
Towards an I/O Tracing Framework Taxonomy
Andy Konwinski, John Bent, James Nunez, and Meghan Quist

Los Alamos National Laboratory

{konwinski, johnbent, jnunez, meghan}@lanl.gov

ABSTRACT

There is high demand for I/O tracing in High Performance

Computing (HPC). It enables in-depth analysis of distributed

applications and file system performance tuning. It also aids

distributed application debugging. Finally, it facilitates

collaboration within and between government, industrial, and

academic institutions by enabling the generation of replayable

I/O traces, which can be easily distributed and anonymized as

necessary to protect confidential or sensitive information. As a

response to this demand for tracing tools, various means of I/O

trace generation exist. We first survey the I/O Tracing Framework

landscape, exploring three popular such frameworks: LANL-

Trace [3], Tracefs [1], and //TRACE1 [2].

We next develop an I/O Tracing Framework taxonomy. The

purpose of this taxonomy is to assist I/O Tracing Framework

users in formalizing their tracing requirements, and to provide

the developers of I/O Tracing Frameworks a language to

categorize the functionality and performance of them. The

taxonomy categorizes I/O Tracing Framework features such as

the type of data captured, trace replayability, and anonymization.

The taxonomy also considers elapsed-time overhead and

performance overhead. Finally, we provide a case study in the

use of our new taxonomy, revisiting all three I/O Tracing

Frameworks explored in our survey, to formally classify the

features of each.

Categories and Subject Descriptors

D.4.8 Performance – Measurements. D.2.5 Debugging –
Distributed Debugging.

General Terms

Measurement, Performance. Standardization.

Keywords

Tracing, parallel, file systems.

1. INTRODUCTION
As part of the overall objective of Los Alamos National
Laboratory (LANL) to maintain national defense and to explore
and illuminate the nation’s scientific frontiers, the lab develops

complex data intensive scientific applications. To run these "killer
apps", the lab deploys and maintains cutting-edge supercomputer
clusters. Recently, in collaboration with IBM, LANL is
constructing Roadrunner, a peta-scale computer cluster
characterized by its heterogeneous architecture including both
traditional general purpose processors and cell processors.

There is high demand for I/O tracing application data collection
in HPC environments such as Roadrunner for several reasons.
Parallel scientific applications are inherently complex. Many use
an MPI-IO library for accessing data stored in a parallel file
system. During the development of such applications, when
unexpected I/O behavior is observed, traditional debugging tools
alone are often inadequate for identifying bugs related to the
complexity rooted in the parallel nature of the applications and the
highly distributed software and hardware platforms on which they
are run.

I/O tracing and trace data analysis tools provide a natural
solution to I/O debugging problems and performance tuning in
distributed applications. Many I/O tracing tools have been
built [1],[2],[3],[6]. However, each tool is designed to collect
slightly different information about the I/O being done. In
addition each approach to collecting I/O data has both advantages
and disadvantages.

To allow for comparison of various I/O Tracing Frameworks, a
set of commonly used features is identified. We accomplish this
by surveying several I/O Tracing Frameworks and building a
taxonomy that can be used for characterizing and quantifying the
features and performance of any I/O Tracing Framework.

This paper is organized as follows. Section 2 surveys three I/O
data collection mechanisms, i.e. I/O Tracing Frameworks. Section
3 defines a simple I/O Tracing Framework taxonomy motivated
by the survey findings. Section 4 provides a case study in the use
of our taxonomy to classify the three I/O Tracing Frameworks
selected. Sections 5 and 6 conclude and describe future work.

2. I/O TRACING FRAMEWORK SURVEY
We survey three I/O Tracing Frameworks: LANL-Trace [3],
Tracefs [1], and //TRACE1 [2]. There are significant differences
between these and we focus on identifying the strengths and
weaknesses of each.

2.1 LANL-Trace
LANL-Trace is a tracing framework that wraps the standard
Linux/Unix library and system call tracing utility ltrace, or

optionally, its system call only variant, strace. LANL-Trace

generates three types of human readable output. (see Figure 1)

© 2007 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

LA-UR-07-7660

Supercomputing'07, Nov. 10-16, 2007, Reno, NV.

