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Abstract

In this work we present an scientific application that
has been given a Hadoop MapReduce implementation.
We also discuss other scientific fields of supercomput-
ing that could benefit from a MapReduce implementa-
tion. We recognize in this work that Hadoop has poten-
tial benefit for more applications than simply datamin-
ing, but that it is not a panacea for all data intensive
applications.

We provide an example of how the halo finding ap-
plication, when applied to large astrophysics datasets,
benefits from the model of the Hadoop architecture. The
halo finding application uses a friends of friends al-
gorithm to quickly cluster together large sets of parti-
cles to output files which a visualization software can
interpret. The current implementation requires that
large datasets be moved from storage to computation
resources for every simulation of astronomy data. Our
Hadoop implementation allows for an in-place halo
finding application on the datasets, which removes the
time consuming process of tranferring data between re-
sources.

1 Introduction

Recently, petabyte data sets have become frontiers
for High End Computing (HEC) applications. These
applications generate, and process petabytes of data.
The applications come from a diverse range of dis-
ciplines such as Cosmology [4], Bioinformatics [9],
Earthquake Modeling [8], Data Mining [16], MRI scan
data [21], Astronomy data [23], realistic graphic ani-
mations [22], etc. We characterize HEC applications
on the basis of the following properties, as shown in
Figure 1:

1. Data Access Pattern - Does the application ac-
cess a file sequentially or non-sequentially.

2. Worker Communication - An application can
have loosely coupled worker communication where
multiple workers doing the same task on differ-
ent data sets without communicating with each
other. In contrast, an application may require all
the workers to communicate with each other to
synchronize tasks especially when they are pro-
cessing overlapping data sets, hence called a tightly
coupled worker communication.

3. Multi-level - We define levels of an application
as whether a single MapReduce operation can be
used to implement an application or if multiple
MapReduce operations are needed to meet the ap-
plication requirements.

In HEC environment, parallel jobs are run in multi-
ple ways. Traditionally, researchers in HEC have uti-
lized the Message Passing Interface (MPI library) [18,
24] and other customized models to implement these
demanding scientific applications. A taxonomy of the
existing parallel programming models is shown in the
Figure 2. MPI and the corresponding I/O interface
provides a rich set of functions that are optimized for
specific scenarios. MPI/MPI-IO offers collective and
non-collective operations to improve communication
and I/O performance. MPI provides point-to-point
and collective communication options for blocking and
non-blocking send and receive operations. MPI-IO
provides basic file manipulation operations like open,
close, delete, resize, allocate, size, properties, etc. It
provides different file view options to support a vari-
ety of access patterns. In short, the comprehensive set
of MPI functions gives full control to application de-
velopers (i.e. scientists) that allows them to manually
optimize the application.

However, the MPI processes are not reliable; if one
compute node fails the entire application needs to be
restarted. There are solutions for a fault tolerant MPI
implementation, however, they are applicable only to a
specific set of problems [20]. Also, the learning curve of
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MPI coupled with the inherent complexity of its code
imposes challenge in scientific application development.
These limitations and the growing scale of applications
in terms of both computation and data require a high
level programming language for automatic data and
task distribution as well as failure recovery. Program-
ming models should be sufficiently independent of the
underlying architecture for portability, yet they should
expose common architecture features to enable efficient
mapping of the programs onto architectures [15]. Pro-
gramming models should remain, however, simple for
ease of use. For example, machine configuration for
parallel jobs should be a transparent factor.

In contrast to MPI, there are customized comput-
ing models include submitting a job script manually
to a scheduler. The job script consists of multiple se-
rial jobs, written in any language, that are distributed
across multiple nodes in the cluster environment by the
scheduler. The user is responsible for making the tasks
parallel, and then the scheduler just sends the jobs to
the available nodes. In the case of failure, the user will
be notified of the failure by the job scheduler. How-
ever, it is the responsibility of the user to re-instantiate
the failed task(s). In short, keeping track of multiple
failed tasks in a large application is very cumbersome.
These aforementioned approaches have presented sci-
entists and researchers with two major fundamental
challenges:

1. Ease of programming

2. High availability and reliability

MapReduce [14] is a new programming abstraction
used by Google in its search engines and other data-
intensive applications running on clusters. MapReduce
is an attempt to ease the programming burden while
managing and processing large data sets. MapReduce
follows a SIMD or SPMD model as it performs sin-
gle instruction or all instructions in a single program
on multiple large data sets. MapReduce provides au-
tomatic failure recovery by restarting the failed tasks.
Programmers find MapReduce easy to use, and there
are more than ten thousand distinct MapReduce pro-
grams implemented at Google [13]. The applications
that can benefit from the MapReduce style program-
ming exhibit data parallelism, task parallelism and re-
silience. Applications like web search engines are data
parallel and MapReduce is an ideal candidate to imple-
ment them. Contrary to this, partially data parallel ap-
plications, such as FLASH [17], uses MPI to parallelize
the simulation code for thermonuclear detonations.

