University of Wisconsin-Madison

Reducing the Checkpointing Burden of Condor :

Analysisand | mplementation

Computer Sciences 736
John Bent and Gregory R. Bronner
Prof. Remzi Arpaci-Dusseau

Saturday, May 13, 2000

Acknowledgements:

We wish to acknowledge the generous help of the Condor Team, and especially of the Condor Team staff
members Todd Tannenbaum, Jeff Ballard, Peter Keller, Derek Wright, and Peter Couvares. The original ideato
investigate Condor checkpointing came from Jim Basney, and Doug Thain and Rajesh Raman answered many of our
questions. Finally, we thank Remzi Arpaci-Dusseau for his guidance and criticism of our work.

Table of Contents:

REDUCING THE CHECKPOINTING BURDEN OF
CONDOR: ANALYSIS AND IMPLEMENTATION......o

TABLE OF CON T EN T S e s 2
TABLE OF FIGURES : ... s 2
a1 oo 18 ot £ To] o AR 3
2 F Tot N0 o 1H] (o OSSOSO 3
PLAN OF ATLACK: ...ttt bbb bbb bt s b e b e Rt b e e e bt s b et e st e b et e st e be b st et et neees 3
PIEVIOUS W OT K .ttt bbb bR Rt R Rt Rt R e bt e R e b et R e s e st e b e n et nr e n s 4
Other CheCKPOINTING THEAS:eoiiieee ettt bttt et e e e b e s b e e bt ehe e e e s eeseesbesbesaesbe e e ennennens 4
L@ T T o T OSSPSR PSPPSR 5
Part One: M easurement of the Dirtiness of Pagesin Long Running ProCesses:ccoeveeerenenesesiese e 5
Part Two: Implementation of Incremental CheckpoiNting:cocooiiiiiiiiii e 7
What We Learned and What WeWould DO Differently: ..ottt 9
L0701 TU =T g SO STRTSOPR TR 10
FULUE @ VW OT K ettt bbb ek b £ b b h bt et b £ e st b £ e b bt s E et e bt b e n e e b et et eb e st et bena e et 11
BIBLIOGRAPHY .ottt sttt sttt ettt e s e st e s bt e s teeseeemeesaeesseesse e teanteemteeaeesseesbeesseeseansesneesneenseanseensenns 12

Table Of Figures:

Figure 1: Most users programs are nsistent in the percentage of their data segment pages that they update.
Figure 2: Percentage of clean pages by user. Note that thisis highly user dependent because diff erent users run
different kinds of jobs. Also note that these ae generally higher than synthetic benchmark figures generated

LRV S Y= T= £ e o S 6
Figure 3: Total potential savings and total data chedkpointed. Note large usage differences between users. 7
Figure 4: The overhead of incremental CheCKPOINEING.coiivviiiiiiiiiiii e 8

Figure 5: Checkpoint latency times as a function of image size and percent and locdity of modified pages.9

| ntr oduction:

Condor isadistributed system that harnesses the power of users' unused workstations to deliver large anourts of
computing to CPU intensive projeds. Because users can and doclaim their machines at unforeseedl e times, Condor
chedkpoints programs' state periodicdly and migrates interrupted jobs to new host machines. Additionally, Condor
chedkpoints ajobwhen it deteds user adivity at the terminal; thisis cdled a vacate checkpoint.

Asenrollment in a Condor pod is usually volurtary, the Condor system must strive to minimize user disruptions.
In particular, this necesstates finding a balance between shipping asllittl e data acossthe network as possble (to
avoid saturating it), whil e vacding computers as quickly as possble. Our reseach represents an attempt to make
Condor more user-friendly by improving vacde speeds whil e reducing retwork bandwidth.

