

University of Wisconsin-Madison

Reducing the Checkpointing Burden of Condor:

Analysis and Implementation

Computer Sciences 736

John Bent and Gregory R. Bronner

Prof. Remzi Arpaci-Dusseau

Saturday, May 13, 2000

1

Acknowledgements:

We wish to acknowledge the generous help of the Condor Team, and especially of the Condor Team staff
members Todd Tannenbaum, Jeff Ballard, Peter Keller, Derek Wright, and Peter Couvares. The original idea to
investigate Condor checkpointing came from Jim Basney, and Doug Thain and Rajesh Raman answered many of our
questions. Finally, we thank Remzi Arpaci-Dusseau for his guidance and criticism of our work.

2

Table of Contents:

REDUCING THE CHECKPOINTING BURDEN OF
CONDOR: ANALYSIS AND IMPLEMENTATION......... 0

TABLE OF CONTENTS:... 2

TABLE OF FIGURES:... 2

Introduction: .. 3

Background:... 3

Plan of Attack: ... 3

Previous Work: .. 4

Other Checkpointing Ideas:.. 4

Our Work:.. 5

Part One: Measurement of the Dirtiness of Pages in Long Running Processes:.. 5

Part Two: Implementation of Incremental Checkpointing: .. 7

What We Learned and What We Would Do Differently:.. 9

Conclusions: ... 10

Future Work: ... 11

BIBLIOGRAPHY.. 12

Table Of Figures:

Figure 1: Most users’ programs are consistent in the percentage of their data segment pages that they update.

..4
Figure 2: Percentage of clean pages by user. Note that this is highly user dependent because different users run

different kinds of jobs. Also note that these are generally higher than synthetic benchmark figures generated
five years ago..6

Figure 3: Total potential savings and total data checkpointed. Note large usage differences between users. 7
Figure 4: The overhead of incremental checkpointing. ...8
Figure 5: Checkpoint latency times as a function of image size and percent and locali ty of modified pages.9

3

Introduction:

 Condor is a distributed system that harnesses the power of users’ unused workstations to deliver large amounts of
computing to CPU intensive projects. Because users can and do claim their machines at unforeseeable times, Condor
checkpoints programs’ state periodically and migrates interrupted jobs to new host machines. Additionally, Condor
checkpoints a job when it detects user activity at the terminal; this is called a vacate checkpoint.
 As enrollment in a Condor pool is usually voluntary, the Condor system must strive to minimize user disruptions.
In particular, this necessitates finding a balance between shipping as littl e data across the network as possible (to
avoid saturating it), while vacating computers as quickly as possible. Our research represents an attempt to make
Condor more user-friendly by improving vacate speeds while reducing network bandwidth.

 Background:

 In UNIX, as in most modern operating systems, the state of a process consists of the contents of the memory in its
address space, its open files, pending signals, the state of the registers, and any other operating system-specific
features that affect the computation. The most important idea of user-level checkpointing was that it is possible to
reduce the problem of saving the state of kernel-level state variables (registers, open files, etc.) to the problem of
saving user-level memory by using setjmp/longjmp calls which have the effect of pushing kernel-type
information onto the stack, where it is accessible to user-level programs, and can be written to disk. As the image
size of processes has grown, fueled by the rise of virtual memory, the amount of time that it takes to write the
process to disk has also grown, as I/O speeds have not kept pace with the growth in process sizes.
 More recent work on user-level checkpointing has focused on making the checkpoints smaller and on improving
the speed of checkpointing. The most promising idea to come out of this research effort is probably incremental
checkpointing; rather than write out the entire process space to disk, these methods attempt to write out only the
differences, relying on memory locality and frequent checkpointing to ensure that the differences are much smaller
than the whole space.
 The aim of this project was to determine to what to extent modern ideas of user-level checkpointing would
improve the user and network-friendliness of Condor, without making it less stable, less architecture or operating
system neutral, or less reliable. Additionally, the previous work developed checkpointing strategies that were
optimized for a synthetic load of mostly numerical or mathematical software running on much slower machines and
that checkpointed every few minutes. We wanted to see whether these same ideas of incremental checkpointing
would be applicable in Condor, which runs a wide range of CPU intensive software and typically checkpoints much
less frequently (the default interval is three hours).