Copyright 2007 ACM ISBN 978-1-59593-899-2/07/11...$5.00

1. For this paper, a pre-release version of //TRACE was used.
Development since that release may affect the accuracy of our
conclusions about it.

One advantage of LANL-Trace is that it is simple to understand
and use. Because of its simple nature, it is also easy to modify.
However, LANL-Trace’s simplicity is a trade-off, as LANL-Trace
incurs higher overhead.

2.2 Tracefs
We next turn to Tracefs, a stackable file system [7]. Using the
stackable file system framework, Tracefs can be mounted on top
of a variety of file systems of your choice (e.g. NFS, ext3, etc.).
Once mounted, any I/O written to Tracefs can be traced at varying
degrees of granularity. It offers a comprehensive suite of tracing
functionality, including trace data anonymization, aggregation
(via event counters), and more. Performance overhead varies
greatly depending on which functionality is employed. In
experiments by its developers [1], Tracefs manifests up to 12.4%
elapsed time overhead for tracing all file system operations on an
I/O intensive workload, and additional overhead for advanced
features such as encryption and checksum calculation. Also, to
achieve such functionality, Tracefs is implemented as a kernel
module. We find that it requires a significant amount of
installation and configuration effort, such as dealing with root
permissions on compute nodes in a cluster.

One very important factor for use was that Tracefs was not
designed to trace parallel workloads such as those written at
LANL. While we were able to collect traces using Tracefs on
local file systems (ext3) and Network File System (NFS), we
discovered that it is not compatible “out of the box” with our
parallel file system.

2.3 //TRACE
//TRACE focuses on generating accurate replayable I/O traces of
parallel applications that use MPI. To accomplish this they
determine inter-node data dependencies by using I/O

throttling [9]. This technique involves a time consuming process
of manually slowing the response time of a single node to I/O
requests associated with a particular parallel application and
observing the behavior of other nodes looking for causal
dependencies between nodes used in a parallel application. Unlike
Tracefs, //TRACE was developed specifically for use in tracing
distributed applications.

Because //TRACE focuses on high replay accuracy, it pays the
trade-off of significant beginning to end time overhead. That is,
the generation of a replayable trace is a time consuming process.
While this is sometimes acceptable, in many HPC environments,
such as LANL, computing cycles are highly valuable. Thus, there
is a very real cost for using //TRACE.

3. THE TAXONOMY
Our aim is to construct a simple taxonomy that captures important
features of I/O Tracing Frameworks, which can then be used by
potential users to formalize their tracing requirements, and by I/O
Tracing Framework developers as a language to categorize the
functionality and performance of their tool. This taxonomy
consists of two elements: feature classification and overhead
measurement.

The feature classification is done by inspection of the I/O
Tracing Framework and identifies distinguishing characteristics.
The overhead measurement is based upon empirical
measurements of the performance and end-to-end timing
overheads using a synthetic application benchmark. Together,
these elements form a picture of the advantages and disadvantages
for the potential user of an I/O Tracing Framework.

3.1 Feature Classification
Feature classification provides a means of quickly comparing the
features of various I/O Tracing Frameworks, enabling better tool
selection by users in need of trace data. Eventually, classification
data will be valuable for the design of a single comprehensive
trace data aggregation framework and API as described in the the
future work section.

In order to classify an I/O Tracing Framework we install and
use the framework, investigate documentation and published
results of the use of the tool. By means of this process, we identify
the following qualitative features:

Parallel file system compatibility. We have not restricted
ourselves to the analysis of strictly parallel I/O Tracing
Frameworks. We believe that many tools used in non-parallel
architectures can be augmented, sometimes quite easily, to add
parallel functionality. In addition, the techniques employed by the
non-parallel I/O Tracing Framework may be valuable in the
construction of a new parallel I/O Tracing Framework. We
therefore use this classification feature to distinguish between I/O

Raw Trace Data
10:59:47.092996 MPI_File_open(92, 0x80675c0, 37, 0x80675a8, 0xbfdfe5e4

<unfinished ...>

10:59:47.093718 SYS_statfs64(0x80675c0, 84, 0xbfdfe410, 0xbfdfe410, 0xbd3ff4)

= 0 <0.011131>

10:59:47.105818 SYS_open("/etc/hosts", 0, 0666) = 3 <0.000034>

10:59:47.105913 SYS_fcntl64(3, 1, 0, 0, 0xbd3ff4) = 0 < 0.000017>
...