Background:

In UNIX, asin most modern operating systems, the state of a processconsists of the cntents of the memory inits
address pace itsopen files, pending signals, the state of the registers, and any other operating system-spedfic
feduresthat affed the computation. The most important ideaof user-level chedpointing wasthat it is possble to
reducethe problem of savingthe state of kernel-level state variables (registers, open files, etc.) to the problem of
saving wser-level memory by usingset j np/ | ongj np cdlswhich have the dfed of pushing kernel-type
information onto the stadk, whereit is accessble to user-level programs, and can be written to disk. Astheimage
sizeof processes has grown, fueled by the rise of virtual memory, the anount of time that it takes to write the
processto disk has also grown, as 1/0 speeds have not kept pacewith the growth in process $zes.

More recent work on user-level chedkpointing has focused on making the dhedkpoints snaller and on improving
the speed of chedkpainting. The most promisingideato come out of this research effort is probably incremental
chedkpointing; rather than write out the entire process paceto disk, these methods attempt to write out only the
differences, relying on memory locdity and frequent chedkpointing to ensure that the diff erences are much small er
than the whole space

The dam of this projed was to determine to what to extent modern ideas of user-level chedkpointing would
improve the user and network-friendlinessof Condor, without making it lessstable, lessarchitedure or operating
system neutral, or lessreliable. Additionally, the previous work developed chedpointing strategies that were
optimized for a synthetic load of mostly numericd or mathematicd software running on much slower machines and
that chedkpointed every few minutes. We wanted to seewhether these same ideas of incremental chedkpointing
would be gplicable in Condor, which runs awide range of CPU intensive software and typicdly chedkpoints much
lessfrequently (the default interval isthreehours).

Plan of Attack:

In order to determine whether incremental chedkpointingwould be beneficial to Condor, we proceeded as
follows:

* First we examined the relevant literature and data on chedpainting.

* Next we dtempted to measure the redundancy in Condor’s current chedkpointing scheme by implementing
atoadl that did a page-by-page mmparison between the aurrent chedkpoint and its immediate predecesor,
and cdculated the number of pages that were new and that had had data written to them (dirty pages).

* Wethen condensed thisinformation and imported it into arelational database, and attempted to infer
whether incremental chedpointing would off er any performanceimprovements over conventional
chedkpointing. Asaside-effed, we were ale to test long-term patterns of memory usage in several
different kinds CPU intensive programs; these results tended to agreewith the published literature.

* Wethen set out to modify Condor to suppart incremental chedkpointing, using some simple incremental
chedpointing techniques.

» Finaly, we measured the time latency performance of incremental chedkpointing versus normal Condor
chedpointing on a synthetic workload.

With the rise of the personal computer during the ealy 19805, the aygregate amount of computing power rose
quickly. At the same time, much of this power was invested in single-user workstations that spent most of their time
running screen savers or waiting for their ownersto return. The Condor system was developed to harnessthe wasted
cycles from these cmputers, but in order to ensure forward progress a mecdhanism for user-level checkpointing hed
to be developed.

Litzkow and Solomon developed user-level chedkpointing; this evolved to work on most variants of the UNIX
operating system®. The basic mechanism that they used was to use set j np cdlsto capture the program state
(registers, etc.) into memory, and then write the entirety of ead segment (excluding the text segment, which isread
only) to disk. Later, this medchanism was modified to copy the segments to a temporary segment, compressthat
segment usinggzi p, and send the resulting compresd file to a chedkpoint server. This methodis cdled
conpressed checkpoi nti ng; athoughpopular in some Condor install ations, it is very slow and has been
turned off in many Condor pods for this reason.

More recantly, agroup led by James Plank developed alternative mechanisms for performing chedkpointing.
They reasoned that if a processdoes not dirty all of its pages between chedkpoints, sending the dean pages bad to
the chedkpoint server represents wasted eff ort, as these pages have not changed from the previous chedkpoint.
Spedficdly, they developed several techniques including:

Incremental Checkpointing: All writable pages are set to read only using npr ot ect ; the resulting segmentation
violation gets trapped; the off ending page has its permissons reset to read-write and the page number iswritten to a
list of dirty pages. This method imposes the overheal of an npr ot ect onceper dirty page, aswell asthetime
necessary to processasignal and jump to the gpropriate signal handler, but can dramaticaly reducethe anount of
datawritten at chedkpoint time if a significant number of pages are not modified between chedkpaints.

