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ABSTRACT 

There is high demand for I/O tracing in High Performance 

Computing (HPC). It enables in-depth analysis of distributed 

applications and file system performance tuning. It also aids 

distributed application debugging. Finally, it facilitates 

collaboration within and between government, industrial, and 

academic institutions by enabling the generation of replayable 

I/O traces, which can be easily distributed and anonymized as 

necessary to protect confidential or sensitive information. As a 

response to this demand for tracing tools, various means of I/O 

trace generation exist. We first survey the I/O Tracing Framework 

landscape, exploring three popular such frameworks: LANL-

Trace [3], Tracefs [1], and //TRACE1 [2]. 

We next develop an I/O Tracing Framework taxonomy. The 

purpose of this taxonomy is to assist I/O Tracing Framework 

users in formalizing their tracing requirements, and to provide 

the developers of I/O Tracing Frameworks a language to 

categorize the functionality and performance of them. The 

taxonomy categorizes I/O Tracing Framework features such as 

the type of data captured, trace replayability, and anonymization. 

The taxonomy also considers elapsed-time overhead and 

performance overhead. Finally, we provide a case study in the 

use of our new taxonomy, revisiting all three I/O Tracing 

Frameworks explored in our survey, to formally classify the 

features of each. 

Categories and Subject Descriptors 

D.4.8 Performance – Measurements. D.2.5 Debugging – 
Distributed Debugging. 

General Terms 

Measurement, Performance. Standardization. 

Keywords 

Tracing, parallel, file systems. 

1. INTRODUCTION 
As part of the overall objective of Los Alamos National 
Laboratory (LANL) to maintain national defense and to explore 
and illuminate the nation’s scientific frontiers, the lab develops 

complex data intensive scientific applications. To run these "killer 
apps", the lab deploys and maintains cutting-edge supercomputer 
clusters. Recently, in collaboration with IBM, LANL is 
constructing Roadrunner, a peta-scale computer cluster 
characterized by its heterogeneous architecture including both 
traditional general purpose processors and cell processors. 

There is high demand for I/O tracing application data collection 
in HPC environments such as Roadrunner for several reasons. 
Parallel scientific applications are inherently complex. Many use 
an MPI-IO library for accessing data stored in a parallel file 
system. During the development of such applications, when 
unexpected I/O behavior is observed, traditional debugging tools 
alone are often inadequate for identifying bugs related to the 
complexity rooted in the parallel nature of the applications and the 
highly distributed software and hardware platforms on which they 
are run.  

I/O tracing and trace data analysis tools provide a natural 
solution to I/O debugging problems and performance tuning in 
distributed applications. Many I/O tracing tools have been 
built [1],[2],[3],[6]. However, each tool is designed to collect 
slightly different information about the I/O being done. In 
addition each approach to collecting I/O data has both advantages 
and disadvantages. 

To allow for comparison of various I/O Tracing Frameworks, a 
set of commonly used features is identified. We accomplish this 
by surveying several I/O Tracing Frameworks and building a 
taxonomy that can be used for characterizing and quantifying the 
features and performance of any I/O Tracing Framework. 

This paper is organized as follows. Section 2 surveys three I/O 
data collection mechanisms, i.e. I/O Tracing Frameworks. Section 
3 defines a simple I/O Tracing Framework taxonomy motivated 
by the survey findings. Section 4 provides a case study in the use 
of our taxonomy to classify the three I/O Tracing Frameworks 
selected. Sections 5 and 6 conclude and describe future work. 

2. I/O TRACING FRAMEWORK SURVEY 
We survey three I/O Tracing Frameworks: LANL-Trace [3], 
Tracefs [1], and //TRACE1 [2]. There are significant differences 
between these and we focus on identifying the strengths and 
weaknesses of each.  

