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Abstract 

As the renaissance of family-based genomic research, identifying diseases and families for this 
kind of study becomes increasingly important. Recently, a large cohort of predicted twins, called 
the Marshfield Clinic Twin Cohort, has been generated by analyzing standard demographic 
information in an electronic medical record. However, one piece of critical information, the 
zygosity status (identical vs. fraternal) of each twin pair is missing in this data set. In this study, 
we used the Bayes network and estimation-maximization method to infer whether a certain pair 
of twins is monozygotic or dizygotic. By properly choosing the initial conditional probability 
table entries, we successfully reproduced the known priors of the probabilities for identical and 
fraternal twins. Armed with these imputed data, we also studied the p-values of most interesting 
diseases, and their relative risks in identical and fraternal twins. Our study demonstrates that such 
a methodology is very useful in filling the missing values in a family-based phenotype data set, 
and thus eliminates many difficulties in family-based research.  
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I. Introduction 

In the last decade, population-based approaches in human genomic research have become 
widespread and achieved great success, e.g. genome-wide association studies (GWASs). Since 
2005, over 3000 genetic variants have been identified and linked to hundreds of diseases.1 
Unfortunately, population-based genomics has its own difficulties. First, many associations 
between genome and diseases have little significance in clinic. This is probably caused by the 
fact that population-based methods usually focus on genomes of unrelated individuals instead of, 
for instance, family members. Second, the functions of a large amount of genomes are difficult to 
understand. Although there are some improvements on the traditional population-based studies 
by considering the electronic medical record (EMR) systems of patients,2-4 such as phenome-
wide association studies (PheWASs), some of the difficulties said above still persist.3  

Because of these difficulties, and the great development of the “next generation sequencing” 
(NGS) technologies in the recent a few years,5-6 a previously popular approach, family-based 
genomics starts to revitalize. However, even with this method, associating the most interesting 
diseases with families for research is still challenging. Alternatively, the EMR systems may 
provide another kind of information to help understand the heritability of many diseases. 
Recently, a large cohort of predicted twins has been successfully generated, by using familial 
aggregation analysis on nothing more than standard demographic information in an EMR. This 
cohort is called the Marshfield Clinic Twin Cohort (MCTC).7 Thousands of diseases are included 
in this cohort and can be studied simultaneously. Ye et al. then investigated the correlation 
between these diseases and the gender status (same-sex vs. opposite-sex) of twins, and led to the 
conclusion that heritable factors are more likely to contribute to the etiology of the diseases with 
greater relative risks.8  

However, investigating gender status only focuses on those diseases that have inheritance on X 
or Y chromosomes. To better understand the family genomic conditions for thousands of disease 
captured by EMR systems, it is necessary to consider the zygosity status (fraternal vs. identical) 
of twins. Unfortunately, this information is usually missing in an EMR.7-8 Therefore, in this 
study, we use Bayes network (BN) and estimation-maximization (EM) methodology9-10 to infer 
the missing zygosity status of all twins, which provides the availability of using an EMR to 
better understand the inheritances of most interesting disease.  

The paper is organizes as follows. In section II, the description of the methods used in this study 
is given. Section III presents the results and data analysis. And we conclude in Section IV. 

 

II. Methods 

A. Marshfield Clinic Twin Cohort 
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The MCTC was generated by exclusively analyzing the standard demographic information in 
EMR system. There are 9906 defined diseases and 15706 identified patients in this data set. 
Among these patients, most of them are twin pairs from the same families, and the rest few are 
individuals without other relatives in their own families. In this study, we are interested in the 
association between the family genomic conditions and diseases. Therefore, only families with 
twins are included in the present work, and those families without twins and the diseases only 
exist in them are excluded from further analysis. 

The modified cohort data set contains 9817 defined diseases, and 15174 identified individuals or 
7587 families. Among these individuals, 7952 patients are male and 7222 patients are female. 
With respect to the families, 5021 of them have twins with the same gender, where 2693 pairs of 
twins are male and 2328 pairs of twins are female. The other 2566 twin pairs are those with 
opposite genders.  

B. Bayes Network Structure 

Bayes Network (BN) is a probabilistic graphical model that represents a set of random variables 
and their conditional dependencies via a directed acyclic graph (DAG). Each random variable is 
represented by a vertex on the DAG and has an associated conditional probability table (CPT). A 
directed edge in BN describes a direct correlation from the predecessor to the successor. The 
CPT of a vertex exhibits the conditional probabilities of the values of the random variable, given 
the values taken on all its predecessor nodes. It is widely used to model many real-world 
problems such as the probabilistic relationships between diseases and symptoms. Therefore, it 
makes BN a perfect tool to model the MCTC data set. Inference and learning can be performed 
in BN readily, and we mainly focus on the parameter learning here. 