Copy-On-Write Checkpointing: As dirty pages are swapped out of memory, they are written to a log-structured
chedkpaint file; at chedkpoint time only dirty pages must be written out to disk. This has the alvantage of reducing
vacde time, but the disadvantage of requiring accessto the kernel paging mechanism.

Bitwise Compressed Differences. At chedkpoint time, the dirty pages are XORed with the previous contents of the
page. In the event that the pages are similar, most of the mntents of the diff erencewill consist of long sequences of
zeros. In that case, the diff erences can be compressed using standard compresson agorithms, and the result will be
much small er than one page.

Human Assisted Checkpointing: Using information supplied by the user, in the form of i ncl ude_byt es,
excl ude_byt es, andcheckpoi nt _her e cdls, the anount of datato be chedkpointed can be reduced
dramaticdly by eliminating the chedpointing of memory whose value is no longer needed for the computation, and
by choosing to chedkpaint at times when the total amount of datato be dhedkpointed isleast (e.g. at the beginning of
aniteration for an iterative proces9. We chose not to use these ideas because they weren't appli cable to the reseach
that we were performing, and becaise we didn’t redly believe that most people were willi ng or able to modify their
programsin order to runthem under Condor.

Compiler Assisted Checkpointing: Basicdly thisisthe same & human asdsted chedkpointing, but it involves
using the compil er to make the judgments about when to chedkpoint. Althoughthisisa promisingtechnique and
may well offer large savings, it was beyond the scope of this projed and somewhat outside of our areas of interest.

Plank’ s group validated their results througha series of synthetic benchmarks consisting primarily of publicly
avail able mathematicd or computational physics ftware. What they found was that over a ninety second interval,
the dficiency of various chedpaointing medanisms depended upon the rate & which the pages were dirtied; in cases
where most pages were not dirtied, incremental chedkpointingwas a dea win.

Figure 1. Most users programsare consistent in the percentage of their data segment pagesthat they update.

Other Chedpointing I deas:

Probabilistic Checkpointing: The ideabehind this was that by hashing the value of al memory in a page, we
could oltain a pieceof summary information which could be compared with a page on disk or acossthe network
eaily. Thetrouble with this medhanism isthat unlessthe hash code is as long as the page, thereis no way to

! While versions of Condor have been developed for non-UNIX operating systems, all have been shipped in a
‘clipped wing' format, meaning that they do not suppart chedkpainting.

Proportion of Clean Data Segment Pages over Time by User

L

=)

Ferris
= Glew
Glew?2
03 = F|iassi
e Narfi
= Narfi2
= Rajwar

ES

Prop. Clean Pages

—— Xinyoul
- © — © — o - ©o bl ©o bwl © - © El © bl © — © —
W O O O o O «H - N N M ™ < < 0 0 © O N~ N~ ©

— — - - - - — — — — — — — — - — —

e 9 Qe A 82 e e

- © o © o
N N Mm MmO S T ;O O~

Sequential Checkpoint # (roughly 3 hour intervals)

determine whether the pages areidenticd. Throughmathematics, we @uld guaranteethat the probability of
determining two dfferent pagesto be the same would be lessthan an arbitrary number, albeit at increasing expense.

Like lottery-based scheduling, probahili stic chedkpointing failed to gain wide-spread accetance because of most
peopl€’ s reluctanceto accet anything other than deterministic methods. Indeed, Professor Miron Livny, head of the
Condor projed, readed quite strongy against it, corredly arguing that potentially inacairate computation would be
hard to sell, and that many users would be justifiably reluctant to use such a system.

Our work is composed of two parts. In the first sedtion we designed and implemented a system to measure the
dirtinessof pagesin processes sibmitted to the Condor system. Inthe second part, we implemented an incremental
chedkpointing system, and compared the performance of this g/stem to the performance of the standard sequential
chedkpointing algorithm on a synthetic workload.

