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ABSTRACT 
A COMPUTER LEARNING ENVIRONMENT FOR NOVICE JAVA PROGRAMMERS THAT 

      SUPPORTS COGNITIVE LOAD REDUCING ADAPTATIONS AND 
      DYNAMIC VISUALIZATIONS OF COMPUTER MEMORY 

by 

James Stephen Williams 

The University of Wisconsin-Milwaukee, 2014 
Under the Supervision of Professor Susan McRoy 

 

Learning to program a computer is difficult for many. The Learning Edge Momentum 

hypothesis suggests that the difficulty may be due to the tightly integrated nature of 

programming concepts and adapting the way curriculum is offered may have a 

significant influence on the outcomes. We investigate applying cognitive load reducing 

methods to instruction of the introductory programming concepts of declaration, 

assignment and sequence, using a new learning environment that an instructor can 

adapt for a specific example or that a student can personalize for amount and modality 

of content provided. Our study has three learning surveys. Each learning survey has 

short instructional videos designed using cognitive load reducing methods and then asks 

participants to solve novel problems using the presented materials. Our first learning 

survey was completed by 123 participants recruited on Amazon’s Mechanical Turk 

(AMT). We found that 23% that watched the instructional video without computer 

memory (n=61) answered the three code tracing questions correctly. Our second 

learning survey included instructional videos prepared after analyzing the results of the 
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previous survey and emphasized cognitive load reducing methods in preparing the new 

instruction. This second survey was completed by 220 participants also recruited via 

AMT. We found that 57% of the participants that watched the instructional video 

without computer memory (n=72) answered the three tracing questions correctly. Our 

third learning survey with 322 participants recruited via AMT confirmed that the 

difference between the two videos was statistically significant with medium effect size. 

In the third survey, 29% of the participants watching the first survey instructional video 

without computer memory and 45% of those that watched the second survey 

instructional video without computer memory answered all three tracing questions 

correctly. In the third learning survey, the gain from 29% from our first short video that 

we thought was a reasonable presentation to 45% in the second short video seems to 

lend strong support to the hypothesis that our typical methods of instruction for 

introductory programming simply overwhelm the cognitive capabilities of many of the 

students. Our results suggest that cognitive load reducing methods may be very helpful 

for teaching introductory programming concepts. 
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1.     Introduction 

Personal Motivation and Inspiration 

As an instructor, I have spent many hours introducing programming to novices and I 

have had the experience of seeing some students seemingly just “get it” and others that 

really struggled. Over the years, I have tried workshop settings, various tools such as 

Alice and Jeliot, group work and various kinds of assignments.  Essentially, my attempts 

to improve programming instruction were based on my intuition and at times seemed 

to work for some students but not others. I found myself increasingly wanting to know 

what is really effective. I was familiar with John R. Anderson’s ACT-R research of which a 

key finding is “the acquisition and performance of a complex piece of behavior can be 

understood as the concatenation and performance of each of its underlying production 

rules” (1993).  Many of Anderson’s experiments were of students learning introductory 

programming. So I took this to mean that learning to program is learning a bunch of 

simple steps.  If learning programming is learning a bunch of simple steps, why are so 

many novices struggling and how can we help them learn these steps? 

Clearly the importance of understanding how computers work is increasing in our 

society and is seemingly influencing every field and ultimately everyone.  To me, this 

means there is increasing importance for everyone to learn introductory programming 
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to demystify and understand these machines we are building. Therefore this seems a 

worthwhile endeavor in which to spend a significant portion of my career.  So, I began 

this work interested in applying my engineering skill and teaching skill to this problem of 

helping novices to learn to program while simultaneously spending time reviewing the 

research and developing scientific skill to determine what is really effective for teaching 

introductory programming. 

General Problem 

Multi-national, multi-institutional (MNMI) studies have shown that the challenges with 

novices learning to program is worldwide.  McCracken et al’s (2001) MNMI study 

summarized “…many students do not know how to program at the conclusion of their 

introductory courses.”  Lister et al’s (2004) MNMI study showed “…many students lack 

knowledge and skills that are a precursor to problem-solving.” They note that novices 

have “…a fragile ability to systematically analyze a short piece of code.”  McGettrick et al 

(2005) note “educators cite failure in introductory programming courses and/or 

disenchantment with programming as major factors underlying poor student retention” 

with dropout rates in computing disciplines as high as 30-50% at many institutions.  

McGettrick et al describe the Grand Challenge before computing educators: 

“Understand the programming process and programmer practice to deliver effective 

educational transfer of knowledge and skills.” 
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Potential Solution 

In 2010, Anthony Robins published his Learning Edge Momentum (LEM) theory (Robins, 

2010) which gave an explanation regarding why many instructors seem to see evidence 

of those that can learn to program and those that cannot. In other words, an 

explanation for why we seem to see a bi-modal distribution of grades in our 

programming classes.  Essentially, Robins argues that there is little or no evidence for 

those that can and those that cannot learn to program despite many years of looking for 

evidence. Robins contends that it is well known that we learn on the edge of what we 

already know. He argues that when learning programming, the concepts are unusually 

tightly connected when compared to other fields. If a student misses a concept then 

acquiring other concepts that depend on the missing concept becomes increasingly 

difficult creating negative learning momentum. Contrastingly, if a student is able to 

master a concept then the next concept is easier and so creates positive learning 

momentum. This learning momentum phenomenon may begin very early and over the 

course of a semester, Robins argues, this momentum results in instructors seeing a bi-

modal distribution – some novices get it and some novices do not.  An implication of 

Robins’ Learning Edge Momentum theory is that by changing instruction to loosen the 

tight interconnection of concepts and reduce cognitive load we might be able to make 

introductory programming accessible to many more novices.  Mayer and Moreno (2003) 
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describe cognitive science research regarding the challenge of cognitive load and 

suggest nine ways to reduce cognitive load with multimedia instruction.  

Since the MNMI studies have more credibility than institution specific studies and take 

the focus away from issues specific to an institution, we wanted to be able to 

systematically test our efforts with a similarly diverse population. Due to the challenges 

with finding a significant number of diverse participants with some programming 

knowledge but not the knowledge we wanted to provide, we decided the best approach 

would be to find participants with no programming knowledge and teach them the first 

few concepts of introductory programming.  To carry out our study we preferred the 

credibility of existing instruments rather than the time and resources involved with 

creating our own. However, Tew and Guzdial (2010) claim “The field of computing lacks 

valid and reliable assessment instruments for pedagogical or research purposes.”  

Fortunately, there have been authors that have published their assessments and 

encouraged others to use them. Therefore, we decided to adapt and utilize Corney, 

Lister and Teague’s (2011) questions for the very early, fundamental programming 

concepts of assignment and sequence that seemingly were difficult for novices in week 

3 of a classroom course. 
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My Thesis 

Application of cognitive load reducing methods to instruction increases novices’ 

ability to trace Java code that utilize the concepts of declaration, assignment and 

sequence. 

The rest of this dissertation is organized as follows. The Related Work chapter discusses 

the difficulty novices have with the introductory concepts of assignment and sequence, 

cognitive load reducing methods and other environments for learning programming. 

The ReadJava Simulator chapter describes the adaptable tool we have built to assist 

novices with learning to program.  The third chapter, Experimental Results, describes 

our experimental methods and results.  Finally, the Conclusion summarizes the main 

contributions and some lessons for the future. 
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2.     Related Work 

In this chapter we review work relating to the research reported here.  First we describe 

the evidence that  novices have difficulty with the fundamental concepts of assignment 

and sequence as this is important to show these are a relevant problem to focus our 

initial investigations.  Second, we review methods for reducing cognitive load in 

instruction that we will be applying when preparing our instruction and that ultimately 

seem to have a surprisingly large effect on the results.  Finally, as a part of our effort we 

have built a substantial tool, ReadJava simulator, to assist novices with learning to 

program. Many others have built tools and learning systems to assist novice 

programmers as well so we compare and contrast our tool with theirs.  

New Programmers’ Difficulty with Assignment and Sequence 

We desire important and difficult introductory programming concepts that could 

feasibly be taught in a short amount of time to novices with no programming 

background in order to assess the effectiveness of our teaching methods with a 

substantial, diverse population of participants. Corney, Lister and Teague (2011) studied 

novice programmers in their first semester of programming and summarize “…the 

problems many students face with understanding code can begin very early, on 

relatively trivial code...these problems often go undetected until late in the semester.” 
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They focused on the introductory concepts of assignment and sequence since code 

segments utilizing them seem trivial but, as they showed, are not for novices.  They 

reported that 83 out of 227 students (36%) successfully answered all three screening 

questions in week 3 of their course. Of those that successfully answered the screening 

questions, about 47% successfully answered an explain-a-swap question and 

subsequently did very well on the end of semester exam. Those students that did not 

successfully answer an explain-a-swap question were not nearly as successful on the 

end of the semester exam.  

Porter and Zingaro (2014) provide evidence that suggests that the relationship between 

early success with fundamental concepts and success in the course is due to those 

fundamental concepts being a part of most questions on a final exam.  The fundamental 

concepts in introductory programming are assumed to be mastered and built upon 

quickly. If the fundamental concepts are not mastered early, then the difficulties of the 

students persist throughout the course. 

We were interested in the impression of other computer science educators on the 

difficulty of the concepts of assignment and sequence. In February 2014, we selected 

the second screening question (adapted for Java with minor modifications) and asked 

members of the computer science education community what percentage of their 

students could answer the question correctly by week 3. The specific question in the 
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survey sent by email to the SIGCSE-members1 mailing list with subject “Single Question 

Survey” is shown in Figure 1. 

Approximately what percentage of your students would be able to answer the following 
question correctly by week 3 in an introductory programming course at your institution? 

  

Write the values in the variables after the following code has 

been executed: 
int a; 

int b; 

 

a = 3; 

b = 5; 

 

a = b; 

b = a; 
The value in a is: ______ 

The value in b is: ______ 

Figure 1: SIGCSE Single Question Survey question 

There were 219 total responses of which 32 were blank. The rest of the responses 

ranged from 0% to 100% as shown in Figure 2. Some of the members of the SIGCSE 

community responded to the author directly, pointing out some of the variability in 

ways courses are taught with comments such as “hadn’t introduced assignment 

statements by week 3”, and “it is not possible to answer it for our introductory course, 

which is taught in a functional language and does not cover assignment or mutable 

variables”.   

                                                      
1 Special Interest Group on Computer Science Education (SIGCSE) 

http://www.sigcse.org/membership/mailingLists 
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Figure 2: SIGCSE Single Question Survey results 

The responses ranged from 0 to 100% reflecting the diversity of the students, 

institutions, methods of teaching and the broad range of perceptions. The average of 

the responses to the question in the Single Question Survey was 67% with a median of 

75%. Interestingly, when Ahadi and Lister (2013) had asked students that same question 

in week 3 and they found that 66% of students successfully answered it. In other words, 

on average, specifically for the question we asked, many educators believe the concepts 

of assignment and sequence are not trivial for their students. 

Reducing Cognitive Load 

An implication of Robin’s Learning Edge Momentum theory (2010) is that if we can 

design instruction that reduces cognitive load that may be a significant help to novices. 
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Mayer and Moreno (2003) describe meaningful learning as a deep understanding of the 

material such that the learner can apply the material to new situations measured using 

problem-solving transfer tests. Transfer tests ask the learner to solve new problems 

using the material. However, Mayer and Moreno state that “Meaningful learning 

requires that the learner engage in substantial cognitive processing during learning, but 

the learner’s capacity for cognitive processing is severely limited”(p.43).  According to 

Mayer and Moreno, a key challenge for instructional designers is “the potential for 

cognitive overload—in which the learner’s intended cognitive processing exceeds the 

learner’s available cognitive capacity.” (p.43)  

Mayer and Moreno describe three assumptions from cognitive science research about 

how the mind works: dual channel, limited capacity and active processing. Dual channels 

refer to our auditory and visual channels for processing verbal and pictorial information. 

Both the channels are very limited in terms of the amount of cognitive processing that 

can take place at one time. However, paying attention to new material, organizing it and 

integrating with current knowledge takes significant cognitive processing.  

Mayer and Moreno (2003) summarize nine cognitive load-reducing methods for 

presenting materials (p.46): 
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Off-loading: Move some essential processing from visual channel to auditory 

channel. 

Segmenting: Allow time between successive bite-size segments. 

Pretraining: Provide pretraining in names and characteristics of components. 

Weeding: Eliminate interesting but extraneous material to reduce processing of 

extraneous material. 

Signaling: Provide cues for how to process the material to reduce processing of 

extraneous material. 

Aligning: Place printed words near corresponding parts of graphics to reduce 

need for visual scanning. 

Eliminating Redundancy: Avoid presenting identical streams of printed and 

spoken words. 

Synchronizing: Present narration and corresponding animation simultaneously to 

minimize need to hold representations in memory. 

Individualizing: Make sure learners possess skill at holding mental 

representations. 



  12 

 

 

 

Our efforts investigate whether instruction designed specifically to minimize cognitive 

load will be effective in helping students improve their understanding of programming 

concepts. We applied cognitive load reducing strategies to our design of short 

instructional materials to teach the concepts of declaration, assignment and sequence 

to students that have never had programming training. Following the instruction, we 

asked the participants to answer adaptations of the screening and explain-a-swap 

questions of Corney, Lister and Teague (2011). 

Environments for Learning Programming 

Since at least the 1960’s, there have been many efforts and tools to assist novices with 

learning to program. Kelleher and Pausch (K&P) (2005) survey the programming 

languages and environments since the 1960’s and categorize them according to their 

primary goal.  By discussing how we would place our work within the K&P taxonomy, we 

are effectively comparing and contrasting our work with all the systems within the 

taxonomy. After we place our work within the taxonomy, we compare and contrast our 

work with more recent learning systems. Figure 3 shows a partial taxonomy with the 

gray nodes highlighting how we place the ReadJava simulator as a Teaching System, 

focused on Mechanics of Programming, more specifically on Understanding Program 

Execution and Tracking Program Execution. 
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Figure 3: Partial K&P Taxonomy with gray categories showing how we place ReadJava. 