2.1 LANL-Trace 
LANL-Trace is a tracing framework that wraps the standard 
Linux/Unix library and system call tracing utility ltrace, or 

optionally, its system call only variant, strace. LANL-Trace 

generates three types of human readable output. (see Figure 1) 
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1. For this paper, a pre-release version of //TRACE was used. 
Development since that release may affect the accuracy of our 
conclusions about it. 



One advantage of LANL-Trace is that it is simple to understand 
and use. Because of its simple nature, it is also easy to modify. 
However, LANL-Trace’s simplicity is a trade-off, as LANL-Trace 
incurs higher overhead. 

2.2 Tracefs 
We next turn to Tracefs, a stackable file system [7]. Using the 
stackable file system framework, Tracefs can be mounted on top 
of a variety of file systems of your choice (e.g. NFS, ext3, etc.). 
Once mounted, any I/O written to Tracefs can be traced at varying 
degrees of granularity. It offers a comprehensive suite of tracing 
functionality, including trace data anonymization, aggregation 
(via event counters), and more. Performance overhead varies 
greatly depending on which functionality is employed. In 
experiments by its developers [1], Tracefs manifests up to 12.4% 
elapsed time overhead for tracing all file system operations on an 
I/O intensive workload, and additional overhead for advanced 
features such as encryption and checksum calculation. Also, to 
achieve such functionality, Tracefs is implemented as a kernel 
module. We find that it requires a significant amount of 
installation and configuration effort, such as dealing with root 
permissions on compute nodes in a cluster.  

One very important factor for use was that Tracefs was not 
designed to trace parallel workloads such as those written at 
LANL. While we were able to collect traces using Tracefs on 
local file systems (ext3) and Network File System (NFS), we 
discovered that it is not compatible “out of the box” with our 
parallel file system. 

2.3 //TRACE 
//TRACE focuses on generating accurate replayable I/O traces of 
parallel applications that use MPI. To accomplish this they 
determine inter-node data dependencies by using I/O 

throttling [9]. This technique involves a time consuming process 
of manually slowing the response time of a single node to I/O 
requests associated with a particular parallel application and 
observing the behavior of other nodes looking for causal 
dependencies between nodes used in a parallel application. Unlike 
Tracefs, //TRACE was developed specifically for use in tracing 
distributed applications. 

Because //TRACE focuses on high replay accuracy, it pays the 
trade-off of significant beginning to end time overhead. That is, 
the generation of a replayable trace is a time consuming process. 
While this is sometimes acceptable, in many HPC environments, 
such as LANL, computing cycles are highly valuable. Thus, there 
is a very real cost for using //TRACE. 

3. THE TAXONOMY 
Our aim is to construct a simple taxonomy that captures important 
features of I/O Tracing Frameworks, which can then be used by 
potential users to formalize their tracing requirements, and by I/O 
Tracing Framework developers as a language to categorize the 
functionality and performance of their tool. This taxonomy 
consists of two elements: feature classification and overhead 
measurement. 

The feature classification is done by inspection of the I/O 
Tracing Framework and identifies distinguishing characteristics. 
The overhead measurement is based upon empirical 
measurements of the performance and end-to-end timing 
overheads using a synthetic application benchmark. Together, 
these elements form a picture of the advantages and disadvantages 
for the potential user of an I/O Tracing Framework. 

3.1 Feature Classification 
Feature classification provides a means of quickly comparing the 
features of various I/O Tracing Frameworks, enabling better tool 
selection by users in need of trace data. Eventually, classification 
data will be valuable for the design of a single comprehensive 
trace data aggregation framework and API as described in the the 
future work section. 