Part One: M easurement of the Dirtiness of Pagesin Long

We measured the dirtinessof user jobs by adding code & the chedkpaint server. We did this by examining the
chedpoint filesimmediately after the chedkpoint, and comparing the most recent chedkpoint file with its
predecessor. In order to verify the acaracy of this process we wrote programs that dirtied spedfic patterns of bytes
and then chedkpointed the image; the resulting summary of the chedkpaint fil e was visually inspeded for acairacy.

The dhedkpaint file format isfairly smple; it consists of a healer, a number of segment information structures,
and the aseries of data blocks which correspond to the data mntained in ead segment. Using thisinformation, were
able to coll ed statistics about the processon a page-by-page basis; at chedkpoint time ascript appended the most
recent statistics to alog file stored on the chedkpaint server.

Spedficdly, the statistics that we kept consisted of the size of the process the page size of the host architecture,
the number of dirty pages, the percent of modified bytes on the dirty pages, the number of new pages added to the
process the number of segments and their types, the owner of the job, its name, and the time of the chedkpaint.
Althoughwe did coll edt the data necessary to determine the page locdity of dirty pages (e.g. the history of a spedfic
page over time), we did not incorporate this datainto our database, as it would have made our databasetoo large; a
future study may wish to explore this more fully.

Because of the necessty of not overloading the dhedkpoint server, we did not attempt to perform analysis at the
time of data wlledion. Additionaly, none of the users were notified that we were runnng this checkpoint analyzer
during the investigation period, nor did Condor’s eed or reliability change noticealy during the period;
consequently we beli eve that our measurements did not affed the quantiti es measured, nor did it induce usersto
behave diff erently during the measurement period than they do at other times.

During the measurement interval, which lasted approximately one month, we chedkpointed over 1800 jobs,
comprising the work of nine distinct users, and consisting of over 1.6 terabytes of data. After coll eding the data, we
were caeful to remove the chedkpoints generated by members of the Condor team for testing and development
purposes.

Thefirst result that we obtained was that in long-running jobs, the size of the data segment dominates the size of
al other writable segments combined. Most shared library segments are quite small, often consisting of only a page
or two of memory, and the stadk segments rarely exceal five or six pages; about 98% of the pages chedpointed
were in data segments. After redizing this, we concentrated our eff orts on reducing latency in chedpointing the
data segment; the potential benefits to improving the thedpointing of other segment types did not justify the
implementation overhead.

Next we observed that the propartion of clean pages in ead chedpoint stayed relatively constant when viewed
on aper user basis. Thisis diowninfigure 1; note that for most users the propartion of clean pages varied only
dightly over time.

More importantly, this showed us that the past history of aprocess propensity to modify memory was afairly
reliable indicaor of its future propensity to dothe same; for some users the wrrelation between the percentage of
cleenpagesat timet andattimet +1 wasashighas.91; the average value was greder than 0.7, meaning that the
previous value predicted at least 70% of the variancein the observed value. n which user’s job was being
chedkpointed. Thisresult can be most easily explained by the fad that must users ran the same programs multi ple
times, only varying the input data.

Percent Clean by User

100% -

EDirty
MClean

%Clean

Figure 2: Percentage of clean pages by user. Thisishighly user dependent because different usersrun
different kinds of jobs. Also notethat these are generally higher than synthetic benchmark figures generated
fiveyearsago. [Not shown: The standard deviation of these averageswasvery low.]

The most interesting asped of figure 2 is that the percentage of clean pages can be quite high, and is much higher
than the Plank group reported, even though Condor chedkpoints a processevery threehours, whil e the Plank group
chedkpointed their programs every ninety seconds. We have several explanations for this discrepancy:

1. ThePlank group ran primarily mathematica simulations which tended to perform random accesson
matrices; several of these synthetic benchmarks acdually touched almost all of their memory becaise
they performed matrix computations of the form A,,.;=F(A,); because this type of computation writes a
new matrix over the old one, it tends to touch many pages.