Aggregate Timing Information
Barrier before /mpi_io_test.exe "-type" "1" "-strided" "1" "-size" "32768"

"-nobj" "1"

7: host13.lanl.gov (10378) Entered barrier at 1159808385.170918

7: host13.lanl.gov (10378) Exited barrier at 1159808385.173167

3: host17.lanl.gov (11335) Entered barrier at 1159808385.166396

3: host17.lanl.gov (11335) Exited barrier at 1159808385.168893

Barrier after /mpi_io_test.exe "-type" "1" "-strided" "1" "-size" "32768"

"-nobj" "1"

...

Call Summary
SUMMARY COUNT OF TRACED CALL(S)

Function Name Number of Calls Total time (s)

===

 MPIO_Wait 2 0.000118

 MPI_Barrier 29 2.156431

 MPI_Comm_rank 2 0.000120

 SYS_open 39 0.004612

 SYS_read 565 0.022137

Figure 1. Sample output from LANL-Trace. This figure

shows a sample of the three types of output generated by

LANL-Trace, including the raw trace data collected from each

node, as well as aggregate timing and function call

information. The aggregate timing information is designed to

allow analysis and replay tools to account for time drift and

skew amongst the distributed clocks.

Tracing Frameworks that worked on our parallel file system “out
of the box” (i.e. with little or no modification for parallelization).

Ease of installation and use. Depending on the use of trace data,
it may be better to trade more complex functionality for quick and
painless installation, collection and use of simple trace data. The
use of some interpreted languages or binary formats not supported
by vanilla Linux installations may result in installation or use
complications. In addition, requiring special permissions, such as
root account access, may also impede ease of use.

Anonymization. Often traces are collected for distribution, such
as recently published traces by LANL [5]. In such cases, it is often
desirable to anonymize personal or sensitive data. Simple
anonymization involves replacing all potentially sensitive text
within the trace data such as user name, UID, or file content, with
randomly generated bytes. More advanced anonymization might
provide a means of specifying which parts of the trace need to be
anonymized.

Event types. Various types of events might be traced, including
I/O function calls such as functions in a Message Passing
Interface (MPI), or messages passed between nodes in a cluster
such as Roadrunner, or event messages passed between layers of a
protocol stack within a particular device/node [6].

Control of trace granularity. Performance overhead is typically
a function of the granularity of the tracing data collected.
Therefore, it is desirable to allow for collection of only as much
information as is required by the person using the trace data.

Replayable trace generation. The I/O Tracing Framework may
optionally generate a pseudo-application from collected trace data
with the aim of reproducing the I/O signature of the original
application. Such a pseudo-application is especially valuable in
research settings such as academia where collaboration on I/O
related research is popular, and in general for I/O debugging.

Trace replay fidelity. For I/O Tracing Frameworks that support
replayable trace generation, it is important to verify that the
pseudo-application generated manifests I/O representative of the
original applications. One way to verify this is to use the I/O
Tracing Framework to trace both the pseudo-application and the
original application and compare the traces generated. Another
test is to compare the end-to-end run time of both using a utility
such as the Linux command line time utility.

Reveals Dependencies. Several techniques have been employed
in tracing mechanisms to expose event dependencies and
causality. This information can be costly to collect in terms of
end-to-end application timing overhead but can be highly valuable
to developers and debuggers alike.

Intrusive vs. Passive. Traditionally, some tracing mechanisms
require the instrumentation of application source code. This is an
important factor since such instrumentation may be costly in terms
of development time and energy for many applications, especially
in the case of large scientific applications such as those used at
LANL.

Analysis tools. An important aspect of any trace operation is the
constructive use of the trace data collected. Some I/O Tracing
Frameworks include useful tools for manipulation and analysis of
trace data collected.