Recently, an open source implementation of MapRe-
duce, Hadoop [1], has also been successfully used
to program data parallel applications. Conceptually,
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Figure 2. Taxonomy of Parallel Programming
Models

Hadoop can be used for data intensive scientific appli-
cations, because it facilitates ease of programming and
high availability and reliability. Currently, whether
it is feasible to implement scientific applications with
Hadoop is still an open question.

In Section 2 we give a quick introduction of Hadoop
including the Map Reduce language as well as Hadoop’s
distributed file system (HDFS). Section 3 discusses a
few potential applications and their suitability to the
Hadoop framework. Section 4 describes preliminary
results of a scientific Map Reduce application as com-
pared to a current scientific application. Section 5 dis-
cusses related and future work, and presents the con-
clusion.

2 Background of the Hadoop Architec-

ture

The Hadoop architecture consists of a namenode
and a jobtracker, both of which are servers, and then an
‘N’ amount of servers that function as tasktrackers and
datanodes. The namenode is responsible for managing
all file system data within the Hadoop file system. It
is also responsible for handling all read/write access to
files as well as file replication. The datanodes service
all read/write requests from clients based on direction
from the namenode. They are also responsible for per-
forming replication tasks and more importantly storing
the file system data [10]. These two components com-
prise the backbone of the Hadoop file system. The
jobtracker is responsible for handling all jobs submit-
ted by a client application. The jobtracker makes all
scheduling decisions and is responsible for parallelizing
the client application across the cluster. The jobtracker
is also responsible for task resiliency in the cluster. It
monitors all running tasks on the cluster and will kill
and restart tasks that fail, hang or otherwise disap-
pear from operation. The tasktracker is responsible for
running the client application via instructions from the
jobtracker [10]. The jobtracker and tasktrackers com-
prise the architecture for map-reduce programs to run
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HEC Applications

Data Access Patterns Worker Communication Levels
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access pattern ) 

Independent Workers , 
communicating only with 

the Master node

Dependent Workers , 
communicating among 

themselves 

A single level MapReduce 
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Worker Communication :
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Data Access Pattern :
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Worker Communication :
Mostly independent , and 
depends on dataset for the 
possible communication
Level :
Multi-Level Map -Reduce

Cyber -security :
Data Access Pattern :
Sequential
Worker Communication :
Independent Workers 
Level :
Single Level Map -Reduce 

Figure 1. Properties of HEC Applications: Data Access Patte rns, Worker Communication, and Appli-
cation Levels

on.
From the Figure 3, it should be noted that in its con-

figuration, Hadoop prefers that one server be allocated
for the namenode, one server for the jobtracker, and
then all other servers be a coupling of a datanode and
tasktracker. This is preferred mainly for data locality.
The strength of Hadoop lies in the lack of bandwidth
needed for the cluster to function appropriately, thus
allowing performance on commodity computing with-
out a fast, expensive interconnect. Because Hadoop
keeps all filesystem metadata in main memory, it is
necessary for the namenode to be its own server, this
way file access is not slowed because of strain on the
namenode from serving data and metadata requests.
Similarly, the jobtracker is running multiple daemons
to ensure task resiliency in the cluster, so Hadoop rec-
ommends that this also be its own dedicated server [1].

Figure 3. Hadoop Architecture

Beyond the architecture, the Hadoop framework
consists of two main components: 1) The Map Re-
duce language, and 2) Hadoop’s Distributed File Sys-

tem (HDFS). These two components working together
allow for Hadoop to promise ease of programming and
high reliability.