2. Condor users have been moving away from using Condor solely for numericd cdculation; they now
tend to submit other types of jobs including artificial intelli gence simulations (eliass), integer
programming (ferris), integer benchmarks (SPECint 95) runring on asimulated procesor at low speed
(glew), numericd simulations (narfi), etc.. Some of these jobs may be sticking large data structures into
memory and just reading from them.

3. Objed oriented programming tendsto creae large objeds, but much of the objed doesn’t change much
after the objed isinitialized; this would creae pages that were perennialy clean.

4. Certain types of ssimulation codes have become more dficient by emphasizing computation only in aress
in which the investigator isinterested. An example of thiswould be a dimate simulation that confined
most of its updates to North Americe’.

2 Andy Glew suggested thisidea

5. Usingthe working-set model of program behavior, a program may rapidly dirty most of the pages that it
isinterested in, but confine dl succesgve writes to those pages; this could be tested by runnng the
chedkpaints more often, but we have not had time to dothis yet.

Using this data, we were ale to cdculate the potential benefits of incremental chedpoainting. They are
summearized in Figure 3.

Total Size and Savings by Users

700,000
600,000 -
500,000
400,000 - B Clean _
g Bl Total Checkpointed
300,000
200,000
100,000 -
o CHm ‘ ‘ ’_I ‘ i
eliassi ferris glew golbon nagle narfi rajwar tk xinyoul

User

Figure 3: Total potential savings and total data checkpointed. Note lar ge usage differ ences between users.

What isrealily apparent is that a significant amount of data that was chedpointed consisted of unchanged
pages. Over the 23 dhys that we kept statistics on urchanged pages, we determined that roughly 0.7 of the 1.2
terabytes that we dhedkpointed were dean pages. This represents a significant oppatunity to reducethe latency and
overheal of chedkpointing and reduce by about 60% the Condor network traffic. Inthe arrent UW pod, thiswould
result in a savings of 30 gigabytes of network bandwidth every day. Based upon this data we dedded to continue
implementing incremental chedpainting.

Additionally, Figure 3 also confirms a historicd fad of Condor usage: the top few userstypicdly acount
for amost all of the resource @nsumption. In particular, during our experimental period, several usersran long
runringjobsthat chedkpointed often, while others, such asthe user t k dispatched hurdreds of short-lived jobs that
often finished in threehours or less thus obviating the neal for chedkpaints.

Part Two: Implementation of | ncremental Checkpointing:

Oncewe had establi shed the network bandwidth savings that could be adieved with a pdlicy of incremental
chedkpointing, we were aurious to examine whether we uld exped a similar reduction in the time latency of the
chedkpoint event. Asmentioned before, Condor jobs often must vacde anon-dedicaed exeaution machine when
keyboard adivity at that machine indicates that the macine’'s user has returned. In order to be & ciologicdly non-
intrusive a posshble, Condor must either chedkpoint very quickly or lose dl throughput sincethe last periodic
chedkpoaint®.

An implementation of incremental chedkpointing uses a Unix system-cdl, mprotect, to write-proted the

3 Jim Basney, areseacher at the University of Wisconsin, has recently been working on a third option, “slow”
chedkpointing. Slow chedkpointing splits writing the chedkpointing image into multi ple writes and slegping between
them to lower the user’s perception of Condor’ s intrusion.

7

image’' s pages in memory and a signal handler function to respond appropriately to the resulting segmentation
violations that occur when the user code a@tempts to write to the now proteded memory. By mproteding the image
following either a chedkpoint or arestart event, we can use the resulting segmentation violations to tradk which
pages of an image have been modified sincethe previous chedkpoint. Subsequent chedkpoints need only write this
set of dirty pages.

From our measurements, we had seen that 98% of the pages in processes are mntained within the data segment
(i.e. the stack and the shared libraries contribute an insignificant number of pagesto the total image size). For this
reason, we dedded to implement incremental chedkpointing on the data segment only and retain the aurrent padlicy of
sequential chedpointing for the other segments within the memory spaceof the process

Within the signal handler function, we wrote code to reset the permisgons on the off ending page so that the
violating write instruction can succesgully complete when exeaution returns from the signal handler. Before we can
return from the signal handler however, we must update adata structure somewhere to remember which pages have
been modified. One somewhat tricky asped of the implementation is the placement of this data structure. Situating
it within the data segment, which is the default location for dynamicdly al ocated memory, will result in re-entrant
signal handling when we atempt to modify it. This can have disastrous consequences.