 Plan of Attack:

 In order to determine whether incremental checkpointing would be beneficial to Condor, we proceeded as
follows:

• First we examined the relevant literature and data on checkpointing.
• Next we attempted to measure the redundancy in Condor’s current checkpointing scheme by implementing

a tool that did a page-by-page comparison between the current checkpoint and its immediate predecessor,
and calculated the number of pages that were new and that had had data written to them (dirty pages).

• We then condensed this information and imported it into a relational database, and attempted to infer
whether incremental checkpointing would offer any performance improvements over conventional
checkpointing. As a side-effect, we were able to test long-term patterns of memory usage in several
different kinds CPU intensive programs; these results tended to agree with the published literature.

• We then set out to modify Condor to support incremental checkpointing, using some simple incremental
checkpointing techniques.

• Finally, we measured the time latency performance of incremental checkpointing versus normal Condor
checkpointing on a synthetic workload.

4

Previous Work:

 With the rise of the personal computer during the early 1980s, the aggregate amount of computing power rose
quickly. At the same time, much of this power was invested in single-user workstations that spent most of their time
running screen savers or waiting for their owners to return. The Condor system was developed to harness the wasted
cycles from these computers, but in order to ensure forward progress, a mechanism for user-level checkpointing had
to be developed.
 Litzkow and Solomon developed user-level checkpointing; this evolved to work on most variants of the UNIX
operating system1. The basic mechanism that they used was to use setjmp calls to capture the program state
(registers, etc.) into memory, and then write the entirety of each segment (excluding the text segment, which is read
only) to disk. Later, this mechanism was modified to copy the segments to a temporary segment, compress that
segment using gzip, and send the resulting compressed file to a checkpoint server. This method is called
compressed checkpointing; although popular in some Condor installations, it is very slow and has been
turned off in many Condor pools for this reason.
 More recently, a group led by James Plank developed alternative mechanisms for performing checkpointing.
They reasoned that if a process does not dirty all of its pages between checkpoints, sending the clean pages back to
the checkpoint server represents wasted effort, as these pages have not changed from the previous checkpoint.
Specifically, they developed several techniques including:
 Incremental Checkpointing: All writable pages are set to read only using mprotect; the resulting segmentation
violation gets trapped; the offending page has its permissions reset to read-write and the page number is written to a
list of dirty pages. This method imposes the overhead of an mprotect once per dirty page, as well as the time
necessary to process a signal and jump to the appropriate signal handler, but can dramatically reduce the amount of
data written at checkpoint time if a significant number of pages are not modified between checkpoints.
 Copy-On-Write Checkpointing: As dirty pages are swapped out of memory, they are written to a log-structured
checkpoint file; at checkpoint time only dirty pages must be written out to disk. This has the advantage of reducing
vacate time, but the disadvantage of requiring access to the kernel paging mechanism.
 Bitwise Compressed Differences: At checkpoint time, the dirty pages are XORed with the previous contents of the
page. In the event that the pages are similar, most of the contents of the difference will consist of long sequences of
zeros. In that case, the differences can be compressed using standard compression algorithms, and the result will be
much smaller than one page.
 Human Assisted Checkpointing: Using information supplied by the user, in the form of include_bytes,
exclude_bytes, and checkpoint_here calls, the amount of data to be checkpointed can be reduced
dramatically by eliminating the checkpointing of memory whose value is no longer needed for the computation, and
by choosing to checkpoint at times when the total amount of data to be checkpointed is least (e.g. at the beginning of
an iteration for an iterative process). We chose not to use these ideas because they weren’ t applicable to the research
that we were performing, and because we didn’ t really believe that most people were willi ng or able to modify their
programs in order to run them under Condor.
 Compiler Assisted Checkpointing: Basically this is the same as human assisted checkpointing, but it involves
using the compiler to make the judgments about when to checkpoint. Although this is a promising technique and
may well offer large savings, it was beyond the scope of this project and somewhat outside of our areas of interest.
 Plank’s group validated their results through a series of synthetic benchmarks consisting primarily of publicly
available mathematical or computational physics software. What they found was that over a ninety second interval,
the eff iciency of various checkpointing mechanisms depended upon the rate at which the pages were dirtied; in cases
where most pages were not dirtied, incremental checkpointing was a clear win.