Our work contrasts with the systems described in the K&P taxonomy in the following 

ways. Our work is a teaching system rather than an empowering system that enables 

learners to write code in a simplified environment such as Scratch (Resnick et al., 2009),  

Alice (Kelleher & Pausch, 2007) and Greenfoot (Henriksen & Kölling, 2004).  We agree 

with Lister (2011) that while efforts such as these empowering systems may attract 
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students to programming and motivate them to begin to learn programming, they do 

not fully address the problem that  learning to program is a challenging cognitive task. In 

contrast to some teaching systems within the K&P taxonomy, our system does not 

provide social support for learners to learn from each other or provide reasons to 

program.  Our system is focused on assisting individuals with learning the mechanics of 

programming.   

In contrast to other systems in the K&P taxonomy that also help novices with the 

mechanics of programming, our system is focused on helping novices learn to read, but 

not write code.  Also our system focuses on specific instructions and code fragments 

and tracking program execution rather than organization and structure of code.  Our 

system focuses on tracking program execution of specific Java instructions without the 

use of micro worlds or physical metaphors outside of a computer.  Compared to other 

systems for tracking program execution, such as debuggers within professional 

development environments and The Teaching Machine 2 (Bruce-Lockhart & Norvell, 

2007), our system initially provides an extremely simple model of a computer and 

memory that adds detail as the novice progresses.  

In contrast to more recent systems such as Jeliot 3 (Moreno, Myller, Sutinen, & Ben-Ari, 

2004) and UUhistle (Sorva & Sirkiä, 2010) that provide elaborate visual animations, our 

system simply highlights code and shows how memory contents change. Petre notes 
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that while visualizations are appealing, they are not necessarily helpful, are usually 

slower to transmit the same information and frequently require learning a secondary 

notation regarding layout, typographic cues and graphics. Relevance of the visualization, 

the structure and relationships are not obvious to everyone (Petre, 1995). Indeed, in 

one of our experiments we found that a substantial number of self-reported novices 

actually performed more poorly when given a visualization of the state of computer 

memory than when they just read the code and heard the narration. 

Levy and Ben-Ari (2007) lament building visualization tools, stating “we work so hard 

and [teachers] don’t use it”. Naps et al (2003) surveyed SIGCSE2 members on the top 

impediments for using visualization in their teaching.  The top five impediments listed by 

response percentage are 1) 93%: time required to search for good examples, 2) 90%: 

time it takes to learn the new tools, 3) 90%: time it takes to develop visualizations 4) 

83%: lack of effective development tools, and 5) 79%: time it takes to adapt 

visualizations to teaching approach and/or course content.  In contrast to other tools, 

our system is intended to have no learning curve to use and no burden on the instructor 

to develop supporting materials. Since our method focuses so specifically on the 

meaning of specific Java instructions, the bite-sized chunks can be easily utilized as 

                                                      
2 ACM Special Interest Group on Computer Science Education  http://www.sigcse.org/ 

http://www.sigcse.org/
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supporting materials by instructors utilizing any existing methods of teaching 

introductory Java programming.  
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3.     The ReadJava Simulator 

In this chapter we discuss why we chose to build our own tool, we describe the tool, the 

development approach and provide several detailed examples of use of the tool.  For 

the tool description we include the architecture, design rationale, user interface and 

configuration.  Our examples are chosen to illustrate how we have implemented 

important and difficult introductory computer programming concepts that we believe 

may be helpful to many novices.  In the next chapter, we discuss experimental results 

using the tool with novices learning the first steps with programming. 

Why Build Our Own Software? 

Initially, we considered and began investigating adapting the NetBeans debugger to 

alter the memory view such that it would have minimal data appropriate for first step 

novices.  However, we realized we did not want just a simpler view but desired a 

conceptual model which “…is not a mental model but an explanation of a system 

deliberately created by a system designer, a teacher, or someone else.  Its purpose is to 

explain a system’s structure and workings to potential users” (Sorva, 2012). The model 

we wanted did not have to be technically correct but should be appropriate for novices 

taking their first steps with learning to program.  
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To minimize the cognitive load of the instruction and loosen the tight binding between 

programming concepts, we wanted to be able to design instruction in bite-sized 

segments and relentlessly weed extraneous information. As noted by Bruce-Lockhart & 

Norvell (2007), when we program, the machine that we are giving instructions combines 

aspects of the computer, compiler and memory management. Initially for novices we 

want to hide the details of what each part of this system does. For example, we wanted 

the flexibility to simulate a program fragment rather than a complete Java program as 

well as reinforce the notion that programming is a mechanical process of executing one 

instruction after another.  In Java, a strongly typed language, a variable must be 

declared before it can be used.  However, the compiler handles the declaration and will 

allocate the local variables on the stack when the method is called. When executed 

step-by-step, the variables will be available as the method is called but before the body 

of the method is executed. In other words, to a novice the variables seem to appear 

before execution specifically reaches them.  Explaining all this to a novice trying to write 

their first programs, we believe, helps lead to cognitive overload.  Therefore, we felt the 

easiest path was to write our own simulator that would give us control of exactly how 

we wanted to present the Java instructions, even if a code fragment and even if not a 

technically correct implementation. 
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Architecture 

 

Figure 4: ReadJava simulator program and configuration files 

The ReadJava simulator is implemented in Java and can be run as a desktop application 

or applet3.  On program startup, the simulator reads configuration information from two 

files, an XML file containing the Java program and a text file that contains the 

descriptions for the meaningful steps we have defined for Java programs, essentially 

annotations for Java code. The Java program file, specified as a command-line or applet 

                                                      
3 We were initially anticipating distributing the applet online to our participants with an audio clip rather 

than creating the screencast. However, given the security concerns, warnings and configurations for Java 

applets, participants would probably have had much higher frustration and much lower successful 

participation rate. In addition, instead of mimicking the controls of a video to reduce cognitive load, we 

were able to have the participants simply use YouTube video controls which they were likely already 

familiar. 
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parameter, provides the Java program or program fragment to simulate along with 

various configuration options for the simulator.  There is a Java program file for each 

example program which may contain more than one Java class. The metadata for 

annotating a Java code file is a list of name/value pairs (properties) that provides the 

textual descriptions for each step in the execution of a program within the simulator. 

Having the textual descriptions separate from the code makes them easier to modify as 

we investigate the best descriptions to provide to novices. Currently there is a single 

property file with annotations but we can imagine multiple files for different levels of 

novice programmers or perhaps with the text in different languages. 

Figure 5 shows the ReadJava simulator we designed and built to explain and illustrate 

various introductory programming concepts for novices.  Using Camtasia Studio 

software, we recorded screen casts with a narrator using the simulator that are shared 

with novices as bite-sized segments of instruction. 
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Figure 5: ReadJava Simulator executing a Java program fragment 

Java Program Fragments 

Even a simple Java program requires understanding many concepts. An example of the 

simplest possible complete Java program that provides output and is typically the first 

program described to novices is shown in Figure 6: 
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public class HelloWorld { 

 public static void main( String [] args) { 

  System.out.println(“Hello World!”); 

} 

} 

Figure 6: “Hello World” Java Program4 

When executed, this “Hello World” program writes the characters Hello World! to 

an output device, such as a console window. Many of the keywords and symbols here 

such as public, class, static and [], will not be covered in any depth until later 

in a first semester programming course. In order to minimize the potential for cognitive 

overload, our solution allows program fragments (incomplete Java programs) to be 

executed, such as the simple example shown in Figure 7 containing the concepts of 

declaration, assignment and sequence. 

int i; 

i = 2; 

Figure 7: Java Program Fragment 

Metadata for Java Programs 

When the ReadJava Application runs, an XML file containing the code to run is specified 

on the command line (or as an applet parameter when run as an applet).  An example 

XML file is shown in Figure 8 

                                                      
4 https://en.wikipedia.org/wiki/Hello_world_program   retrieved May 6, 2013. 

https://en.wikipedia.org/wiki/Hello_world_program
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<topic> 

    <filename>AssignmentExample1.Java</filename> 

    <mainClass></mainClass> 

    <program><![CDATA[    int a; 

    int b; 

 

    a = 5; 

    b = 10; 

 

    a = b; 

    b = 7; 

        ]]></program> 

    <showMemory>true</showMemory> 

    <memoryColumns>Name,Value</memoryColumns>     

    <showOutput>false</showOutput> 

    

<showLiteralAtFirstReference>true</showLiteralAtFirstReference> 

    <showVarAtDeclarationTime>true</showVarAtDeclarationTime> 

</topic> 

Figure 8: XML configuration file for simulator 

The empty tag <mainClass> indicates that this is a Java code fragment and not a 

complete Java program with a main class and main method. In the case of a fragment, 

the name “(default)” is used within descriptions that specify the class and method 

names.  

The value for the tag <showMemory> indicates whether to show the computer 

memory view or not. For some concepts or potentially some learners, the memory view 

may not be helpful. Mayer and Moreno (2003) note learners with high spatial ability 

may benefit more from simultaneous presentation of visual and auditory information 

than low spatial ability learners.  
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The tag <memoryColumns> describes the columns to show in the computer memory 

view, in this case the Name and Value columns. We also have a Description column that 

contains terms that describe the various memory areas. Weplan to add Address, 

Hexadecimal Value and Binary Value columns as they may be useful for more advanced 

novices to learn more detail about how values are stored in computer memory.  The 

<showOutput> tag determines whether to show the Program Output view.  

The <showLiteralAtFirstReference> tag indicates whether to delay showing 

the literal in memory until execution has reached the literal.  Since literals are processed 

by the compiler they will be loaded into memory when the Java class is loaded into the 

Java Virtual Machine (JVM).  To a novice that may have heard of but has not yet 

mentally organized or integrated these concepts, having the literal just show up in 

memory prior to execution may reinforce the notion of “a hidden mind somewhere in 

the programming language that has intelligent interpretive powers” (Pea, 1986). For 

example the author, when teaching novices in a classroom, has had novices express 

confusion related to why one can type a “1” in a program and it just goes into memory, 

while when the program reads a “1” from a file it must be specifically converted to an 

“int” to be stored in memory.  If we show the literal in memory at the time execution 

reaches the literal then we are showing a naïve view but have the opportunity to 

provide an explanation for the conversion of the literal from typed characters to the 
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binary format in memory, which otherwise might just seem to occur by the “hidden 

mind”. Whether or not we show literals loaded into memory when the class is loaded or 

at runtime when the literal is reached as a part of execution, the resulting execution is 

the same. 

Discussion of literals was included in the videos in Learning Survey 1 but was not 

included in the videos in Learning Survey 2 as it was determined to be an unnecessary 

detail for the first few minutes of instruction to teach novices to trace code. Removing 

this detail from our Learning Survey 2 videos is an example of applying the weeding 

cognitive load reducing method. 

The <showVarAtDeclarationTime> tag, when true, means the simulator should 

wait until the declaration statement for a variable before showing the variable in the 

computer memory view.  Again, this is a naïve interpretation intending to reduce the 

cognitive load by explaining certain concepts in a simple way initially to create a bite-

sized instruction segment. 

Metadata for Annotating Java Code 

The textual descriptions that are shown to the user at each step of Java code execution 

are stored in a text file with a single line per item.  Each item has a name (property) and 

value separated by ‘=’ sign.  The value is a string that contains parameters that are 
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bound to values at runtime.  An example of a parameter is $varName$ which will 

contain the specific variable name at runtime. A partial example of this file is shown in 

Figure 9. 

 

Figure 9: Partial view of text description properties file. 

A special property ‘config.showParams’ normally has a ‘false’ value. This particular 

property is intended to be helpful for instructors that would like to make changes to the 

text shown for specific steps. Since there may be similar text for different steps in 

execution, knowing which text to change within the file may not be obvious.  By setting 

the ‘config.showParams’ property to “true”, the property name will be shown along 

with the text to the user of the simulator. An instructor can simply search the properties 

file for the unique property name in order to find the text the instructor wishes to 

change. 

Controls 

To reduce or eliminate the need for learners to learn how to use the tool, we designed it 

to be similar to other tools that the learners probably already use. For example, playing 
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a video seems similar to our task of watching a simulation of a Java program being 

executed that visually illustrates one instruction at a time. They both have a large visual 

component, a starting point, and an ending point. Both could be paused, rewound and 

started again. A video can be stopped at any time, and restarted at any point, forward 

or backward, whenever a user desires. Therefore, we have designed the controls for our 

simulator to be similar to video controls. For example, there is a Play button in the 

simulator that behaves the same way as a play button for a video.  Additionally, there is 

a timeline showing progress of the execution, similar to a timeline on a video.  Clicking 

on the timeline at any point changes the execution of the program to that point, either 

forward or backward.   

Consistent with Webber (1996) we avoid teaching input and output initially to keep the 

learner focused on learning computation concepts.  Avoiding input also allows us to 

execute the program completely and therefore allows the user to click forward on the 

timeline. The steps are shown to the user as the user wishes by either jumping forward 

or backward. Some differences between our simulator and a video are that it may be 

helpful to explicitly advance through each step of the simulation at the pace of the user 

rather than a preset time.  Therefore, additional buttons are provided labelled Step and 

Back for that purpose.  
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We initially intended to have participants utilize the Java applet directly. However, due 

to applet security concerns, configuration and the variety of browsers our participants 

would have, this did not seem to be feasible. Therefore, we decided to record use of the 

simulator with a software product, Camtasia Studio, which includes recording audio. 