To avoid this, we maintained our data structure in a new segment of memory which we dlocate for this purpose
by mmaping /dev/zero® to an unused spacein memory. We dlocate this ssgment to hold a few variables for
acounting and to remember the original end addressof the data segment and to hold a bitmap containing one bit for
ead page in the data segment. The original end addressof the data segment is used to compute whether the data
segment has grown sincethe last chedkpoint. Thisalows usto include any new pages with the modified pages when
we write our incremental chedkpoint.

To measure the overhead of adding mprotect and the signal handli ng of the segmentation violations, we ran two
microbenchmarking programs in threediff erent operating systems. One program microbenchmarked the mprotect
system-cdl, by allocaing a 10,000 page aray and then mprotecting ead page twice, first as read-only and then as
read-write. The other program microbenchmarked our signal handling code by similarly all ocatinga 10,000 mge
array and then mprotecting eat page & read-only and then triggered our signal handler by attempting to write to
that page. Each job was then submitted one hurdred times to the UW Condor pod to €licit redistic behavior.

| Linux, X86 Solaris, SPARC Solaris, X86
M protect Avg. 2.98us 5.20us 5.16us
Signal Handling Avg. 22.89us 167.76 us 11036

Figure4: Theoverhead of incremental checkpointing.

Our microbenchmarks gow that the overhead of incremental chedpointingis minimal. For example, even
if every single pagein a10,000-page image is dirtied between chedkpoints, the overhead of handling the
segmentation violations and the mprotect cdl for ead page alds lessthan two seaonds of exeaution time between
chedkpoints. Given Condor’s current threehour interval between periodic chedkpaints, thisresultsin lessthan
0.02% overhead even in the most pathologicd case.

To measure any reductionsin the chedkpoint time latency, we wrote aprogram that all ocated alarge aray
and purposefully manipulated its pages and explicitly cdled the chedkpaint routine within the Condor code with
which it waslinked. To show the behavior within al possble ranges of locdity, we cdled chedpoints after both
modified pages using randomized locdity and then using clustered locdity. Our hypothesis was that the locdity of
the dirty pages would have no effed on sequential chedkpointing which always writes the entire image but that
incremental chedkpointing would fare much better when pages are dustered. Sinceincrementa chedpointing
initi ates a system-cdl for ead clump of modified pages, randomly scattered modified pages sould take longer to
incrementall y chedkpoint than if that same number of pages had clustered locdity.

* |devizero isa spedal filein *nix which appeas to contain an infinite anount of zeros when read and discards any
data which iswrittento it.

Millizeconcs
g 3 w w N &= 1]
3 o g & =S] g

I
n

10

@
z

T
"Ser_Rand" —-—
"Seq_Clus" —— £,

= "Inc_Rand"

"Inc_Clus"

Millizeconcs
3 w 2 o @ -
3 g k= g 2 3

e
1=

350

300 -

250

Millizecaonds

100 -

50

L I L L L
prat) a0 60 80 100 0 prat) a0 60 80 100
Percent. Dirtu Percent. Dirtu

Checkpoint Latencies (20 meg filed Checkpoint Latencies (40 meg filed

Z00

100000 T
"Seq_Rand" —e—

"Inc_Rand" —=

"Inc_Clus" =% Inc_Ran

90000 - neblust —ed

BO00Y -

70000 -

G000 -

50000 -

Milliseconds

40000 -

30000

20000

10000 |

I L
20 40 (24 B0 100
Percent. Dirtu

o I L L L
L] 20 40 60 &0 100
Percent Dirty

Figure5: Checkpoint latency timesasa function of image size and percent and locality of modified pages.