Trace data format. Some tracing mechanisms [1] generate traces
in binary format in order to save space and facilitate automated
parsing. However, sometimes it is convenient to visually inspect
traces and then having human readable trace data is necessary.

In addition to classifying qualitative features if an I/O Tracing
Framework by inspection and investigation, it is also important to
measure the performance overhead caused by it when running
applications with tracing enabled. In order to account for I/O
tracing overhead we consider the following quantitative feature:

Accounts for time drift and skew. Time skew is the difference
between distributed clocks at any single moment in time. Time
drift is the change in time skew over time. Trace frameworks
which capture and report timestamps from each of the parallel
processes should allow for the possibility of drift and skew and
provide mechanisms by which developers and debuggers can
account for them.

Elapsed time overhead. Elapsed time overhead, also known as
“wall clock time” overhead is defined as:

napplicatio untraced of timeelapsed

n applicatio untraced of timeelapsed -n applicatio tracedof timeelapsed

These measurements can be made using a tool such as the Linux
command line utility time. This feature is important because

distributed applications in HPC tend to be very large, thus even a
relatively small performance overhead can add considerably
(hours or even days) to the applications run time.

3.2 Summary Table
After applying the taxonomy to an I/O Tracing Framework, a
simple reference table can be built summarizing the results for
quick feature comparison (Table 1).

Table 1. An I/O Tracing Framework summary table. The

classification features and overhead measurements of any I/O

Tracing Framework can be summarized for quick reference

and comparison to other Frameworks.

Feature <I/O Tracing Framework Name>

Parallel file system
compatibility

[Yes or No]

Ease of installation and use [1 (V. Easy) thru 5 (V. Difficult)]

Anonymization
[None or 1 (Simple) thru
5 (V. Advanced)]

Events types
[Systems calls, library calls, FS
events]

Control of trace granularity [Yes or No]

Replayable trace generation [Yes or No]

Trace replay fidelity Describe experiment results

Reveals dependencies [Yes or No]

Intrusive vs. Passive
[1 (V. Passive), thru 5 (V.
Intrusive)]

Analysis tools [Yes or No]

Trace data format [Binary or Human readable]

Accounts for time skew
and drift

[Yes or No]

Elapsed time overhead Describe experiment results

4. TAXONOMY CASE STUDY
We apply our taxonomy to LANL-Trace, Tracefs, and //TRACE.

4.1 LANL-Trace Classification
In an effort to encourage collaboration between government and
academic parallel I/O research groups, LANL committed to
releasing anonymized traces of the large scientific applications.
LANL-Trace was the tool chosen for the generation of these
traces. We had the unique opportunity to apply our I/O Tracing
Framework taxonomy for a complete classification of LANL-
Trace during this process.

4.1.1 LANL-Trace feature classification
Much of the intuition we expressed during our survey of LANL-
Trace, such as its ease of installation and lack of advanced
features, is captured in the following taxonomy feature
classification:

Parallel file system compatibility: We experienced no difficulty
using our parallel file system with little or no modification to
LANL-Trace.

Ease of installation and use: Because of the simplicity of the
tracing mechanism, installation and use were uncomplicated.
However, Perl, strace, and ltrace were required on all

compute nodes.

Anonymization: Not supported.

Event types: Library and system I/O function calls captured when
using ltrace, system calls only when using strace. These

tools cannot track memory-mapped I/Os.

Control of trace granularity: The user may choose between the
use of strace, which provides system call only tracing, and

ltrace, which provides tracing of both system calls and linked

library calls.

Replayable trace generation: Not supported, the focus is on
trace distribution, not replayability, though beta development is
under way on a pseudo-application generator from trace data.
However, it is trivial to imagine a replayer being built that reads
and replays the raw trace files.

Trace replay fidelity: Not supported.

Reveals Dependencies: Not supported.

Intrusive vs. Passive: Passive, no instrumentation of application
required.

Figure 3. LANL-Trace performance overhead, N processes

writing one 100GB file, non-strided. Bandwidth overhead

approaches a constant factor of untraced application

bandwidth as block size is increased.

Figure 2. LANL-Trace overhead with N processes writing

one 100GB file, strided. This is the benchmark

parameterization most demanding on the parallel I/O file

system. We observe bandwidth as a logarithmic function of

block size and an approximately constant I/O bandwidth

overhead.