Videos hosted on YouTube are widely supported by browsers and therefore we could 

avoid many issues. As we record a screencast of the simulator with a narrator, the 

novice is actually just using video controls and therefore should have little to no learning 

curve for use of the tool. 

Examples 

ReadJava is able to simulate some of the most important and difficult concepts in 

introductory programming. Our Looping example can be utilized to describe how to 

trace control flow and help with understanding loop variable scope. Our Method Call 

and Recursion example can be utilized for illustrating parameter scope, procedure 

design and tracing and designing recursion. Our Class Instantiation and Class Variables 

example can be utilized to explain classes and objects, static fields and methods, 

polymorphism, inheritance, memory model, references and pointers. 
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Looping 

Figure 10 includes an example with loop code. Tracing control flow and understanding 

loop variable scope are in the top 32 important and difficult concepts identified by 

Goldman et al (2008). Prior to the loop example shown in Figure 10, we are assuming 

the learner has had bite-sized learning of literals, including String literals, the “+” 

concatenation operator, writing out output (e.g., System.out.println), comparison 

operators (e.g., <=) and the increment operator (e.g., ++). In Figure 10, the Program 

Output view is shown along with the Description column in the computer memory view. 

The Description column names various regions of memory and provides terms that 

describe the various memory areas.  For example, regions of memory are denoted 

“Literals”, “Instances”, “Temporary Storage” and “Method Variables (Stack)”.  The 

literals are shown as the program starts up, rather than waiting until the literal is 

reached during execution. The Instances area includes the String literals which are 

instances of the String class. Temporary Storage is way of referring to temporary areas 

of memory without reference to registers, machine code, or memory management.   

Method Variables, shown at the bottom of the Computer Memory view, are essentially 

the program stack showing the local variables and parameters for methods. In addition, 

this area also shows the return values from previous method calls within the current 
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method. In the Method Call and Recursion example, we will cover this region in more 

detail. 

Note that an instructor can hide the Literals and Instances, and even the Description 

column, via the configuration file in order to focus attention on the way a for loop works 

in Java. In the bottom right corner of Figure 10 are the Edit Program and Compile & Run 

buttons. Our focus is on reading Java and not writing and so this capability is not 

intended for first step novices.  However, we may offer this capability to more advanced 

learners. 

 

Figure 10: Loop code fragment example, showing output, local variables, instances and 
literals. 
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Method Call and Recursion 

Figure 11 shows an example of a recursive method call. Understanding parameter 

scope, procedure design, and tracing and designing recursion are all in the top 11 most 

important and difficult programming topics (Goldman et al., 2008). In Figure 11 is a 

Fibonacci class with the fib static method.  With this example, the novice can see 

method calls and recursion in action. As a novice can see, the Method Calls area of 

memory grows taller with each call and shrinks with each return.  The return values 

from methods called within the current method are shown in memory. In the 

Description column, the numbers preceding each memory item indicate with which 

method call they are associated. The value of the parameter at each point in time is also 

shown.  A narrator could step through bite-sized aspects of this example to highlight 

various aspects such as how the stack grows and shrinks. A narrator can point out that 

the recursive calls seem to be making the same method calls to calculate the same 

values, over and over. We anticipate that this kind of explanation demonstrating 

recursion may be helpful for novices to see the effects of recursion and also able to 

realize when iteration may be more efficient.  We also anticipate that having a 

contrasting demonstration with an iterative version of the code for calculating the same 

Fibonacci sequence may be helpful for a novice. 
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Figure 11: Complete recursive program showing local variables on stack and a value 
being returned from a previous recursive call. 

Class Instantiation and Class Variables 

Figure 12 shows a class instantiation example. The difference between classes and 

objects, static fields and methods, and polymorphism are in the top 32 most important 

and difficult programming topics while inheritance, memory model, references, and 

pointers are in the top 11 (Goldman et al., 2008). The example in Figure 12 can be 

utilized to discuss these concepts.  Of course, it will likely take a number of bite-sized 
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guided video examples to illustrate these concepts such that novices are not 

overwhelmed. 

In Figure 12 there is a Dog class that inherits from an Animal class.  There is a third class, 

TestDog, with a main method which declares and allocates an instance of a Dog. In this 

example, the class variable numDogs is shown when the Dog class is loaded into the 

simulator to emphasize that it exists even without an instance of Dog being created.  As 

a “new Dog()” is initialized each initializer and constructor is highlighted and executed in 

turn showing the various instance fields being initialized.  This highlighting should help a 

novice to understand the difference between class (static) and instance (non-static) 

variables as well as realize that an instance of class Dog inherits the instance variables of 

the parent class Animal.  At the moment in time the simulation is shown in Figure 12, 

the new instance of Dog has been allocated and initialized but control is still within the 

Dog constructor. In the next few steps the control will return to the ‘main’ method and 

the reference to the instance “(instance reference:9)” will be saved to the variable ‘d’. 
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Figure 12: Class instantiation example showing class variable and instance fields in the 

process of be allocated and initialized. 
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Discussion of Design Decisions 

Our primary goal is to reduce cognitive load for novices learning to program. A 

secondary, but essential goal, is to create a learning tool that instructors and learners 

will want to use.  Here is our rationale for some important design decisions. 

Java Programming Language 

First, why use Java specifically in our instruction? Pears et al (2007) reviewed studies 

that describe factors that affect language choice in computer science education and 

found that external factors such as market appeal, industry demand and student 

demand are some of the most important factors in choosing a language. The Tiobe 

index5 ranks the most popular programming languages using search engines and is 

updated monthly. Over the last 10 years Java has been one of the top three most 

popular languages. Currently, Java slightly lags C to be the second most popular but 

seems to be stable at that ranking with almost double the popularity of the next highest 

ranked languages C++ and Objective-C. We anticipate that Java will continue to be used 

widely in both industry and within Computer Science departments and so we chose to 

utilize it.  

                                                      
5 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html  retrieved May 4, 2013 

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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Reading Code vs. Writing Code 

Venables, Tan and Lister (2009) found that the combination of tracing and explaining 

skills leads to skill in writing code.  So, to reduce cognitive load we do not focus on 

solving a problem utilizing Java but focus on learning to read and trace Java instructions 

(segmenting and weeding in load reducing terms). Our instruction must show the Java 

code, but does not need to allow novices to edit the code or handle the incorrect code a 

novice might produce. Intuitively, if we want to teach someone to write in a language, 

such as English for example, it would be helpful if they knew some English words and 

had seen a number of examples of how they are combined to form a meaning prior to 

asking them to write English. They would not need to know a lot of English but have a 

working knowledge of some words and how to put them together. 

Explanation and Highlighting of Each Instruction 

The ReadJava simulator highlights each Java instruction as it is being executed along 

with showing the text explanation of a step and the memory contents at the point the 

step is executed. Highlighting and giving the explanation is applying the signaling and 

segmenting cognitive load reducing methods. Highlighting is signaling to focus the 

attention of the learner.  Giving a specific explanation for a step is a form of segmenting 

as this is providing a very small unit of instruction at a pace controllable by the learner. 
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Bruce-Lockhart & Norvell (2007) note that when we program, the machine that we are 

giving instructions combines aspects of the computer, compiler and memory 

management. A literal or naïve interpretation of the instructions should be made that 

would be most appropriate for a novice learning the meaning of programming 

instructions for the first time. Essentially we are suggesting reducing the tight coupling 

between concepts. For example, compilers frequently perform optimizations that may 

influence the actual order of execution. One optimization is to allocate the memory for 

all the local variables for a method at the time the method is called. However, if our 

simulation shows that the local variables are allocated prior to the execution step 

reaching the instruction that declares the variable, this could be quite confusing to a 

novice about what Java instruction is actually responsible for the allocation of the 

variable.  Therefore, we start with the simple interpretation that a variable is allocated 

when the declaration is reached during execution. After a student advances in 

understanding, then additional detail and complexities can be explained. A literal 

interpretation of the code now with more detail later are examples of the segmenting 

and weeding load reducing methods. That there is a tool called a compiler that has 

converted the code to another form that is executed by a not real but virtual machine is 

too much extraneous detail for a novice that has the pre-existing assumptions 
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mentioned by Pea. These details can be added, in a cognitive load appropriate way, 

after the literal interpretation is learned. 

Learning to trace control flow through program execution is one of the top 32 most 

important and difficult topics (Goldman et al., 2008). As du Boulay (1989) notes “Loops 

cause beginners all kinds of trouble”. These troubles include that the loop control 

variable is incremented each iteration of the loop, that the conditional expression 

involving the loop control variable will change each time through the loop, and that the 

loop does not terminate at the very instant the control condition changes but will 

terminate the next time the control condition is checked. Thus our solution highlights 

each instruction as it is executed to focus the learner’s attention as well as demonstrate 

control flow during execution. 

As Mayer (1997) notes for multimedia learning, a graphic should be coordinated with 

the text explaining the graphic. The graphics, in our case, are the highlighted Java code. 

Our solution provides a textual explanation that describes the meaning of the 

highlighted code, suitable for a novice just beginning to learn to program. 

Optional Model of Computer Memory 

A model of computer memory seems very important and how we model computer 

memory seems as important. Our analysis, in Appendix A, of Goldman et al’s (2008) 
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important and difficult programming fundamentals topics suggests about half seem 

directly related to understanding how Java instructions influence the contents of 

computer memory, thus effectively presenting the contents of computer memory for 

Java instructions might be very helpful for novices. Ben-Ari (1998) asserts “students do 

not have an effective model of a computer” and “models must be explicitly taught”. In 

his study of how novices learn computer programming, Mayer (1981) writes “a concrete 

model can have a strong effect on the encoding and use of new technical information by 

novices”. We are intending the computer memory to be a conceptual model which “is 

not a mental model but an explanation of a system deliberately created by a system 

designer, a teacher, or someone else.  Its purpose is to explain a system’s structure and 

workings to potential users” (Sorva, 2012).  How we design the computer memory 

model seems critical as Petre (1995) notes that visualizations are appealing however 

they are not necessarily helpful, usually slower to acquire the same information and 

frequently require learning a secondary notation regarding layout, typographic cues and 

graphics. Petre allows that novices “might benefit from a more constrained system in 

which secondary notation is minimized, in order to reduce the richness and the 

potential for mis-cueing and misunderstanding.” Thus, consistent with cognitive load 

reducing methods, we start with a simple model of computer memory  that can be 

enhanced as a novice gains knowledge and understanding. The simplest concept of 
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memory to us is that a memory location has a name and a value.  A list seems an 

appropriate way to show several name/value pairs.  We anticipate being able to add 

additional fields, such as addresses and binary values, to the memory locations as a 

novice learns. Thus a list of name/value pairs seems a good starting point for a memory 

model and is straightforward to implement. Allowing the instructor or the novices to 

adapt the simulator by showing or hiding various aspects is important. For example, 

having the computer memory model visible is optional as it shows significant 

information and may be a distraction. In one experiment, to be described here, some 

self-reported novices performed more poorly when given a visualization of the state of 

computer memory than when they just read the code and heard the narration. 
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Figure 13: ReadJava Program Simulator executing a Java program fragment 

Use of Multimedia 

Clark and Mayer (2011) note that switching attention between a visual and the text that 

explains the visual, such as in a textbook, can overload human cognitive abilities 

particularly when the concepts are new or complex. When a visual is the focus of words 

then the words should be spoken simultaneously with the visual and the words should 

not be in written form. “The psychological advantage of using audio presentation is a 

result of the incoming information being split across two separate cognitive channels—
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words in the auditory channel and pictures in the visual channel – rather than 

concentrating both words and pictures in the visual channel.”  

Therefore, we utilized Camtasia Studio, a software application that records the 

computer screen and audio from the computer microphone, to create a video.  The 

video just shows the Java instructions and the computer memory model portions of the 

simulator with a narrator describing the meaning of the instruction thereby offloading 

text from the visual channel and adding narration to the auditory channel. In other 

words, we are applying the offloading and synchronizing cognitive load reducing 

methods. Since the learner does not need to learn the controls of the simulator but will 

use the likely more familiar controls of a video player, we have reduced the cognitive 

load further. 

As noted by Mayer (2004), guided methods of learning are more effective than pure 

discovery learning where a learner is free in interact within a learning environment 

without guidance. Having these recorded, guided explanations of example programs 

executing in the simulator is likely more effective than expecting the learner to discover 

important concepts by just exploring the examples with the simulator on their own. 

While we may eventually develop the simulator as a product to be shared, we are not 

convinced that should be a primary focus of our work. Levy and Ben-Ari (2007) lament 

building visualization tools, stating “we work so hard and [teachers] don’t use it”. Naps 
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et al (2003) surveyed SIGCSE6 members on the top impediments for using visualization 

in their teaching.  The top five impediments listed by response percentage are 1) 93%: 

time required to search for good examples, 2) 90%: time it takes to learn the new tools, 

3) 90%: time it takes to develop visualizations 4) 83%: lack of effective development 

tools, and 5) 79%: time it takes to adapt visualizations to teaching approach and/or 

course content.  Making the simulator available, even if proven effective in some cases, 

will not necessarily be beneficial to many. However, guided instruction as we have 

described above with essentially no learning curve for either instructors or students, 

other than the content itself, may be much more beneficial to many.   

                                                      
6 ACM Special Interest Group on Computer Science Education  http://www.sigcse.org/ 

http://www.sigcse.org/
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Figure 14: YouTube video of ReadJava simulator in use 

Development Approach 

We used an iterative, depth-first approach to building a complex tool that would allow 

one to test various hypotheses for improving computer science education as well as 

deliver computer science instruction. From our teaching experience and published 

important and difficult introductory programming topics (Goldman et al., 2008) we 

defined a set of example programs that our simulator should be capable of handling.  

These include a short program fragment with declaration and assignment statements, a 

looping program fragment, a complete recursive method call program and a complete, 
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multiple class object instantiation program.  We implemented the features in the 

compiler and interpreter necessary to simulate these programs.  