One seeming anomaly is that incremental chedkpointingis gill faster than sequential chedpointing even at
100% dirty. Inthiscase, al pageswill be written and incrementa chedkpointing should be slower because it has to
examine the bitmap. The reason that thisis not the case in our measurements is because the 100% refers to the pages
which were adively in the control of the program. Our test code dirty every single page of the aray which it had
alocaed. However, the array did not fill the entire data segment. Clean portions of the data segment outside of our
array were not chedkpointed by incremental chedpointing but were by sequential chedkpointing. Regardlessof the
total image size, these dean pages outside of our array were usually about 200 ages; they consist of pages all ocated
by the C runtime library and other libraries; in any event they don't affed the measurements much.

What We L earned and What We Would Do Differently:

Unlike some groups, we picked a projed that all owed us to work independently, had clea mil estones, and
most importantly, allowed us to view preliminary results very quickly. During the wurse of the projed, we worked
independently and at diff erent times, communicaing throughemail. As ead of us had a different skill set, this
allowed us to occasionally work at problemsin parall el without stepping on ead otherstoes. Having clea
mil estones all owed us to focus on nea-term objedives, and encouraged us to focus on completing small sedions of
the projed without feding asif we had to get everything done dl at once it al'so gave us a sense of where we were
relative to our original estimates. Finally, picking a problem that all owed us to start generating data quickly all owed
usto avoid the trap of havingto complete the projed before obtaining any data, and all owed us to use preliminary
analyses of the datato stea the projed in more promising diredions.

Initially we concentrated on trying to re-use existing code, but we were unable to separate the dasses from
the libraries in which they were embedded; this resulted in some very simple exeautables that were over 2 mb in size,
and were excruciatingly slow. Our further attempts were stand-al one programs; we re-implemented alot of the data
structures and made them independent of the Condor libraries. Asaresult, we had to lean UNIX system cdls,
signals, etc., and became quite famili ar with the man pages; as aresult of reading many of the header filesin

/usr/incl ude onsevera different OS/OS version combinations, we gained a newfound understanding of how an
operating system works. We dso benefited from the expertise of the Condor team in figuring out the diff erences
between similar system cdls and communicetions paradigms.

Onetask that occupied alot of time was attempting to get our checkpoint comparison tools to work with
every passhle OS, OS version, architedure, and compresson level of chedkpoint and chedkpoint server. In
particular, obtaining acounts on the respedive macdiines, acawmulating atesting library of representative
chedkpoints, and ensuring that the ade would be not only crossplatform, but crossarchitedure a well proved to be
quite tedious. When confronted with a user who was working on a 64 kit machine, we deded to stop development
on our todls and simply ignore his chedkpoints (which were only 40 aut of 20,000). If we had to doit again, we
would prefer to work in a more homogenous environment, as g/stem cal s and signalstend to be some of the least
portable portions of a program.

We managed to start ealy enoughto colledt a significant amount of data, but we alleded the data before
we designed the database to analyzeit. Thisresulted in us havingto write, debug, and test a series of custom parsers;
had we started analyzing dataimmediately after colleding it, we would have been able to design our log filesto be
more edily interpretable by the database, we would have gotten more complete data, and we would have been able
to omit along series of steps necessary to fix incomplete row entriesin the database”.

We would have dso liked accessto a higher end database on a more expensive pieceof hardware, asjoins
against alarge table ae extremely slow in Access(they sometimes took well over half an hour on Greg' s laptop),
and our tables comprised around 35MB without ac@unting for indexes, and the additional columns that we added.

Finaly, we would have liked accessto alot more disk space ad/or aredly large tape aray to archive
chedkpoints as they camein; this would have all owed usto domore analysis, would have dlowed cthersto chedk
and validate our data, and would have supplied a series of tracefiles for future dhedkpointing investigations.

Conclusions:

Based upon our investigations, we believe that incremental chedkpointing is worthwhil e for many non-
numerical jobs submitted to the Condor system. We have seen that the overheal of performing incremental
chedkpointing is negligible, the reduction in vacae latency and network bandwidth significant, and in the worst case,
incremental chedkpointing remains comparable to sequential checkpointing. Furthermore, because of the simil arity
of users' jobs and because of jobs' propensity to touch roughy equal fradions of pages eat chedkpoint cycle, we
have two powerful mecdhanisms for determining which jobs would be good candidates for incremental chedkpointing.

