1 [m][n])
Join factor estimate:

Jn FctAB Px [i][j] =
EstAB [i][j]

HistAB Px
[i][j] if HistAB Px [i][j] > 0, = 0 otherwise

Participation Estimation:

case1: the node (Px) that the estimation is based on can overlap

HistAB Px = EstAB

case2: P1 is no-overlap, estimation is ancestor-based

N [i][j] = HistA P1 [i][j]

M [i][j] =
∑

m=i..j,n=m..j
HistB P2 [[m][n]

HistAB P1 [i][j] = N [i][j] × (1 − (N[i][j]−1
N[i][j])M[i][j])

case3: item P2 is no-overlap, estimation is descendant-based

HistAB P2 [i][j] = HistB P2 [i][j] ×
∑

m=0..i,n=j..max y
(notzero(HistA P1[m][n])

×CvgA P1 [i][j][m][n])
Here, function notzero(x) = 1 if x �= 0, = 0 otherwise

Coverage Estimation:

case1: P1 is no-overlap, the join is ancenstor-based

CvgAB P1 [i][j][m][n] = CvgA P1 [i][[j][m][n] ×
HistAB P1

[m][n]

HistA P1
[m][n]

case2: P2 is no-overlap, and the join is descendant-based

CvgAB P2 [i][j][m][n] = CvgB P2 [i][[j][m][n] ×
HistAB P2

[i][j]

HistB P2
[i][j] × notzero(HistA P1 [m][n])

* Notation:

EstAB: estimation histogram of the pattern obtained by joining subpattern A,B

HistAB Px : number of nodes that satisfy Px and participate in the join of A and B.

Jn FctAB P1 : number of nodes satisfying P2 that join with each distinct node,

that satisfy P1, in the join of subpattern A and B.

CvgAB P1 : the coverage histogram of the distinct nodes that satisfy P1 and

participate in the join of subpattern A and B.

Fig. 10. Estimation Formulae for No-Overlap Predicates

is used. The Coverage Histogram of predicate “element tag = faculty” is shown
in Fig. 8. The estimate we get is 1.9, almost the same as the real result size.

5 Experimental Evaluation

We tested our estimation techniques extensively on a wide variety of both real
and synthetic data sets. First, we report on the accuracy of the estimates ob-
tained. Later, we present results on the storage size and the impact of storage
size on the accuracy of the estimate.

5.1 The DBLP Data Set

We ran experiments on several well-known XML data sets, including the XMark
Benchmark [15] and the Shakespeare play data set [20]. Results obtained in all
cases were substantially similar. In the interests of space, we present results only
for the DBLP data set [19] that is probably most familiar to readers of this

602 Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish

paper. The DBLP data set is 9M bytes in size and has approximately 0.5M
nodes.

For the DBLP data set, we picked a mix of element-tag and element-content
predicates and built histograms on exact matching of all the element tags, the
content value of years, and the prefix matching of the content of ‘cite’ (e.g conf,
journal, etc.). A few of these predicates, along with the count of the nodes that
match each predicate, and the overlap property of the predicate is summarized in
Table 1. Note that the predicates 1990’s and 1980’s are compound predicates, ob-
tained by adding up 10 corresponding primitive histograms for element-content
predicate (e.g. 1990, 1991 ...). In all, there are 63 predicates; and the total size
of all the corresponding histograms added up to about 6K bytes in all – roughly
0.7% of the data set size. (We used 10×10 histograms in all experiments, except
where explicitly stated otherwise.)