Our design is intended for straightforward extension. For example, we utilized a 

complete Java 1.6 grammar and simply stubbed the language elements in the compiler 

and interpreter not necessary for our examples.  We implemented String concatenation 

(“+”) as it was used in the looping and method call examples.  We implemented addition 

(“+”) and subtraction (“-“) as they were used in the recursive example.  We stubbed 

multiplication and division as they are not utilized. We implemented method calls and 

return values as they are necessary for our recursive method implementation. We 

implemented constructors to illustrate the multiple constructor calls necessary to create 

an instance from a class that inherits from other classes as illustrating this process is 

important and difficult for novices.  Our implementation of polymorphism simply 

compares the method name, number and exact data types of each parameter to 

determine the method to call.  We have not implemented data type coercion. Our 

specific examples did not use double, float, short or byte and so those are just stubbed 

where appropriate in the code. There is very limited error handling of incorrect Java 

example code as we assume correct Java code examples and do not intend to support 

novices’ development of code in the simulator in the near future. 
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This iterative, depth-first approach has enabled us to begin experimenting, validating 

and adjusting our approach and tool with merely substantial development hours for a 

single software engineer, the author.  A complete Java simulator that works for any Java 

program would take many development years with many developers. Over time and 

with others help this may happen, but more iterative research is necessary to prove that 

this size of effort is worth the resources for this particular project.  

Implementation 

We used a parser generator, ANTLR7 (Another Tool for Language Recognition), to build a 

parser for Java 1.6 based on a Java grammar available from www.ANTLR.org.  We 

inserted additional grammar rules into the Java 1.6 grammar to allow for Java program 

fragments to be parsed that would not normally be allowed, such as the examples that 

just include Java instructions illustrating declaration, assignment and sequence. For Java 

fragments, the interpreter internally creates a default class and default method that it 

utilizes to hold the statements in the fragment. 

                                                      
7 Terence Parr designed and built ANTLR and his books The Definitive ANTLR 4 Reference (Parr, 2012) and 

Language Implementation Patterns (Parr, 2011) have been instrumental. 

 

http://www.antlr.org/
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Utilizing the ANTLR parser, we implemented a compiler with two phases: a definition 

phase and a reference phase. The definition phase builds a symbol table from the 

classes, fields, parameters and variables declared in the Java instructions. The reference 

phase resolves the references to the symbols in the symbol table.  All information from 

compilation is stored in internal objects.  

Following compilation, the simulator executes an interpreter that begins executing the 

Java instructions utilizing the parse tree and symbol table created by the compiler. 

Meaningful steps in the execution are recorded as a list of steps. Meaningful steps are 

those that we choose to highlight in the code, illustrate in computer memory and 

describe with text. Deciding what is meaningful is an ongoing process. Each meaningful 

step recorded is considered one increment of time.  Every change to a variable value 

during execution has the current time increment recorded with it. Note that at this 

stage, we do not provide a means for users to input information into example programs. 

Therefore, they can be run to completion after they are compiled. 

The novice is able to view the execution both forward and backward by navigating this 

list of steps using the timeline. Since each particular step corresponds to a particular 

time, the values of the variables at that time can easily be retrieved and displayed. 
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4.     Experimental Results 

We prepared and carried out three experiments.  The first experiment, Learning Survey 

1, was designed to directly compare the instruction with a memory model, to instruction 

without a memory model. We hypothesized that the memory model would have some 

positive effect. The results of Learning Survey 1 indicated that there may be a small 

positive effect in some cases but was not statistically significant for our sample size.  We 

anticipated that by improving the instruction applying the cognitive load reducing 

methods further we would possibly see improved results for the memory model. 

In the second experiment, Learning Survey 2, we directly compared the improved 

instruction with the memory model and without the memory model along with the 

ability of participants to answer the questions without any instruction.  The results of 

Learning Survey 2, indicated that instruction was effective but that use of the computer 

memory model seemed to have a small, detrimental effect in some cases.  We noticed 

when comparing the results of the Learning Survey 1 and Learning Survey 2 that there 

was a substantial improvement from the first survey to the second seemingly due to the 

improved instruction.  While we anticipated that reducing the cognitive load would be 

helpful to explaining the concepts, particularly to participants that had no expressed 
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interest in learning to program, we did not anticipate such a large difference between 

the two sets of instruction. 

Since the first and second learning surveys were carried out about four months apart, 

we had advertised differently for participants and had paid different amounts for 

participation, the comparison of results between the first and second experiments could 

be suspect.  So, we carried out a third experiment, Learning Survey 3, which directly 

compared the instructional without memory model videos from the first two 

experiments. The results of Learning Survey 3 indicated that the shorter, improved 

instruction from the second experiment was significantly more effective that the 

instruction from the first experiment. 

Each experiment was a learning survey which consisted of participants watching one of 

a set of videos and then answering some questions that required applying the content 

of the video.  The groups that watched each video were randomly chosen by the survey 

software and all the questions on a particular survey were identical for all participants. 
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Method 

Learning Materials 

We designed and built an adaptable Java program simulator, called ReadJava, applying 

the cognitive load reducing methods to assist novices with learning introductory 

computer programming concepts.  

ReadJava simulates Java program fragments to allow us to create bite-sized code 

instruction segments and eliminate extraneous material (segmenting and weeding).  

ReadJava provides simple Next and Back buttons to step through the code fragment an 

expression at a time. Each expression is highlighted as it is executed (signaling). A 

teacher or a student can choose to see optional information such as an explanation of 

the step and whether to show and the detail to show within a simplified computer 

memory representation (signaling, weeding, aligning). See Figure 15. 
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Figure 15: ReadJava Program Simulator executing a Java program fragment 

Following the cognitive load reducing principles, we simplify the presentation further, 

for our specific example here, by creating a screen cast just showing the steps being 

highlighted and have a narrator explain the meaning of each step (offloading, 

eliminating redundancy, synchronizing). See Figure 16. Making a video also simplifies 

the use of the tool for the learner by making the controls something they are probably 

already familiar with (we use YouTube8 to host the videos) and therefore eliminates the 

need for the learner to learn to control a new tool (weeding). Within the video, we use 

some notations to cue the learner (signaling). 

                                                      
8 http://www.youtube.com/ 

http://www.youtube.com/
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Figure 16: Screen cast of ReadJava simulator that participant views. 

Learning Surveys 

We utilized Qualtrics Survey software to create online surveys that included 

demographic, prior knowledge, a catch trial, tracing and relational response questions.  

Demographic questions were age, gender, education and location. We used the 

question “Have you ever had training on how to write a computer program either in a 

classroom or online?” to separate out those participants with no prior programming 

training. To assess whether the participants were carefully reading the questions we 

asked the catch trial question “Have you ever had a fatal heart attack while working at 

your computer?” and eliminated participants that did not answer “no” (Paolacci, 

Chandler, & Ipeirotis, 2010). 
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The survey software has the capability to randomly choose one of a set of videos to 

show a particular participant.  In the first learning survey, we had two conditions: 1) a 

video with narrated instruction that showed a computer memory model 2) a video with 

identical narration but did not show a computer memory model.  

We analyzed the results of the first learning survey, applied the cognitive load reducing 

methods relentlessly and then created a second learning survey with three conditions. 

The conditions were 1) a video with narrated instruction that showed a computer 

memory model, 2) an identical video with narration except without the computer 

memory model, 3) a short video with brief narration but without any content 

instruction. The survey is the same in all three conditions. 

There was a substantial improvement in performance on the tracing questions between 

the first survey and the second survey for the participants in both conditions that had 

narrated instruction without the computer memory model.  To directly compare the 

two instruction-without-memory-model videos from the first two surveys we prepared a 

third learning survey.   

Our tracing and relational response questions were adapted from the screening and 

explain-a-swap questions, respectively, described by Corney et al (Corney et al., 2011; 

Teague, Corney, Ahadi, & Lister, 2012) from their week 3 test that they shared and 
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encouraged others to utilize.  We consider these transfer tests since they require the 

learner to apply the material to new problems and not just recall the material. Their 

goals for the first three screening questions were to assess whether students 

understood variables and assignment, could trace code of similar complexity and 

approached the test seriously.  They identified code that swaps values between two 

variables as the simplest, non-iterative code that tests relational reasoning. They ask 

students to explain-in-plain-English the purpose of three lines of swap code in their 

questions 4 and 5. Their question 4 has an explanation and an example of the kind of 

response they are expecting. 

We are interested in utilizing the Java language so we adapted the questions to Java as 

they had done in the replication paper (Teague et al., 2012). Since these questions were 

our focus we referred to them as tracing questions rather than screening questions. As 

Java is a strongly typed language, we felt it was important to declare variables before 

they were utilized therefore, we added declaration statements.  
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In the boxes provided below, write the values 
in the variables after the following code has 
been executed: 

r = 2 

s = 4 

r = s 

The value in r is          and the value in s is       

In the boxes provided below, write the values 
in the variables after the following code has 
been executed: 

int r; 

int s; 

 

r = 2; 

s = 4; 

r = s; 

The value in r is:           
and the value in s is:       

Screening Question 1 (Corney et al., 2011)  Our Tracing Question 1 (see appendix for 
actual survey questions) 

Table 1: Comparison of screening question 1 in Python to our tracing question 1 in Java 

Participants 

A benefit of multi-national, multi-institutional studies (Lister, Adams, Fitzgerald, Fone, 

Hamer, Lindholm, McCartney, et al., 2004; McCracken et al., 2001) is a focus on general 

introductory programming education rather than education at any particular institution 

which may have characteristics such as location or admissions policy that attracts some 

students and faculty over others.  As an individual researcher at a single institution we 

desired to find a way to have results independent of a particular university. Therefore, 

participants were recruited on Amazon Mechanical Turk9 (AMT), an online labor market. 

                                                      
9 https://www.mturk.com/mturk/.  The name Mechanical Turk comes from a chess-playing “machine” 

from the 18th century. This machine actually utilized a hidden chess master.  Amazon’s Mechanical Turk 

https://www.mturk.com/mturk/
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On AMT, requesters post jobs, called human intelligence tasks (HIT), and workers select 

HITs to complete for pay. In our case, we, the researchers, are the requesters and the 

workers are our participants. The task is watching the video and answering the 

questions in our survey. 

Learning Survey 1 

In the first learning survey we have two conditions: instruction with a computer memory 

model and instruction without computer memory model. 

Learning Materials 

For our first learning survey, we created two 5 minute 13 second videos applying the 

cognitive load reducing methods to explain a code segment similar in complexity to our 

three tracing questions. First, for the instruction with computer memory model video10, 

we used Camtasia Studio11 to record the author using the ReadJava simulator showing 

                                                                                                                                                              
web service is designed to hide human workers that do tasks for which machines are not suited. (see 

http://en.wikipedia.org/wiki/Amazon_Mechanical_Turk) 

 

10 Survey 1: instruction with memory shown: https://www.youtube.com/watch?v=ObZ7mA5EkuI  

11 Available from www.TechSmith.com 

http://en.wikipedia.org/wiki/Amazon_Mechanical_Turk
https://www.youtube.com/watch?v=ObZ7mA5EkuI
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the computer memory model and narrating each step of the execution. To create the 

instruction without computer memory model video12, we copied the original and 

visually removed the computer memory model using the Camtasia Studio video editing 

capability. This procedure results in videos that have identical length and identical 

narration. We wanted identical narration so that there would only be the difference in 

whether the memory model was shown and no inadvertent differences in narration.  Of 

course for a specific learning purpose an instructor could provide specific detailed 

instruction on the memory model when it is shown. The learning materials were focused 

on preparing the participant for the tracing questions and not the relational response 

questions.  There was no discussion of summarizing or relationally reasoning about the 

code.   

To design the instruction we applied the cognitive load reducing methods of segmenting 

and weeding to focus on teaching the concepts without all the other material that 

would be covered early in an introductory programming course.  As we will see, we 

were reasonably successful considering the videos are 5 minutes in length.  However, 

further application of the cognitive load reducing methods for Learning Survey 2 

                                                      
12 Survey 1: instruction without memory shown: https://www.youtube.com/watch?v=FIhThMCrdpI  

https://www.youtube.com/watch?v=FIhThMCrdpI
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resulted in a substantial increase in the number of participants successfully answering 

the tracing questions. 

The Qualtrics Survey software has the capability to randomly show one of the two 

videos.  We used this capability to create our two conditions.  When a participant had 

answered the demographic and prior knowledge questions, he/she was randomly 

shown one of the instruction videos. Which video was shown and how long the video 

was watched was recorded for each participant. 

Survey Questions 

As described above, we derived our tracing and relational reasoning questions based on 

Corney et al (Corney et al., 2011; Teague et al., 2012). In the first survey, in Question 2 

the second to last line, “p = q;” was inadvertently removed but was restored in the 

second and third surveys to be consistent with Corney et al.  

Questions 4 and 5 ask about code that swaps the values in two variables utilizing a third 

variable. Both questions are identical except Question 4 provides an explanation and an 

example relational response while Question 5 does not. To test how much the 

participants rely on the explanation and example provided in question 4, we reversed 

the order that questions 4 and 5 were asked.  Question 5 was presented on an online 

page of its own and then Question 4 was presented on the next page.  There was not a 
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means to return to a previous question after completing it.  The complete survey is 

shown in Appendix C. 

Advertisement 

We advertised our task on Amazon Mechanical Turk (AMT) as “Learning Survey: Watch a 

short video and answer some questions”. We paid $0.25 per participant and received 

499 responses that finished and gave consent. Use of AMT with a similar pay rate has 

been found quite effective for similar research (Buhrmester, Kwang, & Gosling, 2011; 

Horton & Chilton, 2010; Lee & Ko, 2011; Paolacci et al., 2010).  