There are many efficient algorithms to do the structure learning in BN, however, we fix the 
structure of the BN (the DAG) in the present study. There are three kinds of vertices in the BN: 
the zygosity status (ZS), the gender agreement (GA), and the diseases (D). The ZS is the “class” 
feature which has no parent node, and it is also the missing data we are intent to infer. The ZS 
feature has two values: fraternal (F) if the twins are dizygotic or identical (I) if they are 
monozygotic. The GA vertex has ZS vertex as its parent, and can take one of the two values: yes 
(Y) if the twins have a same gender, or no (N) if they have opposite genders. For the diseases, 
each one of them is a separate vertex. Although some of the diseases studied here are gender 
related and the others are not, we treat all of them in a uniform manner by relating each disease 
to the zygosity status and gender, and leave the algorithm itself to decide which ones are more 
likely to occur in one gender. Therefore, for disease i (Di), it has both ZS and GA as the parents, 
and has three possible values: 0 if none of the twins are affected by this disease, 1 if one of them 
is affected, and 2 if both of them have the disease. A scheme of the BN structure is shown in 
Figure 1.  

C. The Estimation-Maximization Algorithm 
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One of the goals of BN is to perform the parameter learning, which means to infer the parameters 
of the CPTs given the structure of a BN and a training set. If a fully observed training set is given, 
one can use methods such as maximum likelihood estimation (MLE) or maximum a posteriori 
(MAP) to calculate those parameters. However, it is common that in a machine learning task, 
some feature values are missing, in which case these standard methods fail to work. Therefore, in 
order to do parameter learning on partially observed data, one has to first impute these missing 
values, and one way to do it is the EM methodology. The main idea of the EM method is to 
compute the expectation of missing data, and to find the best model that maximizes the 
probability of the data given an initial model. There are many ways to do EM algorithm, in this 
study, we implement it through inference and parameter learning. 

More specifically, the EM algorithm is seeking to estimate  

𝜃 ← argmax
𝜃

𝐸𝑍|𝑋,𝜃[log 𝑃(𝑋, 𝑍|𝜃)]       (1) 

where, θ is the parameters of the model, which in our case, is the CPTs, X represents all observed 
variable values, and Z represents all missing values. The algorithm consists of the iteration of the 
following two steps:11 

E step: Use observed data X and current parameters θ to calculate P(Z|X, θ),  

M step: Replace the current θ by 𝜃 ← argmax𝜃′ 𝐸𝑍|𝑋,𝜃[𝑙𝑜𝑔 𝑃(𝑋, 𝑍|𝜃′)]. 

The computation stops if the iteration of E-M steps converges. The stopping criterion employed 
in this study is that the change of total counts for fraternal (or equivalently, identical) twins in 
two successive iterations is less than one. Although the EM algorithm is guaranteed to converge, 
it can only find the local optimum, which means that choosing the initial parameters are 
important. We will discuss more about this in the next section.  

D. Relative Risk 

Once the EM algorithm is converged, we obtain the CPTs interested in the BN model, and the 
prediction of probabilities of monozygotic and dizygotic for each family. Therefore, we can 
classify the zygostic status of each pair of twins by choosing the more probable one. Once this 
piece of information is available to us, we can investigate the relation between the zygostic status 
and the etiology of the diseases.  

However, to do this, it would be better if we can first categorize all the diseases base on some 
proper quantitative metrics. Here, we choose to use the relative risk (RR) for each disease, which 
measures the relative ratio of the probability that an individual is affected by the disease given 
the other twin is already affected, to the probability that an individual is affected in general. The 
RR of the disease i is therefore computed as follows, 
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𝑅𝑅(𝐷𝑖) =
# 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠 # 𝑜𝑓 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠⁄

# 𝑜𝑓 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝑠 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛⁄        (2) 

E. P-values 

The p-value12 of each disease is also calculated in the present study. We conducted a two-sample 
t-test for the differences in concordance rates between identical and fraternal twins for each 
disease. First, for any disease, if both twins are affected, we treated it as “success”, which has the 
value 1; and if only one twin is affected, it is a “failure”, which has the value 0. Thus, the 
probability of “success” for each group of twins (identical/fraternal) equals the mean, which is 
exactly the concordance rate. Assuming that identical and fraternal twins having different 
variances, we calculate the t-statistic using  

𝑇 =
𝜇1 − 𝜇2

√𝑠1
2 𝑛1⁄ + 𝑠2

2 𝑛2⁄
       (3) 

where 𝜇1, 𝜇2 are the sample means, 𝑠1
2, 𝑠2

2 are the sample variances, 𝑛1, 𝑛2 are the sample sizes 
for identical and fraternal twins. 