Table 1. Characteristics of Some Predicates on the DBLP Data Set

Predicate Name Predicate Node Count Overlap Property

article element tag = “article” 7,366 no overlap
author element tag = “author” 41,501 no overlap
book element tag = “book” 408 no overlap
cdrom element tag = “cdrom” 1,722 no overlap
cite element tag = “cite” 33,097 no overlap
title element tag = “title” 19,921 no overlap
url element tag = “url” 19,542 no overlap
year element tag = “year” 19,914 no overlap
conf text start-with “conf” 13,609 N/A
journal text start-with “journal” 7,834 N/A
1980’s compound 13,066 N/A
1990’s compound 3,963 N/A

Estimating Simple Query Answer Sizes. We tested the effectiveness of po-
sition histograms on a number of queries using a combinations of predicates from
Table 1. In the interest of space, we only present results for a few representative
queries in Table 2. The first row of this table considers a query pattern where an
element with author tag appears below an element with article tag. Other rows
consider similar other simple queries.

Without the position histograms, and without any schema information, a
(very) naive estimate for the answer size is the product of the cardinalities of the
node counts for the two predicates (i.e., article and author). The naive estimate
is far from the real result, since it does not consider the structural relationship
between nodes. With the schema information and no position histogram, if the
ancestor node has no-overlap property, the best (upper-bound) estimate of the

Estimating Answer Sizes for XML Queries 603

Table 2. Result Size Estimation for Simple Queries on DBLP Data Set

Naive Desc Overlap No-Overlap Real
Ance Desc Estimate Num Estimate Est Time Estimate Est Time Result
article author 305,696,366 41,501 2,415,480 0.000344 14,627 0.000263 14,644
article cdrom 12,684,252 1,722 4,379 0.000290 112 0.000261 130
article cite 243,792,502 33,097 671,722 0.000229 3,958 0.000261 5,114
book cdrom 702,576 1,722 179 0.000142 4 0.000259 3

result size is the number of descendants involved in the join. When position and
coverage histograms are available, overlap or no-overlap estimation algorithms
can be used. When no schema information is available, using position histograms
and the primitive pH-Join estimation algorithm brings the estimate closer to
the real answer size. In some cases, the primitive estimation is better than the
upper-bound estimation using only the schema information, while the no-overlap
estimation using position histogram and coverage histogram gives almost exactly
the right answer size.

Finally, the time spent on estimating the result size of a simple twig query
pattern, in all cases, using both the overlap algorithm and the no-overlap algo-
rithm, is only a few tenths of a millisecond, which is very small compared to
most database operations.

5.2 Synthetic Data Set

Whereas our tests on real data give us confidence, real data sets like DBLP are
limited in size and complexity. We wanted to understand how our techniques
would do given a more complex situation, with deeply nested and repeating
element tags. For this purpose we used the IBM XML generator[21] to create
synthetic data using a realistic DTD involving managers, departments and em-
ployees, as shown below:

<!ELEMENT manager (name,(manager | department | employee)+)>
<!ELEMENT department (name, email?, employee+, department*)>
<!ELEMENT employee (name+,email?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>

The predicates that we consider for this DTD are summarized in Table 3.

Table 3. Characteristics of Predicates on the Synthetic Data Set

Predicate Name Predicate Node Count Overlap Property
manager element tag = “manager” 44 overlap
department element tag = “department” 270 overlap
employee element tag = “employee” 473 no overlap
email element tag = “email” 173 no overlap
name element tag = “name” 1,002 no overlap

604 Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish

On the synthetic data set, we ran all types of queries we presented above.
Here, for lack of space, we present only the results of some representative simple
queries in Table 4.

Table 4. Synthetic Data Set: Result Size Estimation for Simple Queries

Naive Overlap No-Overlap Real
Ancs Desc Est Estimate Est Time Estimate Est Time Result
manager department 11,880 656 0.000070 N/A N/A 761
manager employee 20,812 1,205 0.000054 N/A N/A 1,395
manager email 7,612 429 0.000052 N/A N/A 491
department employee 127,710 2,914 0.000050 N/A N/A 1,663
department email 46,710 1,082 0.000054 N/A N/A 473
employee name 473,946 8,070 0.000062 559 0.000082 688
employee email 81,829 1,391 0.000054 96 0.000080 99