In order to classify an I/O Tracing Framework we install and 
use the framework, investigate documentation and published 
results of the use of the tool. By means of this process, we identify 
the following qualitative features: 

Parallel file system compatibility. We have not restricted 
ourselves to the analysis of strictly parallel I/O Tracing 
Frameworks. We believe that many tools used in non-parallel 
architectures can be augmented, sometimes quite easily, to add 
parallel functionality. In addition, the techniques employed by the 
non-parallel I/O Tracing Framework may be valuable in the 
construction of a new parallel I/O Tracing Framework. We 
therefore use this classification feature to distinguish between I/O 

Raw Trace Data 
10:59:47.092996 MPI_File_open(92, 0x80675c0, 37, 0x80675a8, 0xbfdfe5e4 

<unfinished ...> 

10:59:47.093718 SYS_statfs64(0x80675c0, 84, 0xbfdfe410, 0xbfdfe410, 0xbd3ff4) 

= 0 <0.011131> 

10:59:47.105818 SYS_open("/etc/hosts", 0, 0666)  = 3 <0.000034> 

10:59:47.105913 SYS_fcntl64(3, 1, 0, 0, 0xbd3ff4) = 0 < 0.000017> 
... 

Aggregate Timing Information 
# Barrier before /mpi_io_test.exe "-type" "1" "-strided" "1" "-size" "32768" 

"-nobj" "1" 

7: host13.lanl.gov (10378) Entered barrier at 1159808385.170918 

7: host13.lanl.gov (10378) Exited barrier at 1159808385.173167 

3: host17.lanl.gov (11335) Entered barrier at 1159808385.166396 

3: host17.lanl.gov (11335) Exited barrier at 1159808385.168893 

# Barrier after /mpi_io_test.exe "-type" "1" "-strided" "1" "-size" "32768" 

"-nobj" "1" 

... 

Call Summary  
#                     SUMMARY COUNT OF TRACED CALL(S) 

#  Function Name            Number of Calls            Total time (s) 

============================================================================= 

   MPIO_Wait                              2                  0.000118 

   MPI_Barrier                           29                  2.156431 

   MPI_Comm_rank                          2                  0.000120 

   SYS_open                              39                  0.004612 

   SYS_read                             565                  0.022137 

Figure 1. Sample output from LANL-Trace. This figure 

shows a sample of the three types of output generated by 

LANL-Trace, including the raw trace data collected from each 

node, as well as aggregate timing and function call 

information.  The aggregate timing information is designed to 

allow analysis and replay tools to account for time drift and 

skew amongst the distributed clocks. 

 



Tracing Frameworks that worked on our parallel file system “out 
of the box” (i.e. with little or no modification for parallelization). 

Ease of installation and use. Depending on the use of trace data, 
it may be better to trade more complex functionality for quick and 
painless installation, collection and use of simple trace data. The 
use of some interpreted languages or binary formats not supported 
by vanilla Linux installations may result in installation or use 
complications. In addition, requiring special permissions, such as 
root account access, may also impede ease of use.   

Anonymization. Often traces are collected for distribution, such 
as recently published traces by LANL [5]. In such cases, it is often 
desirable to anonymize personal or sensitive data. Simple 
anonymization involves replacing all potentially sensitive text 
within the trace data such as user name, UID, or file content, with 
randomly generated bytes. More advanced anonymization might 
provide a means of specifying which parts of the trace need to be 
anonymized.  

Event types. Various types of events might be traced, including 
I/O function calls such as functions in a Message Passing 
Interface (MPI), or messages passed between nodes in a cluster 
such as Roadrunner, or event messages passed between layers of a 
protocol stack within a particular device/node [6]. 

Control of trace granularity. Performance overhead is typically 
a function of the granularity of the tracing data collected. 
Therefore, it is desirable to allow for collection of only as much 
information as is required by the person using the trace data. 

Replayable trace generation. The I/O Tracing Framework may 
optionally generate a pseudo-application from collected trace data 
with the aim of reproducing the I/O signature of the original 
application. Such a pseudo-application is especially valuable in 
research settings such as academia where collaboration on I/O 
related research is popular, and in general for I/O debugging. 