The null hypothesis and alternative hypothesis are defined as 𝐻0: 𝜇1 = 𝜇1  and 𝐻𝑎: 𝜇1 ≠ 𝜇1 
respectively. Thus, the t-test is two-tailed and the p-value is calculated as 

𝑝 = 𝑃𝑟𝑜𝑏(|𝑡𝜈| > |𝑇|)       (4) 

where T is calculated from Eqn (3) and 𝑡𝜈 is distributed according to t-distribution with degree ν, 
which is given by 

𝜈 =
(𝑠1

2/𝑛1 + 𝑠2
2/𝑛2)2

(𝑠1
2/𝑛1)2/(𝑛1 − 1) + (𝑠2

2/𝑛2)2/(𝑛2 − 1)
       (5) 

where all the symbols have the same meaning as they are in Eqn (3). 

 

III. Analysis 

A. Choice of the initial CPTs 

As mentioned earlier, the EM algorithm converges to a local maximum. Therefore, choosing 
reasonable initial CPTs is essential for this parameter learning task. Moreover, there are some 
constraints that the CPTs are subject to in this particular case. For example, given a pair of twins 
as identical, it is one hundred percent that they are the same gender. It is important that the CPTs 
satisfy these constraints in each step of iterations in the EM algorithm. 
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In the very first attempt, we use the same predefined CPT as the initial parameters for all the 
diseases. One of the examples is given in Table 1. Since MAP is employed in the maximization 
step, we also exhibit pseudocounts in parentheses in Table 1. The EM algorithm with this set of 
initial values leads to the priors of 53% of fraternal twins and 47% identical twins. However, it is 
known that in MCTC, 75% of twins are fraternal and 25% are identical.13 Therefore, our 
estimation does not agree with the true data well, which suggests that the initial CPT entries are 
not appropriate. Changing those initial values in a certain range does not make the EM algorithm 
converge to another maximum thus shows no improvement. Therefore, it seems that using a 
same initial CPT for every disease is not proper.  

To solve this problem, we adopt a “baseline” approach in this study to generate the initial CPT 
entries for each node in the BN. First we estimate the conditional probability for being dizygotic 
given the twins share the same gender. This is achieved by using Bayes rule as follows 
𝑃(𝑍𝑆 = 𝐹|𝐺𝐴 = 𝑌) = 𝑃(𝐺𝐴 = 𝑌|𝑍𝑆 = 𝐹)𝑃(𝑍𝑆 = 𝐹)/𝑃(𝐺𝐴 = 𝑌) . 𝑃(𝐺𝐴 = 𝑌|𝑍𝑆 = 𝐹)  equals 
0.5 which is a biological fact. 𝑃(𝑍𝑆 = 𝐹)  is known to be 0.75. And 𝑃(𝐺𝐴 = 𝑌)  can be 
calculated by MLE from the data set, which is 0.66. Therefore, 𝑃(𝑍𝑆 = 𝐹|𝐺𝐴 = 𝑌) equals 0.57. 
Then, we use this value as a partial count to assign a pair of opposite-gender twins as 0.57 
fraternal and 0.43 identical (same-gender twins are counted as 1 fraternal twin pair for certain). 
With this information, we compute a “baseline” CPT for each node and use them as the initial 
parameters for the EM algorithm. With the same pseudocounts shown in Table 1, this time, the 
EM converges to priors of 81% fraternal twins and 19% identical twins, which is much closer to 
the known probabilities (75% and 25% respectively). Tuning this partial count in a range from 
0.52 to 0.75 does not introduce significant change to the final priors, although using values 
smaller than 0.5 may make the algorithm converge to other optima. Therefore, we decide that 
this approach is more appropriate to make initial guesses for parameters, and use its predictions 
for further analysis. 

B. Analysis for p-values 

P-values of 5048 diseases are calculated, where 4769 diseases out of the total 9817 are excluded, 
since they satisfy the condition that 𝑛1 < 2 or 𝑛2 < 2. In general, 318 out of 5048 diseases have 
p-values smaller than 0.05, which means that there is significant difference in concordance rates 
between identical and fraternal twins for these diseases (significant level: 0.05). Figure 2 is the 
Manhattan plot showing the p-values of the t-tests for the differences between the concordance 
rates of identical and fraternal twins for all these diseases. The p-values of some diseases equal 
zero, which are replaced by a very smaller number (1E-20) in Figure 2 because of the easiness 
for plotting. These are the points that have the largest y-axis value (20) in Figure 2. 