In this data set, some of the nodes have the no-overlap property, some don’t.
We obtain the estimate with the pH-Join algorithm for all the queries, and use
no-overlap estimation algorithm whenever possible. From Table 4 we can see that
whenever there is no-overlap property, the no-overlap estimation algorithm gives
an estimate that is much closer to the real answer size than those obtained by
using the primitive pH-Join algorithm. For joins where the ancestor node doesn’t
have the no-overlap property, the primitive pH-Join algorithm computes an es-
timate that is very close to the real answer size. In spite of the deep recursion,
the time to compute estimates remains a small fraction of a millisecond.

5.3 Storage Requirements

In this section, we present experimental results for the storage requirements of
both position histograms and coverage histograms (recall as per Theorem 2, we
expect the storage requirement to be O(n)). We also consider the impact of
storage space on the accuracy of the estimates.

Fig. 11 shows the effect of increasing grid size on the storage requirement and
the accuracy of the estimate, for the department-email query on the synthetic data
set. Since the predicate department does not have the no-overlap property, the
department-email pair join does not require any coverage information, therefore,
only position histograms are built on predicate department and predicate email.
The storage requirement for the two predicates are all linear to the grid size,
with a constant factor close to 2. The result estimate is not very good when the
histogram is very small. However, the ratio of the estimate to the real answer
size drops rapidly and is close to 1 for grid sizes larger than 10-20.

Article-cdrom join is an example of query with no-overlap property. Here,
both predicates (article, cdrom) have the no-overlap property, and consequently,
we store both a position histogram and a coverage histogram for each of them.
The storage requirement of these two predicates, as well as the accuracy of the

Estimating Answer Sizes for XML Queries 605

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

grid size

st
oa

ge
 r

eq
ui

re
m

en
t (

by
te

) department
email

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

es
tim

at
e

/ r
ea

l a
ns

w
er

 s
iz

e

grid size

estimation accuracy

estimate/real answer size

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

grid size

st
oa

ge
 r

eq
ui

re
m

en
t (

by
te

) Hist Article
Cvg Article
Hist Cdrom
Cvg Cdrom

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

es
tim

at
e

/ r
ea

l a
ns

w
er

 s
iz

e

grid size

estimation accuracy

estimate/real answer size

Fig. 11. Storage Requirement and Esti-
mation Accuracy for Overlap Predicates
(department-email)

Fig. 12. Storage Requirement and Esti-
mation Accuracy for No-Overlap Pred-
icates (article-cdrom)

estimation is shown in Fig. 12. Note that the storage requirement for both the
position histogram and the coverage histogram are linear to the grid size, which
results in the total storage requirement grow linearly with a constant factor
between 2 and 3. Another observation is that the estimate is not good when
the grid size is very small, but it very quickly converges to the correct answer.
Starting from the point where the grid size is larger than 5, the ratio of estimate
to the real answer size is within 1±0.05, and keeps in this range thereafter. The
reason is that more information is caught by the coverage histogram than by
only the position histogram.

6 Related Work

In [5], estimation techniques have been suggested for “twig” pattern queries in a
hierarchical database, including XML. These techniques generalize the work on
pruned suffix trees, presented in [16,10], and the notion of set hashing [3,6]. These
techniques, while powerful where they apply, suffer from some limitations. For
one thing, the techniques only apply to fully specified twig patterns, involving
only parent-child links. However, one expects many, perhaps even the majority,
of XML queries to involve patterns with ancestor-descendant links. For another
thing, the computation techniques only provide the selectivity estimate for the
entire query pattern. If estimates are required for sub-patterns, representing
intermediate results in a potential query plan, these have to be computed sep-
arately. Finally, the entire technique relies on notions of pruning in suffix trees,
and on maintaining small hashes for set similarity. These space-saving solutions
obviously lose information, and much ingenuity is used to minimize this loss. In
contrast, our techniques are insensitive to depth of tree, and require no pruning
and do not admit the possibility of a non-local information loss. (However, our
techniques are sensitive to the size of “symbol alphabet”, and the techniques

606 Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish

in the reference are probably more appropriate if a large number of basic node
predicates are required).