.

Figure 4. LANL-Trace overhead with N processes writing

N 10GB files. We observe bandwidth overhead similar to

that of N to 1, non-strided.

Analysis tools: Simple aggregation of node timings provided as
standard output which can be used to account for different nodes
having clocks that are off by a constant difference (skew) and
different nodes whose clocks are off by a changing difference
(drift).

Trace data format: All three output types produced are human
readable.

Accounts for time skew and drift: Yes. LANL-Trace runs a
simple MPI job before and after running the traced application.
This job reports the observed time for each node, does a barrier,
and then reports the time again.

Elapsed time overhead: The measured elapsed time was
observed to be highly variable ranging from 24% to 222%. The
variability was observed to relate directly to the block size of the
I/O performed by the application.

To complete our LANL-Trace taxonomy case study, we
compiled our taxonomy results into a summary table (Table 2).

4.1.2 LANL-Trace Overhead Measurement
As the developers of LANL-Trace, we are in a unique position to
perform more complex analysis of its performance overhead. The
application that we traced is the LANL bandwidth benchmark
used to perform parameter studies on the various LANL
supercomputers. As such, in our experiments we were able to
perform detailed analyses of where the overhead was incurred

The experiments were run on 32-processors on a cluster with a
gigabit ethernet-over-copper interconnect. The compute nodes are
running Linux 2.6.14. The MPI library we are using is mpich
1.2.6.

In the experiments, we tested under three parallel I/O access
patterns2. First, N processors writing to N files, 10GB each.
Second, N processors writing to a single 100GB file, with each
processor writing to a single contiguous spot within the file. This
behavior is called non-strided. Third, again N processors writing
to a single 10GB file, this time each processor wrote to many
spots within the file (often this is used to keep similar data
grouped by proximity within the file). This is called strided
behavior.

In order to measure bandwidth overhead, we wrote constant
sized output files under RAID 5 with a stripe width of 64
kilobytes across 252 hard drives. In all cases, we saw higher
bandwidth overhead for tracing smaller block sizes than for larger
block sizes. Specifically, we measured for N-to-1 strided, N-1
non-strided, and N-to-N. At block sizes of 64KB, we saw
bandwidth overheads of 51.3%, 64.7, and 68.6%, respectively.
For block sizes of 8192KB, bandwidth overheads were 5.5%,
6.1%, and 0.6%, respectively.

We believe the performance overhead is worse for small block
sizes because a constant number of traced events are generated for
each block. The number of such events is inversely proportional
to block size, thus a smaller block size implies more events to
trace.

4.2 Tracefs Classification
Using our taxonomy, we apply feature classification to Tracefs:

Parallel file system compatibility: Tracefs did run on our
parallel file system without significant modification, though
tracing of I/O on the Network File System (NFS) was functional.

Ease of installation and use: Being implemented as a kernel
module we found that it requires a significant amount of
installation and configuration effort such as dealing with root
permissions on compute nodes.

Anonymization: Advanced, Tracefs allows for secret key
encryption using Cipher Block Chaining (CBC) of trace data with
a fine grain user-level selection mechanism for deciding which
fields (e.g. UID, GID) to encrypt/anonymize. This feature is not
classified as “Very advanced” because no mechanism is provided
for true anonymization (i.e. randomization) of trace data. Since
trace data may be retained for many years, there is a non-zero
probability of trace encryption being subverted and
anonymization compromised.

Event types: File system operations, i.e. Virtual File System
(VFS) calls, such calls include standard (i.e. local) file system
calls, in addition to calls which might be missed if tracing was
done at a lower level such as memory-mapped I/O or Network
File System (NFS) calls.

Control of trace granularity: A flexible declarative syntax is
provided for user-level specification of file system operations to
be traced.

Replayable trace generation: While not currently supported, the
framework’s developers report replayable trace generation as a
focus of future work [1].

Trace replay fidelity: Not supported.

Reveals Dependencies: Not supported.

Intrusive vs. Passive: Passive, no instrumentation of application
required.

Analysis tools: Not supported.