2.1 Map-Reduce

Figure 4. Map Reduce Data Flow

MapReduce is straight-forward in its programming
design. The programmer has a map operation in which
one parallel operation is performed during the map op-
eration in which results are collected at the intermedi-
ate combine phase; and then another operation, reduce,
is performed before the output data becomes persistent
storage. The MapReduce framework works exclusively
on [key,value] ([k,v]) pairs. The map operation is ex-
pecting an input of [k,v] and subsequently outputs a set
of [k,v] pairs for the reduce phase of the operation [1].
From Figure 4 it is shown that all map and reduce oper-
ations are tasks run on the tasktrackers in the Hadoop
cluster. These individual map and reduce tasks are
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monitored from incepetion to completion by the job-
tracker. During the combine phase of the map reduce
operation, intermediate output data from all map tasks
on an individual tasktracker is written to local storage
for the reduce phase. It is possible at this stage to write
a combiner operation within the map reduce program
to try and sort [k,v] data from the map operation while
it is still in main memory [1]. This operation can re-
sult in a quick local reduce before the file is passed to
a global reduce function. This is a high level view of
the steps involved in a map reduce operation. There is
no interprocess communication between any map task
during the map phase, and likewise no communication
between reducers. These two operations, map and re-
duce, allow for a large parallel dataset to be operated
upon very quickly with the assurance of task resiliency.

2.2 HDFS

The HDFS is modeled very closely on the Google file
system [12]. The approach to this file system assumes
that failure in a large scale computing environment is
commonplace, rather than a unique event. HDFS uses
a scheme of three way replication to ensure that the
files stored are always intact in three seperate places
across a Hadoop cluster. This distributed file approach
allows for Hadoop to guarantee system resiliency. In
Figure 5 is a diagram of a client application accessing
the file system. Client applications will first direct file
queries to the namenode, the namenode then directs
the file request to the appropriate datanode(s) and the
datanodes supply the client application with the data.
What is also shown in Figure 5 is the replication of
the file across servers in a rack and across server racks.
When Hadoop writes new data to its file system, it
tries to apply some amount of data locality if possible.
That is, as file chunks are written to datanodes across
the HDFS, namenode tries to group at least one repli-
cated chunk on the same server rack as the primary and
then another chunk to an adjacent rack of datanodes,
while also ensuring that no two replications of a chunk
are stored to the same datanode. In the event of hard-
ware failure of a server, the namenode takes an active
role in re-establishing the health of the cluster without
need for intervention by the user [1]. The ability of the
HDFS to automatically handle system failures without
loss of service or need for the user to intervene makes
the Hadoop file system a very powerful tool for highly
data intensive applications.

Figure 5. Conceptual Model of the HDFS [12]

3 Applications

MPI Example - Astrophysics (HOT): In the
field of cosmology, running simulations are computa-
tionally expensive. For example, some algorithms run
an FFT-based solver for the Poisson equation [2] and
for terabyte or larger data sets, computation can take
days [3]. More so than that, the amount of processed
data that a simulation generates can take longer to
store than the time of calculation. The amount of pro-
cessed data can scale up to petabytes depending on the
simulation. A current practice of theoretical physicists
is to simply pull out relevant data from a simulation at
run time and immediately discard all other data. This
leaves the time consuming need to re-run an old simu-
lation every time a new region of the dataset needs to
be examined. One such application that is used in as-
trophysics/cosmology is called Hashed Oct-Tree N-
body code (HOT) [4].

The basic operation of the HOT code occurs in sev-
eral steps which can be adapted nicely to Hadoop. Es-
sentially, particles are domain decomposed into spa-
tial groups. Then, a distributed tree structure is con-
structed which is traversed independently on each pro-
cessor in a cluster. The goal of which is to output
a high-resolution N-body simulation of the calculated
data. In this implementation, simulation sizes are lim-
ited to the ability of a cluster to handle the amount
of parallel processing and proper storage of the data
of these simulations. It has been observed that sci-
entists are simply re running these simulations every
time they need to examine a different region of the data
set, rather than running the simulation on the entire
recorded region and then simply storing it for review
when needed. This limitation can be overcome by us-
ing Hadoop’s ability to store large amounts of data
in parallel across a large computing cluster resiliently.
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Because of Hadoop’s distributed file system, data cal-
culated by a map-reduce version of HOT will be stored
on the local node, rather than being shuffled between
nodes on a cluster by some management software.