McHugh and Widom [13] describe Lore’s cost-based query optimizer, which
maintains statistics about subpaths of length ≤ k, and uses it to infer selectivity
estimates of longer path queries. Estimating selectivity of path queries has also
been the focus of a recent paper by Aboulnaga et al. [1], in which the authors
propose two techniques for estimating the selectivity of path expressions. The
first technique called path trees are similar to the pruned suffix trees of [5], but
are more accurate for estimating the selectivity of certain path expressions. The
second technique uses a Markov table to maintain statistics about all paths
up to a certain length. The Markov table approach is similar to [13], but can
be aggressively summarized, thereby reducing the amount of memory used to
maintain statistics. The techniques presented in these two papers do not maintain
correlations between paths, and consequently, these techniques do not allow them
to accurately estimate the selectivity of tree query patterns, which are very
natural in XML query languages.

Histograms of various types, including multi-dimensional histograms, have
been used for query estimation in databases [14,12,7,8,9]. However, XML queries
often involve an ancestor-descendant or parent-child relationships among nodes.
Traditional one dimensional histograms are not enough to catch the position in-
formation of each single node, relationship among nodes, as well as other struc-
ture information of the XML data. Therefore, a novel histogram is introduced
here which can capture the structure information native to XML data and esti-
mate the result size effectively and accurately.

7 Conclusions and Future Work

As XML continues to grow in popularity, large repositories of XML documents
are likely to emerge, and users are likely to pose complex queries on these data
sets. Efficient evaluation of these complex queries will require accurate estimates.
Queries in XML frequently specify structural patterns that specify specific rela-
tionships between the selected elements. Obtaining accurate estimates for these
is not easy, by traditional means. In this paper we have proposed a novel his-
togram technique called position histogram, and estimation algorithms using the
position histograms, that can be used for accurately estimating the answer size
for arbitrarily complex pattern queries. While the histograms we develop are
two-dimensional, they are sparse and only require storage that grows linearly
(rather than quadratically) with grid size. The estimation algorithms are com-
putationally efficient and require only a very small running time.

In many cases, schema information may be available, and frequently can be
used to set an estimate to zero or (through uniqueness) equal to some other sim-
pler estimate. We identify one specific schema restriction that occurs frequently
in XML, namely the no-overlap property. We exploit this property in a modified
estimation algorithm, which produces estimates that are more accurate than
the estimates produced without factoring in this schema information. An open

Estimating Answer Sizes for XML Queries 607

question is which other schema information can be considered together with the
position histogram to further improve the accuracy.

Extensive experimental evaluation using both real and synthetic data sets
demonstrates the effectiveness of the proposed techniques, for different type
of queries, simple or complex, and on XML documents of different structure,
shallow or deep and nested. The summary data structures and estimation tech-
niques developed in this paper are an important piece of the query optimizer
in the TIMBER[22] native XML database system under development at the
University of Michigan.

Theoretical and experimental studies have also be done on how to exploit the
estimation technique, using both position histograms and coverage histogram, to
estimate the answer size for query patterns that are arbitrarily complex. Issues
on estimation for queries with ordered semantics, with parent-child relationship,
and estimation using histogram with non-uniform grid cells are also looked into.
Please refer to [17] for detailed information of these techniques, as well as proofs
of all the lemmas and theorems in this paper.

References

1. A. Aboulnaga, A.R. Alameldeen and J.F. Naughton. Estimating the Selectivity of
XML Path Expressions for Internet Scale Applications. VLDB, 2001

2. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language
(XML) 1.0. W3C Recommendation. Available at http://www.w3.org/TR/1998/
REC-xml-19980210, Feb. 1998.