Trace replay fidelity. For I/O Tracing Frameworks that support 
replayable trace generation, it is important to verify that the 
pseudo-application generated manifests I/O representative of the 
original applications. One way to verify this is to use the I/O 
Tracing Framework to trace both the pseudo-application and the 
original application and compare the traces generated. Another 
test is to compare the end-to-end run time of both using a utility 
such as the Linux command line time utility. 

Reveals Dependencies. Several techniques have been employed 
in tracing mechanisms to expose event dependencies and 
causality. This information can be costly to collect in terms of 
end-to-end application timing overhead but can be highly valuable 
to developers and debuggers alike. 

Intrusive vs. Passive. Traditionally, some tracing mechanisms 
require the instrumentation of application source code. This is an 
important factor since such instrumentation may be costly in terms 
of development time and energy for many applications, especially 
in the case of large scientific applications such as those used at 
LANL. 

Analysis tools. An important aspect of any trace operation is the 
constructive use of the trace data collected. Some I/O Tracing 
Frameworks include useful tools for manipulation and analysis of 
trace data collected. 

Trace data format. Some tracing mechanisms [1] generate traces 
in binary format in order to save space and facilitate automated 
parsing. However, sometimes it is convenient to visually inspect 
traces and then having human readable trace data is necessary. 

In addition to classifying qualitative features if an I/O Tracing 
Framework by inspection and investigation, it is also important to 
measure the performance overhead caused by it when running 
applications with tracing enabled. In order to account for I/O 
tracing overhead we consider the following quantitative feature: 

Accounts for time drift and skew.  Time skew is the difference 
between distributed clocks at any single moment in time.  Time 
drift is the change in time skew over time.  Trace frameworks 
which capture and report timestamps from each of the parallel 
processes should allow for the possibility of drift and skew and 
provide mechanisms by which developers and debuggers can 
account for them. 

Elapsed time overhead.  Elapsed time overhead, also known as 
“wall clock time” overhead is defined as: 

napplicatio untraced of  timeelapsed

n applicatio untraced of  timeelapsed -n applicatio  tracedof  timeelapsed  

These measurements can be made using a tool such as the Linux 
command line utility time. This feature is important because 

distributed applications in HPC tend to be very large, thus even a 
relatively small performance overhead can add considerably 
(hours or even days) to the applications run time. 

3.2 Summary Table 
After applying the taxonomy to an I/O Tracing Framework, a 
simple reference table can be built summarizing the results for 
quick feature comparison (Table 1). 

Table 1. An I/O Tracing Framework summary table. The 

classification features and overhead measurements of any I/O 

Tracing Framework can be summarized for quick reference 

and comparison to other Frameworks. 

Feature <I/O Tracing Framework Name> 

Parallel file system 
compatibility 

[Yes or No] 

Ease of installation and use [1 (V. Easy) thru 5 (V. Difficult)] 

Anonymization 
[None or 1 (Simple) thru 
5 (V. Advanced)]  

Events types 
[Systems calls, library calls, FS 
events] 

Control of trace granularity [Yes or No] 

Replayable trace generation [Yes or No] 

Trace replay fidelity Describe experiment results 

Reveals dependencies  [Yes or No] 

Intrusive vs. Passive 
[1 (V. Passive), thru 5 (V. 
Intrusive)] 

Analysis tools [Yes or No] 

Trace data format [Binary or Human readable] 

Accounts for time skew 
and drift 

[Yes or No] 

Elapsed time overhead Describe experiment results 



4. TAXONOMY CASE STUDY 
We apply our taxonomy to LANL-Trace, Tracefs, and //TRACE. 

4.1 LANL-Trace Classification 
In an effort to encourage collaboration between government and 
academic parallel I/O research groups, LANL committed to 
releasing anonymized traces of the large scientific applications. 
LANL-Trace was the tool chosen for the generation of these 
traces. We had the unique opportunity to apply our I/O Tracing 
Framework taxonomy for a complete classification of LANL-
Trace during this process. 