Learning Survey 2 

In this survey we have the three conditions, instruction with computer memory model, 

instruction without computer memory model and no instruction. 

Learning Materials 

For the instruction conditions, we intended to improve on the instructional videos from 

Learning Survey 1.  Since variable-to-variable assignment seemed to be a stumbling 

point by many in the first learning survey, we created an example that included two 

lines of code demonstrating variable-to-variable assignment. In the ReadJava simulator 

we simplified the highlighting of the code (improved signaling) and increased the font 

size. Also, we were concerned that even at 5 minutes we had covered “too much, too 
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quickly” so we shortened to 3 minutes. We applied the cognitive load reducing 

methods, weeding and segmenting, to shorten the time by abbreviating our discussion 

of declaration and assignment of initial values and the discussion related to literals. At 

the beginning of the video we added a statement describing the purpose of the example 

(pretraining). At the end we mentioned the purpose again. To create the instructional 

videos we performed the same procedure as we did for the first learning survey.  We 

recorded a screencast of the author using the ReadJava simulator with the computer 

memory model showing to create the instruction with computer memory model 

video13. Then we copied the video and visually removed the computer memory model 

to create the instruction without computer memory model video14.  The resulting 

Learning Survey 2 videos were 3 minutes long. 

To assess how successful participants are without any instruction, we created a 

condition with a brief video without instruction15. In the 39 second video, we mentioned 

we were assessing the prior knowledge that participants bring to programming 

instruction and ask that they answer the questions the best they can.  We expected a 

                                                      
13 Survey 2: instruction with memory model: https://www.youtube.com/watch?v=P4ZEcolWgk4  

14 Survey 2: instruction without memory model: https://www.youtube.com/watch?v=76RfvVVixsg  

15 Survey 2: instruction video: https://www.youtube.com/watch?v=ufAVwIsX4DE  

https://www.youtube.com/watch?v=P4ZEcolWgk4
https://www.youtube.com/watch?v=76RfvVVixsg
https://www.youtube.com/watch?v=ufAVwIsX4DE
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reasonable effort, similar to the effort for the other condition, since they have chosen to 

participate and this was the assigned task. 

Survey Questions 

We asked the same five tracing and relational response questions as in Learning Survey 

1 with the following changes. We made question 2 consistent with Corney et al but with 

our modifications for Java.  Questions 1 and 3 are identical to Learning Survey 1. Also, 

we asked question 4 before question 5 as Corney et al had done, in order to confirm the 

consistency results in our environment that they had reported.  The questions are 

shown in Appendix C. 

Advertisement 

The advertisement on Amazon Mechanical Turk changed in four ways from the first 

learning survey.  First, we increased the Reward (pay) to $0.50 to reduce the time to 

collect the data. Burhmester et al (2011) reported that increased pay essentially results 

in quicker data collection as low pay did not appear to affect data quality. Secondly, we 

added that the location must be in the United States to the “Qualifications Required”. 

About 89% of the participants in our first learning survey came from Asia and the United 

States.  We noticed about two-thirds of the Asian participants already had programming 

knowledge that we were paying for, but our focus was on participants without 



  62 

 

 

 

programming knowledge. About two-thirds of the participants from the United States, 

however, did not have programming knowledge. The third difference was that we 

reduced the estimated duration to 15 minutes rather than 30 minutes. In our first 

experiment, the average time was less than 8 minutes and we had reduced the length of 

the video in this second experiment.  The task preview changed slightly with the length 

of the video being described as three minutes rather than five, which is the fourth 

difference. 

Learning Survey 3 

In this survey we directly compared the two instructional videos without computer 

memory16 from Learning Survey 1 and Learning Survey 2. The survey questions are the 

exact same questions from Learning Survey 2.  The advertisement was identical to 

Learning Survey 2, with reward (pay) of $0.50, advertised in the United States and 

estimated duration of 15 minutes.  The task preview changed slightly from Learning 

Survey 2 due to the varied length of the videos.  We changed “watching a 3 minute 

                                                      
16 The first learning survey video is accessible via the link: 

https://www.youtube.com/watch?v=FIhThMCrdpI 

The second learning survey video is available: https://www.youtube.com/watch?v=76RfvVVixsg  

https://www.youtube.com/watch?v=FIhThMCrdpI
https://www.youtube.com/watch?v=76RfvVVixsg
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video” to “watching a short video” and changed the estimated time to complete from 

“about 8 minutes” to “about 10 minutes”. 

Results 

Data Processing 

After the participants completed each survey, the data was downloaded as a 

spreadsheet from the Qualtrics Software survey website. The spreadsheet columns 

were for each question response and additional information such as whether the 

participant completed the survey, which video the participant watched and the time the 

participant actually spent watching the video. Each row was a record of one 

participant’s answers to the questions.   

We wrote a program in Java to filter and process the data. Within the program, the 

Apache Commons Math library17 was used for the statistical calculations. Excel was used 

to create the charts. 

Adding Relational Response Categories 

The first step in analyzing the data is to add two columns to the spreadsheet to 

categorize the answers to the two Relational Response questions. Corney, Lister and 

                                                      
17 http://commons.apache.org/proper/commons-math/userguide/stat.html 
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Teague defined a relational response as “the [participant] provides a correct summary 

of the overall computation performed by the entire piece of code.” (Corney et al., 2011).  

Since we were specifically looking for relational responses we defined four categories: 1) 

correct relational response, 2) partially correct relational response, 3) other, and 4) 

blank. The ‘other’ category was the “catch all” for incorrect relational responses, correct 

and incorrect multi-structural responses, and any other comments or responses that the 

participant provided. Our Correct Relational Response category seems to be very similar 

to a correct response as described in the replication paper of the original study (Teague 

et al., 2012). 

 Correct Relational Responses were relational, correct and would receive full 

credit on a test.  Examples include, “it swaps the values in i and k”, “This code is 

use to interchange values of variable i and k” and “interchanging values of i and k 

with the help of j”. 

 Partially Correct Relational Responses were relational and on the right track but 

we thought were too general or had a minor error.  As participants may have 

never been exposed to code that swaps values, they may not know terminology 

(e.g., the term “swap”) to describe it. Examples include “interchange of values”, 

“this is for interchanging the value j to k”, “swapping the values among the 

variables.” and “to circularly shift the values in the variables”. 
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 Other responses were relational and incorrect, or not relational, (e.g., multi-

structural), or were more comment oriented. Multi-structural responses are 

those that describe what the separate lines of code are doing, but do not 

summarize the purpose of the code. Examples include: “The three values are 

equal....”, “To over write their initialized values with other values .”, “To 

compare any variables.”, “I have no idea” and “This would replace the value of J 

with that of I, I with that of K, and K with the NEW value of J.” 

 The blank category is for responses that are left blank. 

Results of Learning Survey 1 

Data Gathering 

We gathered 765 records during two weeks in December 2013. Our first step was to 

categorize the relational response questions as described above without looking at any 

of the other fields in each record.   

Data Filtering 

Three participants did not give consent, 263 did not finish and 31 participants did not 

answer “no” to the catch trial leaving 468 records.  Since our objective was to assess the 

effectiveness of the video, we eliminated 208 participants that did not watch the full 5 

minutes and 13 seconds.  The large majority of those had programming experience and 
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watched the video for less than 1 minute. Of the 260 remaining records, 137 answered 

“yes” to the question “Have you ever had training on how to write a computer program 

either in a classroom or online?” while 123 answered “no”.  Of the 123 participants that 

reported not having programming training, 61 were randomly chosen to view the 

instruction without memory model video and the remaining 62 were chosen to watch 

the instruction with memory model video.  Our analysis here is based on these 123 

participants. 

Demographics 

The ages ranged from 18 to 69 with a mean age of 37.8 and a median age of 35. 

Approximately 65% held at least a bachelor’s degree with only one not being at least a 

high school graduate. Approximately 54% were female with 46% male with only one not 

choosing to respond to the question. Approximately 45% of the participants came from 

the USA and another 44% from Asia. 

Analysis of Tracing Questions 

Originally we were testing whether there was a significant difference in the number of 

correctly answered tracing questions between the two conditions, instruction without 

computer memory showing and instruction with computer memory showing.  A t-test, 

shown in Table 2, indicated there was not a significant difference. 
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Number of Tracing 
Questions Correct 

Without memory  With memory 

n 61 62 

mean 1.148 1.355 

SD 1.223 1.189 

p (significant at 0.05) 0.34 (false) 

Cohen’s d 0.17 (small effect) 

Table 2: Learning Survey 1 t-test on Number of Tracing Questions Correct 

Next, we looked at the results of each tracing question to see if there were significant 

differences.   

 

Figure 17: Learning Survey 1 Number that answered each Tracing Question Correctly 

 



  68 

 

 

 

Figure 17 shows the number of participants without programming that answered each 

of the tracing questions correctly. The chart suggests that the computer memory model 

may be useful for some novices, particularly on Question 1.  However a t-test results in 

p=0.08 which is not statistically significant according to the traditional p=0.05 criterion 

(Table 3).  The 0.05 criterion means there is a 1 in 20 chance our data has occurred by 

random.  A p=0.08 means that our data has a 1 in 12 chance of occurring by random.   

t-test for 
each 
question 

Question 1 Question 2 Question 3 

 Without 
Memory 

With 
Memory 

Without 
Memory 

With 
Memory  

Without 
Memory 

With 
Memory 

n 61 62 61 62 61 62 

mean 0.36 0.52 0.49 0.55 0.30 0.29 

SD 0.48 0.50 0.50 0.50 0.46 0.46 

p 0.08 (false) 0.53 (false) 0.95 (false) 

Cohen’s d .33 (small effect size)   

Table 3: Learning Survey 1 t-test for each Tracing Question for non-programmers 
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Tracing Questions 
Correctly Answered 
(Without Memory) 

Participants  
from USA18 

(n=32) 

Participants  
Not from USA 

(n=29) 

Participants 
Combined 

(n=61) 

Question 1 10 (31%) 12 (41%) 22 (36%) 

Question 219 16 (50%) 14 (48%) 30 (49%) 

Question 3 6 (19%) 12 (41%) 18 (30%) 

All 3 Questions 5 (16%) 9 (31%) 14 (23%) 

Table 4: Learning Survey 1 Number of Correct Answers on Tracing Questions for the 
Without Memory condition 

Table 4 shows the number of correct answers on the three tracing questions as well the 

number of participants that answered all three tracing questions correctly for the 

instruction without computer memory condition. In Table 4 we separate out the 

participants from the USA as a comparison to Learning Survey 2 where we only 

advertise for participants in the USA. 

For combined participants, we note that most were not successful answering any of the 

questions with success rates ranging from 30% to 49%. Only 14 out of 61 (23%) for the 

combined group answered all three questions correctly. Since the video covered an 

                                                      
18 We report the data as from USA and Not from USA since in Learning Survey 2 we advertise for 

participants only from the USA since most participants from the USA do not have programming training 

which we desire. 

19 In Learning Survey 1, question 2 differed from the original.  In Learning Survey 2, question 2 is 

consistent with the original. 
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example very similar to the problems, these results seem to confirm that the concepts 

of assignment and sequence are challenging for many novices. 

To gain insight on potential difficulties, we analyzed the wrong answers provided for the 

three questions.  The wrong answers for each question that occurred five or more times 

are shown in Table 5. 

Common Wrong 
Answers  
(Without Memory) 

Question 1 Question 2 Question 3 

Wrong Answer 
(occurrences) 

r=2, s=4 (26) 
r=s, s=4 (5) 

p=1, q=8 (15) 
p=1, q=p (6) 

x=5, y=3, z=7 (12) 
x=7, y=5, z=3 (11) 

Table 5: Learning Survey 1 Common Wrong Answers for Tracing Questions 

Our analysis suggests that these wrong answers may potentially be arrived at by simply 

guessing or ignoring a line or two of code that one does not understand, such as 

variable-to-variable assignment. For example, it does not seem surprising to us that 

when a novice is shown the following code fragment from Question 1: 

r = 2; 

s = 4; 

r = s; 

 

The novice may provide the wrong answers given, when asked for the values of r and s. 

The most frequent wrong answer “r=2, s=4” seems to be simply ignoring the “r = s;” line 

of code.  The second most frequent wrong answer “r=s, s=4” seems to indicate that the 
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novice does not realize that “s” is a variable that contains a value.  Since so many 

participants were not successful giving the answer after having presented these 

concepts in a very similar example, perhaps we still overloaded participants’ cognitive 

systems with too much material too quickly.  Therefore, questions we have are: 

1) Will focusing more explanation on the seemingly difficult concept of variable-to-

variable assignment be helpful? 

2) Can we weed out additional extraneous material to help the participant focus on 

the most difficult material? 

Since we did not have a control group that had participants answer the questions 

without having instruction, we do not know how effective our question is that asked 

about previous programming training or whether the answers could be easily guessed 

by someone without instruction.  We address this with a no instruction group in 

Learning Survey 2. 

Analysis of Relational Response Questions 

Our instruction was intended to help with the tracing questions but was not intended to 

help with the ability to summarize the meaning of a section of code.  Interestingly, the 

computer memory model had a statistically negative effect (p=0.01, d=0.45) on the 

ability of participants to answer question 4 correctly.  Perhaps the computer memory 
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model was powerful enough that participants recalled it and assumed it would be 

helpful even though the information within it would not be helpful for summarizing the 

purpose of a section of code. 

 

Figure 18: Learning Survey 1 Relational Response Correct Answers 

As Corney et al (2011) had done, we reviewed the responses to questions 4 and 5 for 

the 14 participants that answered all three tracing questions correctly.  We note that 9 

of the 14 (approximately half) participants that answered all 3 tracing questions 

correctly also correctly answered question 4. 