Figure 1: Most users’ programs are consistent in the percentage of their data segment pages that they update.

Other Checkpointing Ideas:

 Probabilistic Checkpointing: The idea behind this was that by hashing the value of all memory in a page, we
could obtain a piece of summary information which could be compared with a page on disk or across the network
easily. The trouble with this mechanism is that unless the hash code is as long as the page, there is no way to

1 While versions of Condor have been developed for non-UNIX operating systems, all have been shipped in a
‘clipped wing’ f ormat, meaning that they do not support checkpointing.

5

determine whether the pages are identical. Through mathematics, we could guarantee that the probabilit y of
determining two different pages to be the same would be less than an arbitrary number, albeit at increasing expense.
 Like lottery-based scheduling, probabili stic checkpointing failed to gain wide-spread acceptance because of most
people’s reluctance to accept anything other than deterministic methods. Indeed, Professor Miron Livny, head of the
Condor project, reacted quite strongly against it, correctly arguing that potentially inaccurate computation would be
hard to sell , and that many users would be justifiably reluctant to use such a system.

Our Work:

 Our work is composed of two parts. In the first section we designed and implemented a system to measure the
dirtiness of pages in processes submitted to the Condor system. In the second part, we implemented an incremental
checkpointing system, and compared the performance of this system to the performance of the standard sequential
checkpointing algorithm on a synthetic workload.

Part One: Measurement of the Dirtiness of Pages in Long Running Processes:

 We measured the dirtiness of user jobs by adding code at the checkpoint server. We did this by examining the
checkpoint files immediately after the checkpoint, and comparing the most recent checkpoint file with its
predecessor. In order to verify the accuracy of this process, we wrote programs that dirtied specific patterns of bytes
and then checkpointed the image; the resulting summary of the checkpoint file was visually inspected for accuracy.
 The checkpoint file format is fairly simple; it consists of a header, a number of segment information structures,
and the a series of data blocks which correspond to the data contained in each segment. Using this information, were
able to collect statistics about the process on a page-by-page basis; at checkpoint time a script appended the most
recent statistics to a log file stored on the checkpoint server.
 Specifically, the statistics that we kept consisted of the size of the process, the page size of the host architecture,
the number of dirty pages, the percent of modified bytes on the dirty pages, the number of new pages added to the
process, the number of segments and their types, the owner of the job, its name, and the time of the checkpoint.
Although we did collect the data necessary to determine the page locality of dirty pages (e.g. the history of a specific
page over time), we did not incorporate this data into our database, as it would have made our database too large; a
future study may wish to explore this more fully.
 Because of the necessity of not overloading the checkpoint server, we did not attempt to perform analysis at the
time of data collection. Additionally, none of the users were notified that we were running this checkpoint analyzer
during the investigation period, nor did Condor’s speed or reliabilit y change noticeably during the period;
consequently we believe that our measurements did not affect the quantities measured, nor did it induce users to
behave differently during the measurement period than they do at other times.
 During the measurement interval, which lasted approximately one month, we checkpointed over 1800 jobs,
comprising the work of nine distinct users, and consisting of over 1.6 terabytes of data. After collecting the data, we
were careful to remove the checkpoints generated by members of the Condor team for testing and development
purposes.