C. Analysis for Relative Risk 

We next calculate the relative risks (RRs) for all phenotypes, and classify them into 10 categories. 
More specifically, there are 7325 phenotypes having RR=0, 34 phenotypes having 0<RR<1, 254 
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phenotypes having 1<RR<2, 257 phenotypes having 2<RR<3, 168 phenotypes having 3<RR<4, 
123 phenotypes having 4<RR<5, 363 phenotypes having 5<RR<10, 828 phenotypes having 
10<RR<100, 343 phenotypes having 100<RR<1000, and 122 phenotypes having RR>1000. 
Among them, diseases whose RR values equal zero are mostly consisted of the rarest conditions. 
Therefore, these phenotypes are excluded in the following analysis. 

To better assess if these diseases have any unappreciated genetic etiologies, the percentage of 
affected families that consisted of concordant pairs is measured in identical twins and compared 
to fraternal twins. The result is shown in Figure 3. Comparing to a similar study conducted by Ye 
et al, where the comparison is between same-sex twins and opposite-sex twins, our result 
exhibits surprisingly different trend. The category with the largest enrichment for identical twins 
comparing to fraternal twins is the one with RR<1. For the categories with 1<RR<2, 2<RR<3, 
and 3<RR<4, there is very little difference between identical and fraternal twins. Interestingly, 
the percentage of concordant fraternal twins is higher than that of identical twins in categories 
with 4<RR<5, 5<RR<10, 10<RR<100, 100<RR<1000, and RR>1000, where the largest 
difference exists in category 4<RR<5 and it slightly decreases as RR grows. This observation 
strikingly contrasts the result shown in Figure 2B in Ref. 8, where the percentage of concordant 
same-sex twins is always larger than that of opposite sex twins, and the enrichment of 
concordant families with same-sex twins increases as the RR value increases. The reason for this 
discrepancy is currently still unclear. However, one thing worth to notice is that by using the 
MCTC data set, we cannot quantitatively reproduce the result between same-sex twins and 
opposite-sex twins reported in Ref. 8. For example, in the category of RR>1000, the enrichment 
of same-sex twins is 4.2 fold comparing to opposite-sex twins in Ref. 8, but it is 1.8 fold in our 
reproduction. We suspect that this disagreement may be caused by the fact that only ~5000 
diseases in MCTC are considered in Ref 8, but all the 9817 diseases are included in our study. 
Therefore, further clarification of data analysis is necessary before the result can be properly 
interpreted comparing identical and fraternal twins. 

 

IV. Conclusion 

Family-based genome research has been starting to regain more and more attention in recent 
years due to the limitation of population-based approaches and the development of sequencing 
techniques. With large EMR systems quickly becoming popularized, thousands of pedigrees may 
be applied to phenome-wide research. However, some important information about the families 
and patients may be missing in an EMR. This study demonstrates an example of how to infer 
these missing values. By investigating the MCTC data set, we successfully impute the zygosity 
status of twin families by using Bayes network and estimation-maximization methodology. With 
properly chosen initial parameters, the resulting priors produced by the algorithm agree with the 
a priori knowledge of the data set. Furthermore, the association between the zygosity status and 
various diseases is also studied, which may provide invaluable information to the clinic.  
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Another large piece of useful information yet not analyzed here is the CPTs of the diseases in the 
BN. This kind of knowledge may help physicians diagnose a disease for a twin given whether 
the other twin (or another family member in general) is affected by the same disease. Other 
machine learning techniques, such as text mining, may also be applied to identify 
identical/fraternal twins, which can provide a comparison to the predictions from the BN&EM 
algorithm. Other directions of future work include altering the structure of the BN, or introducing 
new random variables to the BN. 
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a)  

Condition D 
ZS GA 0 1 2 
F Y 0.9 (0.8) 0.07 (0.1) 0.03 (0.1) 
F N 0.9 (0.8) 0.08 (0.1) 0.02 (0.1) 
I Y 0.9 (0.8) 0.05 (0.1) 0.05 (0.1) 
I N 0 (0) 0 (0) 0 (0) 

 

b) 

Condition GA 
ZS Y N 
F 0.5 (0.5) 0.5 (0.5) 
I 1 (1) 0 (0) 

 

c) 

ZS 
F I 

0.5 (0.5) 0.5 (0.5) 
 

Table 1. An example of initial CPTs. In the parentheses are the pseudocounts. a) disease node. b) 
gender-agree node. c) zygosity-status node. 
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Figure 1. Structure of the Bayes network 

 

 

 

 

Figure 2. The Manhattan plot showing the differences of p-values between the concordance rates 
of identical and fraternal twins for 5048 diseases 
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Figure 3. Relative risks (RRs) for diseases in the Marshfield Clinic Twin Cohort (MCTC). It 
illustrates the percent of concordant affected families in different RR categories. Numbers on the 
top of the histograms are the ratio of identical over fraternal values for each RR category. 
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