While there is no immediate need to port an im-
plementation of HOT to Hadoop’s Map Reduce frame-
work, there is present need for Hadoop’s distributed file
system(HDFS). The HDFS can be used to analyze the
data output by astrophysics applications such as HOT.
In large astrophysics simulations, data in the multi-
terabyte domain and larger can be generated from
computation of raw data from scientific instruments[3].
This data must then be recomputed into comprehensi-
ble data for simulation. At Los Alamos National Lab,
the current process for astrophysics work follows that
raw data is computed into particle position and ve-
locity data (via applications like HOT) on the large
supercomputing environments and then written to ex-
ternal storage. When the data needs to be used for
visualizations, the large datasets must then be moved
back from storage to one of the LANL supercomput-
ers, and then off again when the simulation is over[3].
This whole process is time consuming for the operator
to have to move large multi-terabyte datasets back and
forth from storage to computing resources everytime a
new simulation needs to be run.

Hadoop is a coupling of a highly scalable storage
system and a powerful parallel programming language.
Using Hadoop as a storage server would allow for in
place analysis of the computed vector position data
that comes from astrophysics applications. Because
the Hadoop file system would allow the data to be an-
alyzed in place on a storage server, once the large scale
computation of the raw data has been completed and
the particle data is moved to a Hadoop storage imple-
mentation, the data will no longer be shuffled between
computing and storage resources.

Job Script Example - BLAST: The BLAST ap-
plication [9] and its different variations are used widely
in the field of Bioinformatics as a comparison tool
when determining the origin and nature of an organ-
ism. Datasets for these operations are large in scale
(GBytes). Current methods of processing datasets in
Bioinformatics include using what is known as an array
job [19]. This process entails a scientist taking a file or
files to be run by BLAST and splitting it into sub pieces
which are submitted to a cluster scheduler and are par-
allelized across multiple computers running BLAST. At
the completion of the BLAST job, the scientist must
then take the multiple output files and manually com-
pile them into a single comprehensible output file.

This array job was run on S suis strain of Strepto-
coccus on a cluster of 36 Pentium III nodes each with

4GB of main memory and the job was submitted via
the MOAB scheduler [5]. Total time to completion
of the operation was approximately 17 minutes. This
time includes the manual partitioning and reassembling
of the S suis file by the lab worker and it should be
noted that there was no failure during the job. The
run time of the BLAST application was close to 11
minutes.

An array job is widely used in Bioinformatics at in-
stitutions such as the Joint Genome Institute and
Los Alamos National Lab (LANL). This process is
essentially a Map Reduce operation. The difference is
that there is no need to manually split an input file or
files and reassemble the output, Hadoop does this in-
trinsically in a map reduce operation. If BLAST were
properly ported to the map reduce framework, a user
would gain the benefit of no longer needing to manually
parallelize the BLAST tasks. With a batch scheduler,
no task resilience is guaranteed. It is the responsibil-
ity of the user to manage and accommodate process
failures in a cluster computing environment. While
no task failures occurred on this BLAST array job,
failures across large cluster environments are common.
Hadoop’s architecture guarantees process resiliency.

For BLAST applications, the Hadoop file system
would be beneficial solely because of high data reliabil-
ity and the dependence of MapReduce on the HDFS.
The HDFS is responsible for properly handling the par-
allelization of files. Map reduce is responsible for mak-
ing the calls to the HDFS, but the HDFS is the back-
bone of the file splitting process [11].

Cyber-security: LANL uses mined data for real-
time network security. When malicious hosts are de-
tected on the network, they are automatically quaran-
tined from the network. Quarantine is accomplished
by immediately reconfiguring the Ethernet switch that
is attached to the offending devices. LANL’s Topology
Reconstruction system is responsible for calculating an
accurate network map and locating the switch port for
each system on the network. The mined data that the
lab uses is read in from a streaming binary source into
a computer for analysis. These Binary files simply con-
tain multiple network events that need to be identified
as either legitimate or harmful network traffic. Since no
binary event in the file relates to another, the operation
is entirely data parallel on a monthly petabyte scale.
LANL is interested in using Hadoop with its cluster
computing environment for network analysis [7].