Questions 4 and 5 are the relational response questions. As noted, we asked question 5 

and then question 4.  Recall that the problems in the questions are identical, however, 

question 4 has an explanation and an example that, if the participant recognizes it, is a 
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solution to the problem. Therefore, keep in mind that in Table 6, question 5 was asked 

before question 4. 

Relational Response 
when all 3 tracing 
questions answered 
correctly  
(Without Memory) 
(n=14) 

Correct 
Answer 
(from USA) 

Correct 
Answer  
(not from USA) 

Partially 
Correct 
(from USA) 

Partially 
Correct 
(not from USA) 

Question 4 4 4 0 4 

Question 5 0 1 0 6 

Table 6: Learning Survey 1 Number of Correct Answers for Relational Response Questions 

We note that only 1 out of 14 participants were able to answer the question 5 correctly 

without having the additional explanation and example solution provided in question 4. 

On the other hand, 8 out of 14 were able to answer question 4 correctly after seeing the 

explanation and example solution. If we include the partially correct answers, then only 

7 out of 14 were able to answer question 5 correctly, while 12 out of 14 were able to 

after seeing the explanation and example solution.  

Since the problems in the two questions are the same, we conclude that the explanation 

and example solution at the beginning of question 4 are very important for assisting 

participants in understanding the solution we are looking for as well as providing an 

explanation of the solution. As noted previously, the example solution is the solution to 

the problem, if the participant recognizes it.  
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Results of Learning Survey 2 

Data Gathering 

We offered the second learning survey on Amazon Mechanical Turk in March 2014. It 

took 4 days for 413 participants to start the survey. The average time to watch a video 

and complete the survey was 6 minutes and 55 seconds.   

Workers on AMT are identified by a unique id and so we can tell if they have worked for 

us previously.  Out of the 338 participants that completed the task on AMT, 6 had also 

taken Learning Survey 1 offered over three months earlier.  However, for anonymity 

purposes we did not track which participant submitted each survey and so we do not 

know the group from either experiment each participant was in or whether a participant 

had indicated they had programming training in either experiment.  However, given the 

small number and the random assignment to groups, we do not believe these 6 

participants would have a significant effect on the results. 

We categorized the responses to the relational response questions the same way as in 

Learning Survey 1.  The four categories are Correct Relational Response, Partially Correct 

Relational Response, Other and Blank.  We adapted our Java program to process the 

results for this new set of data. 
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Data Filtering 

One participant did not give consent, 68 did not finish, and one failed the catch trial 

question leaving 343 records.  Only 25 of the 343 did not watch the full length of the 

video, leaving 318 records. We separated out the 98 that reported having programming 

training leaving 220 records. Of those 220 without programming training, 72 were in the 

instruction without computer memory condition, 72 were in the instruction with 

computer memory condition and 76 were in the no instruction condition.  

Demographics 

The ages ranged from 18 to 71 with a mean age of 35.7 and a median age of 32. 

Approximately 45% held at least a Bachelor’s degree with all but two participants at 

least a high school graduate.  About 54% of the participants were female and 46% male. 

All but two participants20 were from the United States.  

                                                      
20 While we asked Amazon Mechanical Turk to advertise only to participants in the United States, one 

participant responded to the “Where are you located?” question on the survey with “Africa” and the 

other “South America”.  Perhaps they were simply overseas at the time of participating.  In any case, our 

focus was on finding participants that did not report a programming background. 
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Analysis of Tracing Questions 

When comparing the number of correctly answered tracing questions between the two 

instruction conditions there was not a statistically significant difference (p=0.27). 

Interestingly, the number of participants who answered Question 1 correctly was 

significantly different between the two instruction conditions (p=0.03,d=0.36). There 

was a small effect size, but in contrast to Learning Survey 1, the instruction without the 

computer memory model was more helpful to the participants. The number of correct 

answers in Questions 2 and 3 were not significantly different. Figure 19 shows a chart 

comparing the differences.  

 

Figure 19: Learning Survey 2 Number that answered each Tracing Question Correctly 
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Table 7 shows the number of participants that answered each tracing question correctly 

as well as the number that answered all three questions correctly. In the no instruction 

condition only 3 out of 76 (4%) answered all three tracing questions correctly. That so 

few participants were successful without instruction seems to indicate that our question 

asking about prior programming training is successful in separating out the participants 

without programming training.  This result also seems to indicate that only a small 

percentage of participants have some ability or prior knowledge that enables them to 

be successful without instruction. 

In comparison, 41 out of 72 (57%) in the instruction without computer memory 

condition and 32 out of 72 (44%) in the instruction with computer memory condition 

answered all three tracing questions correctly.  Therefore, we are confident the video 

instruction we are providing has a strong effect with the participants in our study. 
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Tracing Questions 
Correctly Answered 

Instruction Without 
Memory Condition 
All from USA but 1 
(n=72) 

Instruction With 
Memory 
Condition 
All from USA 
(n=72) 

No Instruction 
Condition 
All from USA but 1 
(n=76) 

Question 1 54 42 7 

Question 2 47 (65%) 46 4 

Question 3 43 39 4 

All 3 Questions 41 (57%) 32 (44%) 3 (4%) 

Table 7: Learning Survey 2 Number of Correct Answers on Tracing Questions 

Analysis of Relational Response Questions 

 

Figure 20: Learning Survey 2 Relational Response Correct Answers 

As shown in Figure 20, for all the participants in the instructional conditions there was 

not a significant difference in the number of correct answers on the relational response 

question 4. Therefore the computer memory model seems to not be helpful or hurtful 
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for these particular questions.  More interesting though is the No Instruction group 

performed as well as the instructional groups seemingly indicating that the instruction 

was not helpful for these questions and similarly the questions are not measuring the 

effectiveness of the instruction. 

In Table 8 the results are for those participants on questions 4 and 5 that had answered 

all three tracing questions correctly.  There were 41 in the instruction condition, but 

only three in the no instruction condition that answered all the tracing questions 

correctly. Recall that in this Learning Survey 2, question 4 was asked before question 5, 

therefore the explanation of a correct response and the example answer were seen by 

participants before answering either question. 
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Relational Response 
Question Correctly 
Answered for 
Participants with all 
3 Tracing Questions 
Correct 

Instruction Without 
Memory Condition 
(n=41) 

Instruction With 
Memory 
Condition 
(n=32) 

No Instruction 
Condition 
(n=3) 

Question 4 Correct 20 (49%) 13 (41%) 2 (67%) 

Question 5 Correct 19 (46%) 11 (34%) 2 (67%) 

Question 4 Partially 
Correct 

6 (15%) 4 (13%) 0 (0%) 

Question 5 Partially 
Correct 

3 (7%) 5 (16%) 0 (0%) 

Table 8: Learning Survey 2 Number of Correct Answers for Relational Response Questions 

In the no instruction condition, we notice that 2 out of 3 participants answered both 

questions correctly.  This seems to indicate prior knowledge or ability for these 

participants. In the instruction condition, 20 out of 41 (49%) answered question 4 

correctly and 19 out of 41 (46%) answered question 5 correctly.  There were 17 of the 

20 (85%) who answered question 4 correctly and also answered question 5 correctly. 

Results of Learning Survey 3 

Data Gathering 

We offered the third learning survey on Amazon Mechanical Turk in April and May 2014. 

It took 7 days for 654 participants to start the survey. The average time to watch a video 

and complete the survey was 8 minutes and 25 seconds.   
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As described above, a unique id identifies workers on AMT so we can tell if they have 

previously worked for us.  Out of the 500 participants that completed the task on AMT, 

four had previously taken Learning Survey 1, 49 had previously taken Learning Survey 2 

and two additional had taken both Learning Survey 1 and 2 for a total of 55 out of 500 

(11%) that were repeat workers. However, for anonymity purposes we did not track 

which participant submitted each survey and so we do not know the group from any 

experiment each participant was in or whether a participant had indicated they had 

programming training in either experiment.  However, given the random assignment to 

conditions, we do not believe the 11% of participants would have a substantial effect on 

the results. 

We categorized the responses to the relational response questions the same way as in 

Learning Survey 1 and 2.  

Data Filtering 

Four participants did not give consent, 129 did not finish, one failed the catch trial 

question and 68 did not watch the full length of the video, leaving 452 records. We 

separated out the 130 that reported having programming training leaving 322 records. 

Of those 322 without programming training, 167 watched the instructional video from 
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Learning Survey 1 and 155 watched the instructional video from Learning Survey 2. We 

report on the 322 without programming training below. 

Demographics 

In the LS1 instructional video condition, ages ranged from 18 to 69 with a mean age of 

35.9 and a median of 33.  In the LS2 instructional video condition, ages ranged from 18 

to 73 with a mean of 36.8 and a median of 33. All but two participants were high school 

graduates. 49.7% of the LS1 instructional condition held at least a bachelor’s degree, 

while 51% of the LS2 instructional condition held at least a bachelor’s degree. In the LS1 

instructional condition, 60.5% of participants were female while 68.4% in the LS2 

instructional condition were female. Almost all, 318 out of 322, of the participants were 

from the United States. 

Analysis of Tracing Questions 

This survey, Learning Survey 3, was to confirm the differences between the two videos 

with a direct comparison.  As shown in Table 9, there was a significant difference with 

medium effect size (Cohen’s d between 0.40 to 0.47) between the two conditions for 

each of the questions individually as well as the sum of correct answers for all three 

questions (p<0.01).   
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Tracing 
Questions 
Correctly 
Answered 

LS1 instructional condition  
(5 min 13 second video) 
(n=167) 

LS2 instructional 
condition 
(3 minute video) 
(n=155) 

t-test 

Question 1 68 96 p<0.01, 
d=0.43 

Question 2 59 (35%) 90 (58%) p<0.01, 
d=0.47 

Question 3 55 81 p<0.01, 
d=0.40 

All 3 Questions 48 (29%) 69 (45%)  

Table 9: Learning Survey 3 Number of Correct Answers on Tracing Questions 

Analysis of Relational Response Questions 

Table 10 shows the number of correct answers on questions 4 and 5 for those 

participants that answered all three tracing questions correctly.  The results in this 

survey are consistent with our previous surveys with about half of the participants 

answering questions 4 and 5 correctly. 
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Relational Response Question 
Correctly Answered for 
Participants with all 3 Tracing 
Questions Correct 

LS1 instructional 
condition  
(5 min 13 second video) 
(n=48) 

LS2 instructional condition 
(3 minute video) 
(n=69) 

Question 4 Correct 29 (60%) 36 (52%) 

Question 5 Correct 24 (50%) 33 (48%) 

Question 4 Partially Correct 4 8 

Question 5 Partially Correct 9 4 

Table 10: Learning Survey 3 Number of Correct Answers for Relational Response 
Questions 

Discussion 

Threats to Validity 

Our study has a number of threats to its validity and generalizability. Amazon 

Mechanical Turk (AMT) allows participants to self-select into tasks if they meet 

qualifications, in our case a 95% HIT approval rate from previous requestors.  We tried 

to account for factors that would affect the task listing such as a title and description 

that provide an idea of the task (e.g., Learning Survey) but did not mention the content 

was programming.  We did not want potential participants to self-select based on the 

content.  However, as workers on AMT can preview tasks, and in fact many did start the 

survey but did not finish, some self-selection based on content seemed to occur. 

Significant computer use knowledge is necessary as this assessment and video are 

shared via an internet connected computer that require the user to have an account 
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and login. There is an economic incentive for participants to participate in our study. 

Although small, this incentive does not exist in a classroom and so may have an effect.  

There was not a specific incentive provided for correct answers while in a classroom 

situation, a better grade is an incentive.  Also, users of AMT have an option to 

participate whereas students in a classroom frequently may not. 

The author created both scripts and videos and this research was conducted as the 

author believed that these cognitive load reducing methods would likely be helpful for 

introducing introductory programming concepts.  We made a number of changes, 

consistent with reducing cognitive load, from the first to the second video, some of 

which may be more influential than others in the results.  

Teaching to the Test 

One critique is that we are teaching to the test. We are providing instruction for very 

similar problems that we ask the participants to solve. To us, this is not simple recall of 

presented material, but is a transfer test, that requires the material to be learned and 

applied to new problems. We note that in Learning Survey 1 only 23% were able to 

successfully apply the presented material to solve all three problems even though the 

teaching example was very similar to the test.  In Learning Survey 2, only 57% were able 
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to solve all three problems.  Therefore this suggests that the three tracing questions 

constitute a transfer test that reflects meaningful learning. 

In our mathematics education, we received instruction on how to solve a problem and 

then had to solve a set of similar problems at the end of each section. In each section, 

we built skill with lots of practice before going on to more challenging problems that 

relied upon previous skills. 

Pedagogical Implications 

The first learning survey video was, what we thought when creating it, a reasonable 

presentation of the declaration, assignment and sequence concepts applying cognitive 

load reducing methods.  With the 5 minute and 13 second video, 23% of the participants 

were able to successfully answer all three questions.  However, after analyzing the 

actual results and weeding, segmenting, improved signaling and presenting in a 3 

minute video, 57% of the participants were able to successfully answer all three 

questions. That cognitive load reducing methods are effective is well documented 

(Mayer & Moreno, 2003). That these methods are very effective for teaching 

introductory programming concepts that are perceived as difficult for many novices is 

interesting.  How we instruct novices in introductory programming concepts matters a 

great deal and is anticipated by the Learning Edge Momentum hypothesis. 
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Porter and Zingaro (2014) study provided evidence that the reason that success with 

fundamental concepts early in a course is related to success in the course is due to 

those fundamental concepts being a part of most questions on a final exam. They 

“…recommend that instructors pay extra attention to those [fundamental course] 

concepts, perhaps performing early interventions with students who demonstrate 

relevant misconceptions.”  In Learning Survey 2 we note that 17 out of 72 (24%) were 

still not able to solve any of the tracing problems. Since our participants only spent 3 

minutes on the content, we are optimistic that there is more room for improvement of 

our instruction. Perhaps having supporting materials such as simulations and videos 

applying the cognitive load reducing methods along with multiple problems that give 

feedback may help many students. Intelligent tutoring systems may also be helpful as 

they have been shown to be “nearly as effective as human tutoring” (VanLehn, 2011). 