The mgjor reservations that we have eout incremental chedkpointing are that it adds complexity to the
chedpointing code, that it adds one more system cdl (npr ot ect) to thelist of cdlsthat are not supparted in
Condor, and that it is smewhat lessportable acossoperating systems. However, we believe that a properly
abstraded, architedure-independent chedkpointing library could make Condor a much more network-friendly
product. Thereisalso the patential isaue of overwhelmingthe cdhedpaint server. Sincethe dhedkpoint server hasto
update the chedkpoint file with the new data, it might not be &le to respond as quickly to chedkpoint requests. We
personally doubt that this would be a problem since we reducethe server workload by reducing the anount of data
which it recaves, but if it isaproblem, asite could choose to establish multiple chedkpoint servers. Finally, thereis
avery dight risk of incorred results due to the non-idempatence of the chedkpaint file update processusing
incremental chedkpointing; if half the blocks in the fil e have been updated and the chedkpoint server crashes, the
chedkpoaint isin an inconsistent state, and cannot be used to restart the process

Additionally, the benefit of having the ability to store aseries of chedkpoints could be quite invaluable for
debuggng purpaoses, or for restarting long-running distributed computations in the faceof hardware or software
fail ure that occurred before the previous chedkpoint.

® Asan example, we didn’t start coll eding page sizeinformation urtil about aweek after we started, so we had to go
through find all entries without page sizeinformation, identify the computer that the dhedkpoint came from, find
another entry from that computer with a corred page count, and update dl i ncorred rows. Asalast resort, we had to
email the CSL and ask for information about a particular computer.

10

FutureWork:

Some Condor installations use compression. Due to the sociological intrusion of a slow vacate checkpoint,
the UW pool does not currently compress its checkpoints. However we would like to see how a policy of
compressing the sequential checkpoints compares to incremental (or even compressed incremental) checkpoints,
especialy with respect to network usage, checkpoint storage requirements and vacate latencies.

Next we would like to be able to set up a synthetic checkpointing workload, so that we could compare
various approaches to checkpointing on the same data. This could either take the form of a set of programs that
periodically generated checkpoints, or, in the event that we can find aterabyte of disk or tape, atrace of a month of
Condor checkpoints.

Finally, we would really like to expand the number of usersin the Condor user pool, asit seems premature
to re-architect the checkpoint code and checkpoint server on the basis of observations of the jobs of nine users. This
could be dﬁone by either expanding the number of UW Condor pool users, or by running our measurement software at
other sites’.

® We tried to do this at New Mexico and INFN, but ran into organizational and technical problems.

BIBLIOGRAPHY

Michad Litzkow and Marvin Solomon, (1992). “Supparting Chedkpointing and ProcessMigration Outside
the UNIX Kernel,” USENIX Winter 1992 (283-290).

Michad Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny, “Chedpoint and Migration of UNIX
Processes in the Condor Distributed Processng System”

James Plank, Micah Bedk, Gerry Kingsley, and Kai Li, (1999. “Libckpt: Transparent Chedkpointing
under UNIX,” USENIX Winter 1995 Technical Conference

James Plank, Kai Li, (1994). “Low-Latency, Concurrent Chedkpointing for Parallel Programs,” IEEE
Transadions on Parallel and Distributed Systems, 5(8), Aug 1994 pp 874879

James Plank, Yuqun Chen, Kai Li, Micah Bed, Gerry Kingdey, (1995. “Memory Exclusion: Optimizing
the Performance of Chedkpointing Systems,” Technicd Report UT-CS-96-335 August 1996

James Plank, Jian Xu, and Robert Netzer. (1995 “Compressd Differences: An Algorithm for Fast
Incremental Chedkpainting’, Technicd Report CS-95-302, University of Tennesee

12