Proportion of Clean Data Segment Pages over Time by User

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6

11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

Sequential Checkpoint # (roughly 3 hour intervals)

P
ro

p
. C

le
an

 P
ag

es

Ferris

Glew

Glew2

Eliassi

Narfi

Narfi2

Rajwar

Xinyoul

6

 The first result that we obtained was that in long-running jobs, the size of the data segment dominates the size of
all other writable segments combined. Most shared library segments are quite small , often consisting of only a page
or two of memory, and the stack segments rarely exceed five or six pages; about 98% of the pages checkpointed
were in data segments. After realizing this, we concentrated our efforts on reducing latency in checkpointing the
data segment; the potential benefits to improving the checkpointing of other segment types did not justify the
implementation overhead.
 Next we observed that the proportion of clean pages in each checkpoint stayed relatively constant when viewed
on a per user basis. This is shown in figure 1; note that for most users the proportion of clean pages varied only
slightly over time.
 More importantly, this showed us that the past history of a process’ propensity to modify memory was a fairly
reliable indicator of its future propensity to do the same; for some users the correlation between the percentage of
clean pages at time t and at time t+1 was as high as .91; the average value was greater than 0.7, meaning that the
previous value predicted at least 70% of the variance in the observed value. n which user’s job was being
checkpointed. This result can be most easily explained by the fact that must users ran the same programs multiple
times, only varying the input data.

P e r c e n t C le a n b y U s e r

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

e lia s s i f e r r is g le w g o lb o n n a g le n a r f i r a jw a r tk x in y o u l

U s e r

%
C

le
an D ir ty

C le a n

Figure 2: Percentage of clean pages by user. This is highly user dependent because different users run
different kinds of jobs. Also note that these are generally higher than synthetic benchmark figures generated
five years ago. [Not shown: The standard deviation of these averages was very low.]

 The most interesting aspect of figure 2 is that the percentage of clean pages can be quite high, and is much higher
than the Plank group reported, even though Condor checkpoints a process every three hours, while the Plank group
checkpointed their programs every ninety seconds. We have several explanations for this discrepancy:

1. The Plank group ran primarily mathematical simulations which tended to perform random access on
matrices; several of these synthetic benchmarks actually touched almost all of their memory because
they performed matrix computations of the form An+1=F(An); because this type of computation writes a
new matrix over the old one, it tends to touch many pages.

2. Condor users have been moving away from using Condor solely for numerical calculation; they now
tend to submit other types of jobs including artificial intelli gence simulations (eliassi), integer
programming (ferris), integer benchmarks (SPECint 95) running on a simulated processor at low speed
(glew), numerical simulations (narfi), etc.. Some of these jobs may be sticking large data structures into
memory and just reading from them.

3. Object oriented programming tends to create large objects, but much of the object doesn’ t change much
after the object is initialized; this would create pages that were perennially clean.

4. Certain types of simulation codes have become more eff icient by emphasizing computation only in areas
in which the investigator is interested. An example of this would be a climate simulation that confined
most of its updates to North America2.

2 Andy Glew suggested this idea.

7

5. Using the working-set model of program behavior, a program may rapidly dirty most of the pages that it
is interested in, but confine all successive writes to those pages; this could be tested by running the
checkpoints more often, but we have not had time to do this yet.

 Using this data, we were able to calculate the potential benefits of incremental checkpointing. They are
summarized in Figure 3.

Total Size and Savings by Users

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

eliassi ferris glew golbon nagle narfi rajwar tk xinyoul

User

M
B

Clean
Total Checkpointed

Figure 3: Total potential savings and total data checkpointed. Note large usage differences between users.

 What is readily apparent is that a significant amount of data that was checkpointed consisted of unchanged
pages. Over the 23 days that we kept statistics on unchanged pages, we determined that roughly 0.7 of the 1.2
terabytes that we checkpointed were clean pages. This represents a significant opportunity to reduce the latency and
overhead of checkpointing and reduce by about 60% the Condor network traff ic. In the current UW pool, this would
result in a savings of 30 gigabytes of network bandwidth every day. Based upon this data we decided to continue
implementing incremental checkpointing.
 Additionally, Figure 3 also confirms a historical fact of Condor usage: the top few users typically account
for almost all of the resource consumption. In particular, during our experimental period, several users ran long-
running jobs that checkpointed often, while others, such as the user tk dispatched hundreds of short-lived jobs that
often finished in three hours or less, thus obviating the need for checkpoints.