4.1.1 LANL-Trace feature classification 
Much of the intuition we expressed during our survey of LANL-
Trace, such as its ease of installation and lack of advanced 
features, is captured in the following taxonomy feature 
classification: 

Parallel file system compatibility: We experienced no difficulty 
using our parallel file system with little or no modification to 
LANL-Trace.  

Ease of installation and use: Because of the simplicity of the 
tracing mechanism, installation and use were uncomplicated. 
However, Perl, strace, and ltrace were required on all 

compute nodes. 

Anonymization: Not supported.  

Event types: Library and system I/O function calls captured when 
using ltrace, system calls only when using strace. These 

tools cannot track memory-mapped I/Os. 

Control of trace granularity: The user may choose between the 
use of strace, which provides system call only tracing, and 

ltrace, which provides tracing of both system calls and linked 

library calls.  

Replayable trace generation: Not supported, the focus is on 
trace distribution, not replayability, though beta development is 
under way on a pseudo-application generator from trace data.  
However, it is trivial to imagine a replayer being built that reads 
and replays the raw trace files. 

Trace replay fidelity: Not supported. 

Reveals Dependencies: Not supported. 

Intrusive vs. Passive: Passive, no instrumentation of application 
required. 

 

Figure 3. LANL-Trace performance overhead, N processes 

writing one 100GB file, non-strided. Bandwidth overhead 

approaches a constant factor of untraced application 

bandwidth as block size is increased. 

 

Figure 2. LANL-Trace overhead with N processes writing 

one 100GB file, strided. This is the benchmark 

parameterization most demanding on the parallel I/O file 

system. We observe bandwidth as a logarithmic function of 

block size and an approximately constant I/O bandwidth 

overhead. 

. 

 

Figure 4. LANL-Trace overhead with N processes writing 

N 10GB files. We observe bandwidth overhead similar to 

that of N to 1, non-strided. 



Analysis tools: Simple aggregation of node timings provided as 
standard output which can be used to account for different nodes 
having clocks that are off by a constant difference (skew) and 
different nodes whose clocks are off by a changing difference 
(drift). 

Trace data format: All three output types produced are human 
readable. 

Accounts for time skew and drift: Yes. LANL-Trace runs a 
simple MPI job before and after running the traced application.  
This job reports the observed time for each node, does a barrier, 
and then reports the time again. 

Elapsed time overhead: The measured elapsed time was 
observed to be highly variable ranging from 24% to 222%.  The 
variability was observed to relate directly to the block size of the 
I/O performed by the application. 

To complete our LANL-Trace taxonomy case study, we 
compiled our taxonomy results into a summary table (Table 2). 

4.1.2 LANL-Trace Overhead Measurement 
As the developers of LANL-Trace, we are in a unique position to 
perform more complex analysis of its performance overhead. The 
application that we traced is the LANL bandwidth benchmark 
used to perform parameter studies on the various LANL 
supercomputers.  As such, in our experiments we were able to 
perform detailed analyses of where the overhead was incurred 

The experiments were run on 32-processors on a cluster with a 
gigabit ethernet-over-copper interconnect. The compute nodes are 
running Linux 2.6.14. The MPI library we are using is mpich 
1.2.6. 

In the experiments, we tested under three parallel I/O access 
patterns2. First, N processors writing to N files, 10GB each.  
Second, N processors writing to a single 100GB file, with each 
processor writing to a single contiguous spot within the file. This 
behavior is called non-strided. Third, again N processors writing 
to a single 10GB file, this time each processor wrote to many 
spots within the file (often this is used to keep similar data 
grouped by proximity within the file). This is called strided 
behavior. 

In order to measure bandwidth overhead, we wrote constant 
sized output files under RAID 5 with a stripe width of 64 
kilobytes across 252 hard drives.  In all cases, we saw higher 
bandwidth overhead for tracing smaller block sizes than for larger 
block sizes. Specifically, we measured for N-to-1 strided, N-1 
non-strided, and N-to-N. At block sizes of 64KB, we saw 
bandwidth overheads of 51.3%, 64.7, and 68.6%, respectively. 
For block sizes of 8192KB, bandwidth overheads were 5.5%, 
6.1%, and 0.6%, respectively. 