3. A. Broder. On the Resemblance and Containment of Documents. IEEE SE-
QUENCES ’97, pages 21–29, 1998.

4. D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon and M. Stefanescu
XQuery 1.0: An XML Query Language. W3C Working Draft, http://www.w3.org/
TR/xquery/, June 7, 2001.

5. Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R.T. Ng, D. Sri-
vastava. Counting Twig Matches in a Tree. ICDE, 2001.

6. Z. Chen, F. Korn, N. Koudas, and S. Muthukrishnan. Selectivity estimation for
boolean queries. In Proceedings of the ACM Symposium on Principles of Database
Systems, 2000.

7. Yannis E. Ioannidis. Universality of Serial Histograms. In VLDB, pages 256-267,
1993.

8. Y.E. Ioannidis, V. Poosala. Balancing Histogram Optimality and Practicality for
Query Result Size Estimation. In SIGMOD Conference, pages 233-244, 1995.

9. H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K.C. Sevcik, T. Suel.
Optimal Histograms with Quality Guarantees. VLDB, pages 275-286, 1998.

10. H. V. Jagadish, O. Kapitskaia, R. T. Ng, and D. Srivastava. One-dimensional
and multi-dimensional substring selectivity estimation. In VLDB Journal, 9(3),
pp.214–230, 2000.

11. H. V. Jagadish, L. V. S. Lakshmanan, T. Milo, D. Srivastava, and D. Vista. Query-
ing network directories. In Proceedings of the ACM SIGMOD Conference on Man-
agement of Data, Philadelphia, PA, June 1999.

12. R. J. Lipton and J. F. Naughton. Query size estimation by adaptive sampling. In
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, March 1990.

608 Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish

13. J. McHugh and J. Widom. Query optimization for XML. In Proceedings of the
International Conference on Very Large Databases, pages 315–326, 1999.

14. M. Muralikrishna and D.J. DeWitt. Equi-Depth Histograms For Estimating Se-
lectivity Factors For Multi-Dimensional Queries. In SIGMOD Conference, pages
28-36, 1988.

15. A.R. Schmidt, F. Waas, M.L. Kersten, D. Florescu, I. Manolescu, M.J. Carey and
R. Busse. The XML Benchmark Project. Technical Report INS-R0103, CWI,
Amsterdam, The Netherlands, April 2001.

16. M. Wang, J. S. Vitter, and B. Iyer. Selectivity estimation in the presence of
alphanumeric correlations. In Proceedings of the IEEE International Conference
on Data Engineering, pages 169–180, 1997.

17. Yuqing Wu, Jignesh M. Patel, H.V.Jagadish. Histogram-based Result Size Esti-
mation for XML Queries. University of Michigan Tech Report, 2002.

18. C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo and G.M. Lohman. On Supporting
Containment Queries in Relational Database Management Systems. SIGMOD,
2001

19. DBLP data set. Available at http://www.informatik.uni-trier.de/ley/db/index.html.
20. ibiblio Organization. XML dataset for Shakesapeare drama. Available at

http://sunsite.unc.edu/pub/sun-info/xml/eg/shakespeare.1.10.xml.zip.
21. IBM. XML generator. Available at http://www.alphaworks.ibm.com/tech/

xmlgenerator.
22. TIMBER Group. TIMBER Project at Univ. of Michigan. Available at

http://www.eecs.umich.edu/db/timber/.

	1 Introduction
	2 Problem Definition
	3 Our Proposal
	3.1 The Basic Idea
	3.2 Primitive Estimation Algorithm
	3.3 Analysis
	3.4 Predicate Set Selection

	4 Factoring in Schema Information
	4.1 No Overlap
	4.2 Summary Data Structure for Predicates with No-Overlap

	5 Experimental Evaluation
	5.1 The DBLP Data Set
	5.2 Synthetic Data Set
	5.3 Storage Requirements

	6 Related Work
	7 Conclusions and Future Work
	References