Part Two: Implementation of Incremental Checkpointing:

 Once we had established the network bandwidth savings that could be achieved with a policy of incremental
checkpointing, we were curious to examine whether we could expect a similar reduction in the time latency of the
checkpoint event. As mentioned before, Condor jobs often must vacate a non-dedicated execution machine when
keyboard activity at that machine indicates that the machine’s user has returned. In order to be as sociologically non-
intrusive as possible, Condor must either checkpoint very quickly or lose all throughput since the last periodic
checkpoint3.
 An implementation of incremental checkpointing uses a Unix system-call , mprotect, to write-protect the

3 Jim Basney, a researcher at the University of Wisconsin, has recently been working on a third option, “slow”
checkpointing. Slow checkpointing splits writing the checkpointing image into multiple writes and sleeping between
them to lower the user’s perception of Condor’s intrusion.

8

image’s pages in memory and a signal handler function to respond appropriately to the resulting segmentation
violations that occur when the user code attempts to write to the now protected memory. By mprotecting the image
following either a checkpoint or a restart event, we can use the resulting segmentation violations to track which
pages of an image have been modified since the previous checkpoint. Subsequent checkpoints need only write this
set of dirty pages.
 From our measurements, we had seen that 98% of the pages in processes are contained within the data segment
(i.e. the stack and the shared libraries contribute an insignificant number of pages to the total image size). For this
reason, we decided to implement incremental checkpointing on the data segment only and retain the current policy of
sequential checkpointing for the other segments within the memory space of the process.
 Within the signal handler function, we wrote code to reset the permissions on the offending page so that the
violating write instruction can successfully complete when execution returns from the signal handler. Before we can
return from the signal handler however, we must update a data structure somewhere to remember which pages have
been modified. One somewhat tricky aspect of the implementation is the placement of this data structure. Situating
it within the data segment, which is the default location for dynamically allocated memory, will result in re-entrant
signal handling when we attempt to modify it. This can have disastrous consequences.
 To avoid this, we maintained our data structure in a new segment of memory which we allocate for this purpose
by mmaping /dev/zero4 to an unused space in memory. We allocate this segment to hold a few variables for
accounting and to remember the original end address of the data segment and to hold a bitmap containing one bit for
each page in the data segment. The original end address of the data segment is used to compute whether the data
segment has grown since the last checkpoint. This allows us to include any new pages with the modified pages when
we write our incremental checkpoint.
 To measure the overhead of adding mprotect and the signal handling of the segmentation violations, we ran two
microbenchmarking programs in three different operating systems. One program microbenchmarked the mprotect
system-call , by allocating a 10,000 page array and then mprotecting each page twice, first as read-only and then as
read-write. The other program microbenchmarked our signal handling code by similarly allocating a 10,000 page
array and then mprotecting each page as read-only and then triggered our signal handler by attempting to write to
that page. Each job was then submitted one hundred times to the UW Condor pool to elicit realistic behavior.

 Linux, X86 Solaris, SPARC Solaris, X86
Mprotect Avg. 2.98 us 5.20 us 5.16 us
Signal Handling Avg. 22.89 us 167.76 us 110.36

Figure 4: The overhead of incremental checkpointing.

Our microbenchmarks show that the overhead of incremental checkpointing is minimal. For example, even
if every single page in a 10,000-page image is dirtied between checkpoints, the overhead of handling the
segmentation violations and the mprotect call for each page adds less than two seconds of execution time between
checkpoints. Given Condor’s current three hour interval between periodic checkpoints, this results in less than
0.02% overhead even in the most pathological case.

To measure any reductions in the checkpoint time latency, we wrote a program that allocated a large array
and purposefully manipulated its pages and explicitly called the checkpoint routine within the Condor code with
which it was linked. To show the behavior within all possible ranges of locality, we called checkpoints after both
modified pages using randomized locality and then using clustered locality. Our hypothesis was that the locality of
the dirty pages would have no effect on sequential checkpointing which always writes the entire image but that
incremental checkpointing would fare much better when pages are clustered. Since incremental checkpointing
initiates a system-call for each clump of modified pages, randomly scattered modified pages should take longer to
incrementally checkpoint than if that same number of pages had clustered locality.