Trace data format: Binary, with optional checksumming,
compression, encryption, or buffering (to improve performance)
of output.

Accounts for time skew and drift: No, because Tracefs was not
originally developed to trace parallel applications and thus has no
inherent parallelization mechanism, drift and skew are not
considered.

2. For further description of the meaning of the various I/O access patterns
(i.e. N-N, N-1 strided, N-1 nonstrided) shown in the graphs, see [12].

Elapsed time overhead: The developers of Tracefs reported
extensive testing of the elapsed time overhead incurred by their
framework under various levels of trace granularity for both an
I/O intensive application as being less than 12.4%.

We present a summary of the results of our taxonomy feature
classification of Tracefs in a Table 2.

4.3 //TRACE Classification
In this section we use our taxonomy to apply feature classification
to //TRACE:

Parallel file system compatibility: Because //TRACE was
developed for use in MPI/MPI-IO applications, we were able to
use it “out of the box” on our parallel file system.

Ease of installation and use: For our evaluation, were working
with a pre-release version of the I/O Tracing Framework, but
nonetheless experienced no problems installation or usage.

Anonymization: Not supported.

Event types: System I/O calls are traced using dynamic library
interposition [11]. Like strace and ltrace (and thus LANL-

Trace), this mechanism cannot track memory-mapped I/Os.

Control of trace granularity: All I/O system calls are captured.
This is a side affect of the framework design objective to capture
complete and accurate repayable traces.

Replayable trace generation: Yes.

Trace replay fidelity: 6% [2], trace replay accuracy is the central
focus of //TRACE. However, //TRACE provides for user-control
over replay accuracy by using sampling for their node-throttling
technique.

Reveals Dependencies: Yes, //TRACE creates inter-node
dependency maps for use in generating accurate replayable traces
of parallel applications.

Intrusive vs. Passive: Passive, no instrumentation of application
required.

Analysis tools: Not supported.

Trace data format: Human readable.

Accounts for time skew and drift: Not supported.

Elapsed time overhead: Because of the design goals of
//TRACE, the user can control the tradeoff between trace replay
fidelity and elapsed time overhead. The overhead is thus highly
variable as reported by the developers of //TRACE, ranging
between ~0% to 205% in their experiments [2].

We summarize our taxonomy feature classification of //TRACE
in Table 2.

5. CONCLUSION
We have formulated an I/O Tracing Framework taxonomy and
demonstrated its utility by applying it to three popular
frameworks.

We can see that for a tracing user who requires advanced
features such as anonymization or powerful trace analysis tools,
LANL-Trace is inadequate.

By measuring the timing and bandwidth overhead of LANL-
Trace, we have shown that it adds a reasonable small overhead to
parallel I/O applications for large block sizes and considerably
worse overhead for small block sizes.

Using our taxonomy to analyze Tracefs, we have seen that
while it provides advanced features, one should anticipate
considerable installation overhead, potentially including
adaptation for use on a parallel file system.

Table 2. Classification summary table for various Traces

Feature LANL-Trace Tracefs //TRACE

Parallel file system compatibility Yes No Yes

Ease of installation and use 2 (Easy) 4 (Difficult) 2 (Easy)

Anonymization No 4 (Advanced) No

Events types Systems calls, library calls File system operations I/O System calls

Control of trace granularity 1 (Simple) 5 (V. Advanced) No

Replayable trace generation No No Yes

Trace replay fidelity N/A N/A As low as 6% 5

Reveals dependencies No No Yes

Intrusive vs. Passive 1 (Passive) 1 (Passive) 1 (Passive)

Analysis tools No No No

Trace data format Human readable Binary Human readable

Accounts for time skew and drift Yes N/A No

Elapsed time overhead 24% - 222% 3 ≤12.4% 4 N/A 6

3. High variance due to different I/O access patterns (N-N, N-1, N-N)

4. Reported as maximum application elapsed time for I/O intensive
benchmark [1]

5. Represents maximum (across test applications) of errors (averaged
across multiple runs) as published by the tool’s authors. By design,
however, this number is highly variably, see “Trace replay fidelity” in
4.3 or [2] for further discussion.