We believe the performance overhead is worse for small block 
sizes because a constant number of traced events are generated for 
each block.  The number of such events is inversely proportional 
to block size, thus a smaller block size implies more events to 
trace.  

4.2 Tracefs Classification 
Using our taxonomy, we apply feature classification to Tracefs: 

Parallel file system compatibility: Tracefs did run on our 
parallel file system without significant modification, though 
tracing of I/O on the Network File System (NFS) was functional. 

Ease of installation and use: Being implemented as a kernel 
module we found that it requires a significant amount of 
installation and configuration effort such as dealing with root 
permissions on compute nodes. 

Anonymization: Advanced, Tracefs allows for secret key 
encryption using Cipher Block Chaining (CBC) of trace data with 
a fine grain user-level selection mechanism for deciding which 
fields (e.g. UID, GID) to encrypt/anonymize. This feature is not 
classified as “Very advanced” because no mechanism is provided 
for true anonymization (i.e. randomization) of trace data. Since 
trace data may be retained for many years, there is a non-zero 
probability of trace encryption being subverted and 
anonymization compromised.  

Event types: File system operations, i.e. Virtual File System 
(VFS) calls, such calls include standard (i.e. local) file system 
calls, in addition to calls which might be missed if tracing was 
done at a lower level such as memory-mapped I/O or Network 
File System (NFS) calls. 

Control of trace granularity: A flexible declarative syntax is 
provided for user-level specification of file system operations to 
be traced. 

Replayable trace generation: While not currently supported, the 
framework’s developers report replayable trace generation as a 
focus of future work [1]. 

Trace replay fidelity: Not supported. 

Reveals Dependencies: Not supported. 

Intrusive vs. Passive: Passive, no instrumentation of application 
required. 

Analysis tools: Not supported. 

Trace data format: Binary, with optional checksumming, 
compression, encryption, or buffering (to improve performance) 
of output. 

Accounts for time skew and drift: No, because Tracefs was not 
originally developed to trace parallel applications and thus has no 
inherent parallelization mechanism, drift and skew are not 
considered. 

2. For further description of the meaning of the various I/O access patterns 
(i.e. N-N, N-1 strided, N-1 nonstrided) shown in the graphs, see [12]. 



Elapsed time overhead: The developers of Tracefs reported 
extensive testing of the elapsed time overhead incurred by their 
framework under various levels of trace granularity for both an 
I/O intensive application as being less than 12.4%. 

We present a summary of the results of our taxonomy feature 
classification of Tracefs in a Table 2. 

4.3 //TRACE Classification 
In this section we use our taxonomy to apply feature classification 
to //TRACE: 

Parallel file system compatibility: Because //TRACE was 
developed for use in MPI/MPI-IO applications, we were able to 
use it “out of the box” on our parallel file system. 

Ease of installation and use: For our evaluation, were working 
with a pre-release version of the I/O Tracing Framework, but 
nonetheless experienced no problems installation or usage. 

Anonymization: Not supported. 

Event types: System I/O calls are traced using dynamic library 
interposition [11]. Like strace and ltrace (and thus LANL-

Trace), this mechanism cannot track memory-mapped I/Os. 

Control of trace granularity: All I/O system calls are captured. 
This is a side affect of the framework design objective to capture 
complete and accurate repayable traces. 

Replayable trace generation: Yes. 

Trace replay fidelity: 6% [2], trace replay accuracy is the central 
focus of //TRACE. However, //TRACE provides for user-control 
over replay accuracy by using sampling for their node-throttling 
technique. 

Reveals Dependencies: Yes, //TRACE creates inter-node 
dependency maps for use in generating accurate replayable traces 
of parallel applications. 