Theories on the Difficulty with Learning Programming 

Ahadi & Lister (2013) discuss stumbling points, prior knowledge, and “geek genes” along 

with Learning Edge Momentum theory (Robins, 2010) about why some students thrive 

and others struggle to learn to program. The 4% of participants in the no instruction 

condition of our Learning Survey 2, that reported they had not had programming 

training and still managed to answer all three tracing questions correctly, seem to 
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support the theories that there is prior knowledge or ability for a small percentage of 

participants. 

The 57% of participants that were able to successfully answer the three tracing 

questions in the instruction without computer memory condition in the second Learning 

Survey and the 24% that were not able to answer any of the tracing questions correctly 

seems to support the stumbling point hypothesis. 

However, the significant gain from 23% from the instruction without computer memory 

condition in the first learning survey that we thought was a reasonable presentation to 

57% in the same condition in the second learning survey seems to lend strong support 

to the hypothesis that our typical methods of instruction simply overwhelm the 

cognitive capabilities of the students. As Robins (2010) notes, the mastery model of 

learning that other fields have learned long ago may be useful for us to apply in teaching 

introductory programming. 

Computer Memory Model 

That the number of correctly answered tracing questions between the instruction 

conditions was not significantly different for either the first or second learning survey 

seem to indicate that the computer memory model does not make a difference overall 

for the specific concepts taught here. However, when we looked at individual questions 
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we may be seeing some effect that is worthwhile to investigate further.  In the first 

learning survey the difference in the instruction conditions for question 1 was almost 

significant (p=0.08) with the computer memory model seeming to be potentially helpful 

for some participants. However, in the second learning survey the difference in the 

instruction conditions for question 1 was significant (p=0.03) but, in contrast to the first 

survey, the computer memory model was not helpful. In both the first and second 

learning surveys the difference in number of correct answers between the instruction 

conditions for questions 2 and 3 were not significant. Since the effect of the computer 

memory model is less for questions 2 and 3, perhaps this indicates the effect is very 

short-lived.  Or perhaps there is something different about the first question than the 

others. 

For the relational response question 4, in Learning Survey 1 there was a significant 

negative effect for those with the computer memory model. However, in Learning 

Survey 2 there was virtually no difference at all. Perhaps when the instruction was more 

confusing than the computer memory model was helpful for some participants to utilize 

to help themselves learn to trace.  But since the computer memory model emphasizes 

details and not summary of purpose it was not helpful, and perhaps misleading, for 

some participants when asked to summarize the purpose of code. 
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Ben-Ari asserts “students do not have an effective model of a computer” and “models 

must be explicitly taught”(Ben-Ari, 1998). Mayer, in his study of how novices learn 

computer programming concurs that “a concrete model can have a strong effect on the 

encoding and use of new technical information by novices” (Mayer, 1981).  

Contrastingly, Petre notes that while visualizations are appealing, they are not 

necessarily helpful, usually slower to acquire the same information and frequently 

require learning a secondary notation regarding layout, typographic cues and graphics 

(Petre, 1995). For Computer Science Education specifically, Holzinger et al review factors 

that contribute to the success of static or dynamic media. They found: 

“Dynamic media is only successful in facilitating learning in comparison to 

traditional static media such as texts or images, when they are able to (1) reduce 

the cognitive load, which is necessary to comprehend them, (2) serve to 

generate mental models of a concept and, consequently (3), offer visualizations 

that correspond to a meaningful mental model. [original emphasis] 

“Moreover, dynamic media must be attuned to learners’ experience, expertise, 

and most of all previous knowledge. Therefore, material containing dynamic 

media must avoid information, animations, and elements, which are not 

necessary to comprehend a concept.” (Holzinger, Kickmeier-rust, & Albert, 2008) 
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We had thought we were taking this advice into account when designing the computer 

memory model. More investigation in the appropriate use of visualizations and models 

seems warranted. 

Reading Comprehension 

There are many differences in our learning experiments and those reported by Corney 

et al (2011) and Teague et al (2012) such as: 

 Ours is a very short study with many demographically diverse participants that 

already have at least a bachelor’s degree versus traditional students that are 

earning a college degree. 

 Ours is short term and presents very little material and then tests participants 

immediately versus a traditional classroom course that covers a lot of material 

over a long period of time and tests participants over time. 

However, these differences make similarities in results potentially interesting. One 

similarity is that approximately half of the participants in each of our learning surveys 

that watched the instructional videos without the computer memory and answered all 

three tracing questions correctly also answered question 4 correctly. Corney et al noted 

a similar relationship (39 out of 83) and reported that those that were successful in 

week 3 on question 4 also had a very high rate of success in the course.   
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The consistency in results (around half successful on question 4) seem to indicate that 

the different instructional methods used by Corney et al and by us are not a significant 

factor for the success of students when answering question 4.  Learning Survey 1 

seemed to show  that the explanation and the example solution to the problem 

provided in question 4 seem to be very important for participants to answer the 

question correctly.  Learning Survey 2, with the no instruction condition performing as 

well as the instruction conditions on question 4 seems to indicate that the content 

instruction makes no difference for success on the question. Perhaps participants that 

are not successful with answering question 4 are not successful simply because they do 

not comprehend that the solution is presented to them. Not comprehending what is 

read is a side effect of not reading proficiently. 

“Proficient reading depends on the ability to recognize words quickly and 

effortlessly (Adams, 1994). If word recognition is difficult, students use too much 

of their processing capacity to read individual words, which interferes with their 

ability to comprehend what is read.” 21 

A potential implication is that many of those students that are not successful on 

question 4 and that do not learn in a traditional lecture are not successful on the final 

                                                      
21 http://en.wikipedia.org/wiki/Reading_comprehension retrieved June 4, 2013. 

http://en.wikipedia.org/wiki/Word
http://en.wikipedia.org/wiki/Reading_comprehension
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exam because of difficulty with comprehending written explanations such as those in a 

textbook. Use of the cognitive load reducing methods, specifically multimedia, may be 

very helpful for these students.  We can imagine utilizing cognitive load reducing 

methods to supplement existing materials or to create a new kind of textbook. 



  94 

 

 

 

5.     Conclusion 

We have utilized non-traditional methods to gather new data on the teaching and 

learning of introductory programming. For the design of instruction of fundamental 

programming concepts, we have utilized cognitive load reducing methods with strong 

data support (Mayer & Moreno, 2003). Our data seems to suggest how we teach these 

fundamental programming concepts matters a great deal which is anticipated by the 

Learning Edge Momentum theory (Robins, 2010). In summary, utilizing cognitive load 

reducing methods for instruction seems to have significant potential to assist many 

people with learning fundamental computer programming. 

On the other hand we had anticipated that our simple computer memory model would 

have a consistently positive effect which turned out not to be the case.  We need more 

investigation on how to effectively design and when to effectively utilize a memory 

model. 

The author and narrator of the videos, while having had the opportunity to lecture for 

many hundreds of hours, never before had the opportunity to prepare 5 minutes of 

instruction with a particular performance learning goal, measure the results of the 5 

minutes in terms of actual performance of a significant number of participants and then 

design additional instruction to improve and assess the differences. This has been eye 
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opening in terms of the potential impact of being very aware of content specific learning 

challenges and carefully designing instruction following cognitive load reducing methods 

to assist students with their learning. 

As we have utilized Corney et al’s (2011) materials, at their urging in their paper, to 

study our own instruction we too encourage the reader to consider utilizing our 

methods or videos to help assess whether our results are unusual or more widespread.  

What Was Done 

We developed hypotheses regarding whether cognitive load reducing methods and a 

simple computer memory model would be helpful for novices to learn the meaning of 

some introductory programming concepts. We built a Java program simulator with the 

computer memory model and developed examples illustrating declaration, assignment, 

sequence, conditional, looping, method calls, recursion, and class instantiation.   

We developed learning units by recording screencasts of the author using the ReadJava 

simulator. We selected published questions to test our memory model for the 

declaration, assignment and sequence concepts and ran experiments comparing a 

version of the learning unit with the computer memory model to the learning unit 

without the computer memory model. Our Learning Survey 1 results suggested that we 
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attempted “too much too quickly” in our 5 minute learning unit so revision and 

reassessing might be worthwhile.   

We revised our learning units and reassessed.  We discovered that using the cognitive 

load reducing methods seemed to have a large impact but that the results for the 

memory model were mixed. 

Why It Was Good 

To our knowledge, no one has built a complete learning unit that contains both a 

simplified computer memory model and programming instruction applying cognitive 

load reducing methods such that there is no learning curve or burden on an instructor 

or student other than the content itself.  We have shown that the simulator is capable 

of representing in the computer memory model important and difficult introductory 

programming concepts such as assignment, conditionals, loops, method calls, recursion 

and class instantiation.  

We have gathered empirical evidence that confirms the difficulty of the declaration, 

assignment and sequence concepts for novices.  We also have evidence that shows that 

many participants are able to learn these concepts with minimal lecture time if the 

lecture effectively utilizes cognitive load reducing methods. 
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Future Work 

Some specific directions to improve our work include: 

1) Study novices using videos of a narrator utilizing our ReadJava simulator on 

other important and difficult introductory programming concepts. 

2) Study novices utilizing the simulator to determine when, where and how to 

adapt the simulator to make it more effective for novices learning specific 

concepts. 

3) Explore adding interactivity of some kind to the learning units (screen casts of 

the simulator) in order to provide feedback to participants to help them test 

their understanding of the concepts. 
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Appendix A: Important and Difficult 

Programming Topics 

 

Figure 21: Programming Fundamentals topics rated for importance and difficulty 
(Goldman et al., 2008). 
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Figure 21 shows programming topics rated for importance and difficulty. Topics 

highlighted with Bold are the top 11 most important and difficult as rated by Goldman 

et al.  The shaded items are the topics that are directly related to accessing data in 

computer memory and thus the learner needs to develop an effective model. 

1.  (PA1) Call by Ref. vs Call by Value 
o Parameters are variables and this is related to passing a value versus 

passing a reference that can be used to access values. 
2. (PA2) Formal vs. Actual Parameters 

o Parameters are variables and this is whether we are declaring them as a 
part of a method definition or passing specific values in a call to a 
method. 

3. (PA3) Parameter scope, use in design 
o Parameters are variables and scope refers to where in the code the 

variables can be accessed. 
4. (CF) Tracing Control Flow thru program execution 

o Tracing code is dependent upon accessing variable content to make 
decision about branches to take (conditions), whether to repeat code 
(loops) or which method call to make (polymorphism). 

5. (TYP) Choosing/Reasoning about data types 
o Variables in Java must be declared prior to use and the declaration 

specifies a type of data the variable will contain. 
6. (AS) Assignment Statements 

o Save values to variables. 
7. (SCO) Issues of Scope, local vs. global 

o Scope is which variables can be accessed from which code. 
8. (CO) Difference between Classes and Objects 

o Class variables have memory allocated when the class is loaded into the 
JVM while Object variable have memory allocated when the Object 
(instance) of a class is created.  The static keyword is used to differentiate 
Class variables and methods from Object variables and methods. For 
novices seeing memory and how it is allocated for these will likely be 
more memorable than analyzing code for the static keyword. 

9. (SCDE) Scope design (e.g., public vs. private fields) 
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o Fields are class or object variables.  public vs. private effects which code 
can access which fields. 

10. (STAM) Static fields and methods 
o Static fields are class variables and static methods are the methods that 

can access the static fields. 
11. (PVR) Primitive vs Reference variables 

o Whether the data type of a variable is one of 8 primitive types or a 
reference type. 

12. (IT2) Understanding loop variable scope 
o Identifying when can the loop variable be accessed. 

13. (AR1) Identifying off by one index errors 
o An incorrect access of an array which is a list of variables. 

14. (AR2) Reference to array vs array element 
o Arrays are lists of variables.  A reference to a list is different than 

referring to a specific array element. 
15. (AR3) Declaring and manipulating arrays 

o Arrays are lists of variables.  
16. (MMR) Memory model, references, pointers 

o Specifically dealing with memory and accessing memory. 
17. (REC) Recursion, tracing and designing 

o Recursion is typically implemented by calling the same method multiple 
times while changing the parameter (variable) values.  Recognizing that 
there are multiple instances of the method, in other words, multiple sets 
of parameter values at the same time is useful. 

18. (INH) Inheritance 
o Recognizing that an instance of a class includes allocation of all the 

instance fields of the class and its ancestors is key to understanding 
inheritance. 

 
These are important and difficult topics indirectly or not related to data access in 

memory: 

1. (PROC) Procedure Design 
a. Relates to modularization of functionality 

2. (BOOL) Construct/evaluate Boolean expressions 
a. Relates to clarity of logic 
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3. (COND) Writing expressions for conditionals 
a. Relates to clarity of logic in code. 

4. (SVS) Syntax vs. Semantics 
a. Differentiates between the symbols used and the meaning of the 

symbols. 
5. (OP) Operator Precedence 

a. Relates to accuracy and readability of the code. 
6. (POLY) Polymorphism 

a. Relates to selecting the appropriate method, of several with the same 
name, based on the values passed to the method. 

7. (APR) Abstraction/Pattern recognition and use 
a. Relates to reuse of some pattern in the code for solving a problem. 

8. (IT1) Tracing nested loop execution correctly 
a. Relates to understanding nesting of loops 

9. (DPS1) Functional decomposition, modularization 
a. Relates to design and modularization of functionality 

10. (DPS2) Conceptualize problems, design solutions 
a. Relates to design 

11. (DEH) Debugging, Exception Handling 
a. Relates to tracking down errors and error handling. 