4 /dev/zero is a special file in *nix which appears to contain an infinite amount of zeros when read and discards any
data which is written to it.

9

Figure 5: Checkpoint latency times as a function of image size and percent and locality of modified pages.

 One seeming anomaly is that incremental checkpointing is still faster than sequential checkpointing even at
100% dirty. In this case, all pages will be written and incremental checkpointing should be slower because it has to
examine the bitmap. The reason that this is not the case in our measurements is because the 100% refers to the pages
which were actively in the control of the program. Our test code dirty every single page of the array which it had
allocated. However, the array did not fill t he entire data segment. Clean portions of the data segment outside of our
array were not checkpointed by incremental checkpointing but were by sequential checkpointing. Regardless of the
total image size, these clean pages outside of our array were usually about 200 pages; they consist of pages allocated
by the C runtime library and other libraries; in any event they don’ t affect the measurements much.

What We Learned and What We Would Do Differently:

 Unlike some groups, we picked a project that allowed us to work independently, had clear milestones, and
most importantly, allowed us to view preliminary results very quickly. During the course of the project, we worked
independently and at different times, communicating through email . As each of us had a different skill set, this
allowed us to occasionally work at problems in parallel without stepping on each others toes. Having clear
milestones allowed us to focus on near-term objectives, and encouraged us to focus on completing small sections of
the project without feeling as if we had to get everything done all at once; it also gave us a sense of where we were
relative to our original estimates. Finally, picking a problem that allowed us to start generating data quickly allowed
us to avoid the trap of having to complete the project before obtaining any data, and allowed us to use preliminary
analyses of the data to steer the project in more promising directions.
 Initially we concentrated on trying to re-use existing code, but we were unable to separate the classes from
the libraries in which they were embedded; this resulted in some very simple executables that were over 2 mb in size,
and were excruciatingly slow. Our further attempts were stand-alone programs; we re-implemented a lot of the data
structures and made them independent of the Condor libraries. As a result, we had to learn UNIX system calls,
signals, etc., and became quite famili ar with the man pages; as a result of reading many of the header files in

10

/usr/include on several different OS/OS version combinations, we gained a newfound understanding of how an
operating system works. We also benefited from the expertise of the Condor team in figuring out the differences
between similar system calls and communications paradigms.

One task that occupied a lot of time was attempting to get our checkpoint comparison tools to work with
every possible OS, OS version, architecture, and compression level of checkpoint and checkpoint server. In
particular, obtaining accounts on the respective machines, accumulating a testing library of representative
checkpoints, and ensuring that the code would be not only cross-platform, but cross-architecture as well proved to be
quite tedious. When confronted with a user who was working on a 64 bit machine, we elected to stop development
on our tools and simply ignore his checkpoints (which were only 40 out of 20,000). If we had to do it again, we
would prefer to work in a more homogenous environment, as system calls and signals tend to be some of the least
portable portions of a program.
 We managed to start early enough to collect a significant amount of data, but we collected the data before
we designed the database to analyze it. This resulted in us having to write, debug, and test a series of custom parsers;
had we started analyzing data immediately after collecting it, we would have been able to design our log files to be
more easily interpretable by the database, we would have gotten more complete data, and we would have been able
to omit a long series of steps necessary to fix incomplete row entries in the database5.
 We would have also liked access to a higher end database on a more expensive piece of hardware, as joins
against a large table are extremely slow in Access (they sometimes took well over half an hour on Greg’s laptop),
and our tables comprised around 35 MB without accounting for indexes, and the additional columns that we added.
 Finally, we would have liked access to a lot more disk space and/or a really large tape array to archive
checkpoints as they came in; this would have allowed us to do more analysis, would have allowed others to check
and validate our data, and would have supplied a series of trace files for future checkpointing investigations.