Cyber security’s demand for the HDFS is similar to
BLAST applications. The Map Reduce language relies
on the HDFS in order to function appropriately. The
HDFS can handle streaming files into the file system;
as well as provide for analysis on the files incoming to
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the system. The HDFS allows for an easy partitioning
of the incoming binary data to multiple different com-
pute nodes across a Hadoop cluster. Via the HDFS
architecture, no streaming data is ever sent through
the namenode before being transmitted through to the
datanode. All data read into the HDFS is sent directly
to the location it will be stored [11]. Due to this prop-
erty, network events streaming into the HDFS can be
analyzed as they are being written to a datanode. In
present cluster environments, incoming network data
would first be written to a networked file system (NFS)
to then be read and processed by the analysis applica-
tion [6]. This extra overhead provides for an immutable
delay in time between receiving and processing live net-
work traffic in an analysis of data where time is critical.
Hadoop’s ability to do direct data analytics is useful to
real-time applications because of the low amount of la-
tency between the time data is received and the time
it is processed.

4 Preliminary results of the HDFS in a

scientific computing environment

We implement an Astrophysics example as discussed
in Section 3 using Hadoop. This application constantly
cycles data between the same resources to re-run sim-
ulation data as shown in Figure 6(a) and is a time
consuming process. Because of this, our group has de-
veloped an application for Hadoop to perform in-place
friends of friends (FOF) analysis of astrophysics data.
As shown in Figure 6(b), once data is written to the
HDFS, it does not have to be transfered elsewhere to
be analyzed. Our approach to this problem is straight-
forward and completed in a single level of MapReduce
operations. The map operation is responsible for read-
ing binary data from the local file system. The map
operation takes the multiple binary files from the local
filesystem and distributes them across the HDFS. The
map operation sends out the parsed binary file data
from the output of the astrophysics data and passes
it to the reduce operation. Once the reduce opera-
tion begins it runs a friends of friends algorithm. The
FOF code generates its output file that the reduce op-
eration then appends to the HDFS This is a similar
process to what happens on a large HEC environment,
a file is read into the FOF algorithm and an output file
is generated. However, the MapReduce operation was
completed on relatively inexpensive commodity based
hardware and did not suffer an unavoidable loss of
productivity from data transfer time from storage to
computer resources as did the HEC solution. Nor will
the Hadoop version ever have to transfer data across a
network to another computing resource to re-run the

FOF algorithm, as with the HEC solution shown in
Figure 6(a).

Data transfer time is a large overhead to this type of
scientific application. 30TB+ datasets are representa-
tive of the simulations done at LANL for a FOF code.
These datasets do not have the benefit of a high-speed
interconnect between storage and computing resources,
they must be transferred over the LANL network. This
transfer obviously takes a very long time to complete.
In theory, if a storage system were able to fully utilize a
10 Gigabit ethernet connection from a storage to com-
puting resource, without a drop in bandwidth, the time
to transfer a 30TB file would be approximately 6.826
hours. Figure 7 shows a relation between our Hadoop
implementation and the current HEC solution. The
first 6.826 hours of transfer time is unavoidable, data
must be moved from compute resources to some type
of storage, whether it be a storage server or the HDFS.
However, after this intial move, our Hadoop implemen-
tation gains a time savings of approximately 13 hours
without even considering runtime of the FOF calcula-
tions. Over the course of several simulations, as indi-
cated in Figure 7, the time savings becomes significant.

Figure 7. Time to Transfer a 30TB File Across
a 10Gigabit Ethernet Connection

5 Conclusion and Future Work

In this work, we have studied a few representative
scientific applications in astrophysics and Bioinformat-
ics. We observed that the behavior of these applica-
tions is similar to a typical MapReduce application.
Most of the scientific applications consist of a simu-
lation phase that generates the data sets, a storage
phase to store the results and an analysis phase to an-
alyze these data sets. The data and task parallelism in
these applications along with high demands on reliabil-
ity are motivation to explore migration of the partial
or full application to Hadoop. Implementing these ap-
plications in Hadoop will alleviate the burden of man-
aging tasks on a cluster computing environment. We
have implemented the storage and analysis phase of
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(a) HEC Applications on Storage Server (b) HEC Applications on Hadoop

Figure 6. Comparing the HEC Application Implementations on current Storage Systems and Hadoop

an Astrophysics application and our results show that
Hadoop enables the in-place analysis of halo data using
FOF algorithm, and minimizes the time to move data
back and forth between compute and storage resource.

There are many other fields in scientific data in-
tensive computing that could benefit from Hadoop.
Fields expressly discussed in this paper, Bioinformat-
ics and Cyber-Security, would be good candidates for
Hadoop and Map Reduce. Currently, our group is ac-
tively working on improving and broadening the range
of Astrophysics applications that would benefit from
Hadoop.
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