Intrusive vs. Passive: Passive, no instrumentation of application 
required. 

Analysis tools: Not supported. 

Trace data format: Human readable. 

Accounts for time skew and drift: Not supported. 

Elapsed time overhead: Because of the design goals of 
//TRACE, the user can control the tradeoff between trace replay 
fidelity and elapsed time overhead. The overhead is thus highly 
variable as reported by the developers of //TRACE, ranging 
between ~0% to 205% in their experiments [2]. 

We summarize our taxonomy feature classification of //TRACE 
in Table 2. 

5. CONCLUSION 
We have formulated an I/O Tracing Framework taxonomy and 
demonstrated its utility by applying it to three popular 
frameworks. 

We can see that for a tracing user who requires advanced 
features such as anonymization or powerful trace analysis tools, 
LANL-Trace is inadequate. 

By measuring the timing and bandwidth overhead of LANL-
Trace, we have shown that it adds a reasonable small overhead to 
parallel I/O applications for large block sizes and considerably 
worse overhead for small block sizes. 

Using our taxonomy to analyze Tracefs, we have seen that 
while it provides advanced features, one should anticipate 
considerable installation overhead, potentially including 
adaptation for use on a parallel file system.  

Table 2. Classification summary table for various Traces 

Feature LANL-Trace Tracefs //TRACE 

Parallel file system compatibility Yes No Yes 

Ease of installation and use 2 (Easy) 4 (Difficult) 2 (Easy) 

Anonymization No 4 (Advanced) No 

Events types Systems calls, library calls File system operations I/O System calls 

Control of trace granularity 1 (Simple) 5 (V. Advanced) No 

Replayable trace generation No No Yes 

Trace replay fidelity N/A N/A As low as 6% 5 

Reveals dependencies  No No Yes 

Intrusive vs. Passive 1 (Passive) 1 (Passive) 1 (Passive) 

Analysis tools No No No 

Trace data format Human readable Binary Human readable 

Accounts for time skew and drift Yes N/A No 

Elapsed time overhead 24% - 222% 3 ≤12.4% 4 N/A 6 

 

3. High variance due to different I/O access patterns (N-N, N-1, N-N) 

4. Reported as maximum application elapsed time for I/O intensive 
benchmark [1] 

5. Represents maximum (across test applications) of errors (averaged 
across multiple runs) as published by the tool’s authors. By design, 
however, this number is highly variably, see “Trace replay fidelity” in 
4.3 or [2] for further discussion. 

6. Elapsed time overhead is adjustable by design and ranges from ~0% 
to 205% in experimental data in [2]. See “Elapsed time overhead” in 
4.3 



For some applications, accurate replayable traces are desired. In 
this case, our taxonomy recommends that //TRACE should be 
considered. 

In summary, the taxonomy has value to potential users of I/O 
Tracing Frameworks in formalizing their tracing requirements. It 
is also valuable to I/O Tracing Framework developers for 
identifying current unfilled demands for tracing tools and 
categorizing the functionality and performance of any new I/O 
Tracing Frameworks they create. 

6. FUTURE WORK 
For future work we are currently working on more thorough 
overhead measurements of Tracefs and //TRACE. Also, we are 
working on using our taxonomy for full classification of more I/O 
Tracing Frameworks [6]. 

While we have started with a narrow focus on I/O Tracing 
Frameworks, we believe our methodology can be expanded to 
define a more global taxonomy for describing diverse general data 
collection mechanisms, i.e. non-I/O Tracing Frameworks, such as 
path based event tracing in distributed applications [8],[10]. 

With such a global taxonomy, we would be able survey the 
entire Tracing Framework landscape and identify distinct but 
complementary tracing mechanisms. We intend to build a 
common framework for diverse trace aggregation. With such a 
framework, we would be able to present a single trace-data API to 
developers for use while building trace analysis tools or for use 
directly in distributed applications. 
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