6. Elapsed time overhead is adjustable by design and ranges from ~0%
to 205% in experimental data in [2]. See “Elapsed time overhead” in
4.3

For some applications, accurate replayable traces are desired. In
this case, our taxonomy recommends that //TRACE should be
considered.

In summary, the taxonomy has value to potential users of I/O
Tracing Frameworks in formalizing their tracing requirements. It
is also valuable to I/O Tracing Framework developers for
identifying current unfilled demands for tracing tools and
categorizing the functionality and performance of any new I/O
Tracing Frameworks they create.

6. FUTURE WORK
For future work we are currently working on more thorough
overhead measurements of Tracefs and //TRACE. Also, we are
working on using our taxonomy for full classification of more I/O
Tracing Frameworks [6].

While we have started with a narrow focus on I/O Tracing
Frameworks, we believe our methodology can be expanded to
define a more global taxonomy for describing diverse general data
collection mechanisms, i.e. non-I/O Tracing Frameworks, such as
path based event tracing in distributed applications [8],[10].

With such a global taxonomy, we would be able survey the
entire Tracing Framework landscape and identify distinct but
complementary tracing mechanisms. We intend to build a
common framework for diverse trace aggregation. With such a
framework, we would be able to present a single trace-data API to
developers for use while building trace analysis tools or for use
directly in distributed applications.

7. ACKNOWLEDGMENTS
We would like to thank Peter Honeyman and Bill Bultman for
their valuable feedback. We would also like to thank Gary Grider,
Milo Polte, Remzi Arpaci-Dusseau, and the professors and
students of the systems laboratory (RAD Lab) of UC Berkeley
including Anthony Joseph, Randy Katz, Kuang Chen, Matei
Zaharai and Kurtis Heimerl.

8. REFERENCES
[1] A. Aranya, C. P. Wright, E. Zadok. 2004. Tracefs: A File

System to Trace Them All. In Proceedings of the 3rd

USENIX Conference on File and Storage Technologies. p.
129-145.

[2] M. Mesnier, M. Wachs, R. Sambasivan, J. Lopez, J.
Hendricks, G. Ganger, D. O'Hallaron. 2007. //TRACE:
Parallel Trace Replay with Approximate Causal Events. In
Proceedings 5th USENIX Conference on File and Storage

Technologies. p. 153-167.

[3] Los Alamos National Laboratory open-source LANL-Trace.
<http://institute.lanl.gov/data/tdata>

[4] Los Alamos National Laboratory open-source
mpi_io_test synthetic application

<http://institute.lanl.gov/data/software>

[5] Los Alamos National Laboratory public traces generated
using LANL-Trace
 <http://institute.lanl.gov/data/tdata/mpi_io_test.php>

[6] P. Lu and K. Shen. 2007. Multi-Layer Event Trace Analysis
for Parallel I/O Performance Tuning. In Proceedings of the

2007 int’l conference on Parallel Procesing (ICPP-07).

[7] E. Zadok and J. Nieh. 2000. FiST: A Language for Stackable
File Systems. In Proceedings of the Annual USENIX

Technical Conference, p. 55-70.

[8] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica. 2007. X-Trace: A Pervasive
Network Tracing Framework. In Proceedings of 4th USENIX

Symposium on Networked Systems Design &

Implementation. p. 271–284.

[9] H. Gunawi, N. Agrawal, A. Arpaci-Dusseau, R. Arpaci-
Dusseau, J. Schindler. 2005. Deconstruction Commodity
Storage. In Proceedings of the 32nd annual international

symposium on Computer Architecture. p. 60-71

[10] N. Joukov, T. Wong, E. Zadok. Accurate and efficient
replaying of file system traces. 2005. In Proceedings of

conference on File and Storage Technologies. p 336-350.

[11] T. Curry. Profiling and tracing dynamic library usage via
interposition. 1994. In Proceedings of Summer USENIX

Technical Conference. p 267-278.

[12] R. Hedges, B. Loewe, T. McLarty, C. Morrone. Parallel File
System Testing for the Lunatic Fringe: The Care and Feeding
of Restless I/O Power Users. 2005. In Mass Storage. p 3-17.