Conclusions:

Based upon our investigations, we believe that incremental checkpointing is worthwhile for many non-

numerical jobs submitted to the Condor system. We have seen that the overhead of performing incremental
checkpointing is negligible, the reduction in vacate latency and network bandwidth significant, and in the worst case,
incremental checkpointing remains comparable to sequential checkpointing. Furthermore, because of the similarity
of users’ jobs and because of jobs’ propensity to touch roughly equal fractions of pages each checkpoint cycle, we
have two powerful mechanisms for determining which jobs would be good candidates for incremental checkpointing.

The major reservations that we have about incremental checkpointing are that it adds complexity to the
checkpointing code, that it adds one more system call (mprotect)to the list of calls that are not supported in
Condor, and that it is somewhat less portable across operating systems. However, we believe that a properly
abstracted, architecture-independent checkpointing library could make Condor a much more network-friendly
product. There is also the potential issue of overwhelming the checkpoint server. Since the checkpoint server has to
update the checkpoint file with the new data, it might not be able to respond as quickly to checkpoint requests. We
personally doubt that this would be a problem since we reduce the server workload by reducing the amount of data
which it receives, but if it is a problem, a site could choose to establish multiple checkpoint servers. Finally, there is
a very slight risk of incorrect results due to the non-idempotence of the checkpoint file update process using
incremental checkpointing; if half the blocks in the file have been updated and the checkpoint server crashes, the
checkpoint is in an inconsistent state, and cannot be used to restart the process.
 Additionally, the benefit of having the abilit y to store a series of checkpoints could be quite invaluable for
debugging purposes, or for restarting long-running distributed computations in the face of hardware or software
failure that occurred before the previous checkpoint.

5 As an example, we didn’ t start collecting page size information until about a week after we started, so we had to go
through, find all entries without page size information, identify the computer that the checkpoint came from, find
another entry from that computer with a correct page count, and update all i ncorrect rows. As a last resort, we had to
email the CSL and ask for information about a particular computer.

11

Future Work:

 Some Condor installations use compression. Due to the sociological intrusion of a slow vacate checkpoint,
the UW pool does not currently compress its checkpoints. However we would like to see how a policy of
compressing the sequential checkpoints compares to incremental (or even compressed incremental) checkpoints,
especially with respect to network usage, checkpoint storage requirements and vacate latencies.
 Next we would like to be able to set up a synthetic checkpointing workload, so that we could compare
various approaches to checkpointing on the same data. This could either take the form of a set of programs that
periodically generated checkpoints, or, in the event that we can find a terabyte of disk or tape, a trace of a month of
Condor checkpoints.
 Finally, we would really like to expand the number of users in the Condor user pool, as it seems premature
to re-architect the checkpoint code and checkpoint server on the basis of observations of the jobs of nine users. This
could be done by either expanding the number of UW Condor pool users, or by running our measurement software at
other sites6.

6 We tried to do this at New Mexico and INFN, but ran into organizational and technical problems.

12

 BIBLIOGRAPHY

Michael Litzkow and Marvin Solomon, (1992). “Supporting Checkpointing and Process Migration Outside
the UNIX Kernel,” USENIX Winter 1992, (283-290).

Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny, “Checkpoint and Migration of UNIX
Processes in the Condor Distributed Processing System”

James Plank, Micah Beck, Gerry Kingsley, and Kai Li, (1995). “Libckpt: Transparent Checkpointing
under UNIX,” USENIX Winter 1995 Technical Conference

James Plank, Kai Li, (1994). “Low-Latency, Concurrent Checkpointing for Parallel Programs,” IEEE
Transactions on Parallel and Distributed Systems, 5(8), Aug 1994, pp 874-879

James Plank, Yuqun Chen, Kai Li, Micah Beck, Gerry Kingsley, (1995). “Memory Exclusion: Optimizing
the Performance of Checkpointing Systems,” Technical Report UT-CS-96-335, August 1996

James Plank, Jian Xu, and Robert Netzer. (1995) “Compressed Differences: An Algorithm for Fast
Incremental Checkpointing” , Technical Report CS-95-302, University of Tennessee