12. (IVI) Interface vs Implementation 
a. Relates to design and external view versus internal view of a class. 

13. (IAC) Designing Interfaces, Abstract Classes 
a. Relates to design and external view and partial internal implementation 

14. (DT) Designing Tests 
a. Relates to testing and verification. 
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Appendix B: Video Scripts 

Anthony Robins (2010) argues that programming language concepts are “unusually 

tightly integrated”. Since we learn on the edge of what we already know, for learners 

that are unsuccessful early, this results in a negative learning cycle.  Our efforts here are 

to introduce the fundamental programming concepts to novices utilizing a model of 

computer memory to aid understanding.  Our screen casts with narration of our 

simulator focus on describing very small steps, introducing a few concepts and terms.  

Background for Learning Survey 1 script 

The key concepts that we are intending the novices to learn in order to learn to read 

short examples are: 

 Declaration: A declaration is just giving a name to an area of memory that we call 

a variable. A declaration such as “int a;” gives the name “a” to an area of 

memory. 

 Assignment: The ‘=’ sign means put the value from the right hand side into the 

variable (memory area) on the left side. If a new value is assigned to a variable, 

the previous value is overwritten and lost. 
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 Sequence: Program execution is a mechanical process, one step at a time, order 

of the steps matter. 

This script below is identical for both the control and experimental conditions. In fact, 

the audio narration is the exact same for both conditions, as well.  This was achieved by 

making one recording showing the memory model, experimental condition, and then 

visually hiding the computer memory portion of the screen cast using a video editing 

tool to create the control condition. In the experimental condition, computer memory is 

shown with specific concepts highlighted on the screen. In the control condition 

computer memory is not shown. In both conditions the length of the screen cast and 

the narration are identical. 

Some specific design aspects of the script are: 

 Similar instructions are together.  The first time I just explain an instruction. For 

the second similar instruction, I point out the similarity to a previous instruction, 

pose a question asking the viewer to guess what the instruction does and then 

pause for a few seconds. This is to try and engage the learner in actively thinking. 

Finally, I explain what the instruction does so that the learner can compare to 

their thinking. 
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 For the “=”sign, which novices probably associate with the mathematical 

meaning of equality, I both verbally describe the meaning being assignment and 

not equals as well as show text on the screen with the same points.  An arrow is 

also drawn on the screen, from right-to-left under the assignment statements, to 

emphasize the asymmetrical, right-to-left processing of the assignment 

statement. 

 For the experimental condition, that shows the computer memory model, I have 

some short arrows drawn on the screen to highlight aspects of the memory 

model at the same time the narrator is describing them.  I don’t highlight every 

time, in the expectation/hope that the learner will focus on the code and the 

memory model themselves to develop an understanding of how to read them – 

essentially learn what we want them to. 

 I’m intentionally using the term computer to refer to the computer, the compiler 

and memory management which is consistent with the insight of Bruce-Lockhart 

and Norvell (2007). I’m just starting from the terms computer and computer 

memory that I believe novices will know, particularly since they are utilizing a 

computer to watch this video. 
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 I’m intentionally using the term “instruction” throughout, rather than line, 

statement or expression. Learning to program is essentially learning to provide 

instructions for the computer. While each line is one instruction in this example, 

more complex examples may have multiple instructions per line and we would 

like to avoid needless barriers to future learning.  While technically each line in 

the example is a statement since it ends with “;”, since the learner doesn’t have 

to type the semicolon I chose to avoid discussion of semicolon completely right 

now. While technically statements are composed of expressions I didn’t think it 

would be meaningful to define that term or make the distinction at this time. 

 I’m intentionally emphasizing that executing a computer program is a 

straightforward mechanical process in order to challenge the assumption that 

novices bring that “…there is a hidden mind somewhere in the programming 

language that has intelligent interpretive powers.” (Pea, 1986) 

 While describing declaration statements, I’m intentionally not defining or using 

the term “declaration” as learning the term is not critical to be able to trace 

code. This is one way of trying to minimize the content we are asking learners to 

acquire in this short presentation. 
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 For integer literals, I just note that the number “10” has value 10.  I’m not 

describing the conversion of a literal from characters to binary as our memory 

model doesn’t show binary.  This conversion will need to be described as more 

details of the computer memory model are defined.  Not using the term literal 

yet either just to simplify the current presentation. 

 Just using single character variable names and not defining what an identifier is 

at this point either, just to keep the presentation simple. 

 Only defining the data type “int” as it is actually used in the example.  Not 

discussing any other data types at this point, again just to keep the discussion as 

simple as possible to focus on teaching how to trace these short examples. 

 All the narration is describing the meaning of specific instructions. The meaning 

or purpose of a set of instructions is never discussed and in fact these example 

instructions have no purpose other than illustrating the concepts of declaration, 

assignment and sequence. 
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Line-by-line script 

Step Focus Narration 

1 int a; 

int b; 

 

a = 5; 

b = 10; 

 

a = b; 

b = 7; 

I’m going to describe the meaning of each instruction in the 

example computer program shown on the left.  The program 

is written in the Java programming language. I wrote the 

program by typing in the instructions.  Once the instructions 

are typed in then we ask the computer to execute the 

program.  The computer is a machine that executes the 

program one instruction at a time.  
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2 int a; <step>The computer executes the program instructions, one 

at a time, in order.  We start with the first instruction “int a;”.   

<step>“int a” means give an area of computer memory the 

name ‘a’.  <step>More specifically, “int” is short for integer 

and means that memory location “a” will be used to store an 

integer.  An integer is a whole number, such as 1, 2, 3, 99, 

100 etc.   The memory location ‘a’ will only contain a single 

number at any time. The memory location ‘a’ is also referred 

to as variable ‘a’ since the value at that memory location can 

change, as we will see. 

3 int b; <step>Now the computer executes the next instruction of the 

program “int b”.<step> 

Note that this instruction is very similar to the previous 

instruction.  Can you guess what this instruction does?  

<pause><step> As you may have guessed, this instruction 

gives the name ‘b’ to another area of computer memory. In 

other words, it creates the variable ‘b’. Note that ‘b’ will also 

be used to hold an integer which is a whole number, a 
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number without a decimal. 

4 a = 5; 

 

<step>The next instruction is an assignment statement.  

<step> The instruction is read “a” is assigned the value “5”.  

Note that I did not say ‘equals’.  I said “a” is assigned the 

value “5”.  In a Java program the equals sign is referred to as 

the assignment operator.  The assignment operator means 

take the value on the right side and put it into the memory 

location named on the left side.  Note that order is 

important; the right side is executed and then the result is 

stored in the memory location named on the left side of the 

assignment operator. 

5 5 <step>‘5’ refers to the number 5.  Note that variables such as 

‘a’ and ‘b’ refer to memory areas, while numbers such as ‘5’ 

refer to the integer value 5. 

When the computer executes this program, it puts the 

number 5 into memory.  
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6 a <step>As we described earlier the name ‘a’ refers to a 

memory location that will store one number. 

7 a = 5 <step>Assignment means to copy the value from the memory 

location where ‘5’ is to the memory location named ‘a’.  Note 

that this is a copy, the ‘5’ remains in the original location.  

Note also that if memory location ‘a’ had a value, it is now 

overwritten.  The only value in memory location a is now ‘5’. 

Since some program instructions effect the contents of 

memory, such as this one, when tracing through a program, 

as we are doing, it is important to keep track of the current 

contents of memory.   

8 b = 10; <step>The next instruction in our program is similar to the 

previous.  This instruction is read “b is assigned the value 10”. 

Can you guess what this instruction does? <pause> <step> 

This instruction tells the computer to put <step>the value 10 

into <step>the memory location named b.<step>  <pause> 
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9 a = b; <step>Now the computer executes the next instruction in our 

program. Note that this instruction is similar to the previous 

instruction but instead of a number on the right side there is 

the variable ‘b’.  What do you think happens in this case?  

<pause> <step> In this instruction, <step>the value in 

memory location ‘b’ is copied/assigned to <step>the memory 

location ‘a’. Remember that assignment means to take the 

value from the <step>right hand side and put it into the 

memory location on the left hand side. <pause> 

10 b = 7; <step>Finally the computer executes the last instruction in 

our program.  What do you think may happen to the current 

value that is in ‘b’?<pause><step>This instruction says assign 

the value 7 to the memory location “b”.  Note that whatever 

value is in ‘b’ currently will be overwritten as the variable ‘b’ 

can only hold one value. 

The number 7 from our program is <step>put into a memory 

location by the computer.  When this assignment instruction 

is executed, the value 7 is copied to <step>the memory 
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location ‘b’ <step>overwriting the value that was previously 

there.  

11  <step> Thank you for taking the time to watch this video. 

 

The following videos are available via YouTube.  They are unlisted and therefore require 

the following links to access. 

Instruction without computer memory: 

https://www.youtube.com/watch?v=FIhThMCrdpI  

Instruction with computer memory: https://www.youtube.com/watch?v=ObZ7mA5EkuI 

https://www.youtube.com/watch?v=FIhThMCrdpI
https://www.youtube.com/watch?v=ObZ7mA5EkuI
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 Experiment 2 Video Scripts 

We created an example that includes 2 instructions demonstrating variable-to-variable 

assignment as that seemed to be a stumbling point by many in experiment 1. Also, some 

prior results suggested that maybe our video covered “too much, too quickly” so we 

shortened to 3 minutes.  To cut the time, we abbreviated our discussion of declaration 

and assignment of initial values and the discussion related to literals.  At the beginning 

of the video we added a statement describing the purpose of the example. At the end 

we mentioned the purpose again. 

Step Focus Narration 

1 int c; 

int d; 

int e; 

 

c = 5; 

d = 10; 

 

c = d; 

e = c; 

This short video describes the first steps in learning how to 

program a computer.  The purpose of these instructions is to 

show how to put a number into an area of memory and then 

copy the number from one area of memory to another.  

2 int c; 

 

<step 5> We start with the first instruction “int c;”.   “int c” 

tells the computer to give an area of computer memory the 

name ‘c’.  initially the value within “c” is undefined. “int” is 

short for the word integer which is a number, such as 1, 2, 
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99, 100 etc. 

3 int d; 

 

 

int e; 

 

Can you guess what the next instruction does? <pause> 

<step>This instruction gives the name ‘d’ to another area of 

memory. <step>And you can probably guess that ‘int e’ will 

give the name ‘e’ to a third area of memory. 

4 c = 5; 

 

<step>In the next instruction, when you see the symbol that 

looks like the equals sign, imagine an arrow pointing to the 

left. We call this symbol assignment. Even though it looks 

like an equals sign it does Not mean equals. This instruction 

means to put the number on the right side of the assignment 

symbol into the memory area named ‘c’ on the left side.  So, 

the value 5 is put into the memory area ‘c’. If another 

number was in memory area ‘c’, that number is now gone 

and is replaced with the new number, in this case 5. 

5 d = 10; <step>What do you think “d is assigned 10” means?  It is 

very similar to the previous instruction.  If you said, puts the 

number 10 into memory area ‘d’, you are right! 
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6 c = d; <step>Remember that when you see the assignment symbol, 

that looks like the equals sign, think of an arrow pointing 

left.  So, this instruction means copy the number that is in 

memory area ‘d’ and put it into memory area ‘c’.  The 

number in area ‘d’ is not changed, just the area ‘c’ is changed 

since it is on the left side of the assignment symbol. Note 

that ‘c’ no longer contains the number 5 but ‘c’ now contains 

the number 10 that was just copied there. 

7 e = c; This next line is tricky so be careful.  Do you think ‘c’ contains 

the number 5 that was put into ‘c’ originally? Or does ‘c’ now 

contain the number 10? <pause> If you said ‘c’ contains the 

number 10 and the number 10 will be put into memory area 

‘e’, you are correct!  The last value in ‘c’ is the value that will 

be copied to ‘e’. 

As you can see the values in ‘c’, ‘d’ and ‘e’ vary so we call ‘c’, 

‘d’ and ‘e’ variables.   

To summarize, the purpose of these lines of Java instructions 

is simply to demonstrate creating variables and copying 
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values between them.   

 

We added a third group to our experiment, a no instruction group.  The script below 

was recorded as the no instruction group video. 

Step Focus Narration 

1 int c; 

int d; 

int e; 

 

c = 5; 

d = 10; 

 

c = d; 

e = c; 

This video shows some instructions for programming a 

computer.  The instructions shown are written in the Java 

programming language.  The purpose of these instructions is to 

demonstrate some fundamental programming concepts. 

  Part of our research is to understand what knowledge beginner’s 

bring that may help them make sense of programming 

instructions.  Following this video are some programming 

examples that look similar to the one shown here.  Without 

having someone explain the precise meaning of the instructions, 

please make an attempt to answer the following questions. At 

the end, there is an opportunity to comment if you have insight 

you would like to offer us. 
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YouTube links for the videos.  These videos are unlisted meaning that one must have the 

link in order to view them. 

Instruction without computer memory:  http://youtu.be/76RfvVVixsg  

Instruction with computer memory:  http://youtu.be/P4ZEcolWgk4  

No Instruction video:  http://youtu.be/ufAVwIsX4DE  

http://youtu.be/76RfvVVixsg
http://youtu.be/P4ZEcolWgk4
http://youtu.be/ufAVwIsX4DE
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Appendix C: Complete Survey 

Learning Survey 1 

The following are screen shots of the actual survey were taken in preview mode on the 

UWM Qualtrics survey site.  Note at the bottom of each screen shot is only a next page 

button ( ) for the participant to navigate through the survey. 
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Learning Survey 2 and 3 

The survey questions were identical between Learning Survey 2 and 3.  The videos 

shown were the only differences. 
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