
Specialization Slicing

Min Aung†, Susan Horwitz†, Rich Joiner†, and Thomas Reps†,‡
†University of Wisconsin-Madison ‡GrammaTech, Inc.

{aung, horwitz, joiner, reps}@cs.wisc.edu

Abstract
In this paper, we investigate opportunities to be gained from broad-
ening the definition of program slicing. A major inspiration for our
work comes from the field of partial evaluation, in which a wide
repertoire of techniques have been developed for specializing pro-
grams. While slicing can also be harnessed for specializing pro-
grams, the kind of specialization obtainable via slicing has hereto-
fore been quite restricted, compared to the kind of specialization
allowed in partial evaluation. In particular, most slicing algorithms
are what the partial-evaluation community calls monovariant: each
program element of the original program generates at most one ele-
ment in the answer. In contrast, partial-evaluation algorithms can be
polyvariant, i.e., one program element in the original program may
correspond to more than one element in the specialized program.

The full paper appears in ACM TOPLAS 36(2), 2014.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures,
procedures, functions, and subroutines, recursion; F.1.1 [Compu-
tation by Abstract Devices]: Models of Computation—Automata;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Partial evaluation, program analysis

Summary
This paper defines a new variant of program slicing, called special-
ization slicing, and presents an algorithm for creating an optimal
specialization slice. The algorithm is polyvariant: for a given pro-
cedure p, the algorithm may create multiple specialized copies of
p. In creating specialized procedures, the algorithm must decide for
which patterns of formal parameters p should be specialized, and
which program elements should be included in each specialized
copy of p. Specialization slicing represents a new point in the “de-
sign space” of slicing problems. The algorithm still has the main
characteristics of a slicing algorithm—that is, the elements of the
output slice are all elements from the input program; no evaluation
or simplification is performed. Our work adopts just one feature
from the partial-evaluation literature—polyvariance—and studies
how that extension changes the slicing problem.

In the full paper, we define specialization slicing, describe an
elegant algorithm for solving the problem, and present results from
studying specialization slicing from a number of angles.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI ’14, Jun 9–11 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2594291.2594345

• We formalize the problem of specialization slicing as a parti-
tioning problem on the elements of the (possibly infinite) un-
rolled program (§3.1). We give definitions of soundness, com-
pleteness, and minimality for specialization slicing (§3.1).
• To represent finitely the infinite sets of objects that we need

to manipulate to solve the partitioning problem, we make use
of symbolic techniques originally developed in the model-
checking community. Using this machinery, we give an algo-
rithm in §4 that with just a few simple automata-theoretic oper-
ations identifies

the minimal set of specialized procedures that capture each
of the different patterns of behavior for a given procedure,
as well as
the minimal set of program elements required in each spe-
cialized procedure.

• We prove that our specialization-slicing algorithm is sound and
complete, and returns a minimal specialization slice (§4.4 and
Appendix A); consequently, the algorithm always creates an
optimal output slice (§5.1).
• We characterize the time and space used by the algorithm (§5).

We present a family of examples for which the running time
and space of the algorithm can be exponential in certain
parameters of the input program (§5.3).
Our experience to date has been that neither such examples,
nor the worst-case exponential behavior of operations like
automaton determinization, arise in practice. Hence, we be-
lieve it is fair to say that, for the observed cost, both the
running time and space of the algorithm are bounded by the
sum of two terms: one is polynomial in the size of the input
program; the other is linear in the size of the output slice.

• The specialization-slicing algorithm provides a new way to
create executable slices—in particular, it creates polyvariant
executable slices (§6).
• We describe several extensions of the basic algorithm:

We describe how to extend the algorithm to handle pro-
grams that (i) make calls to library procedures (§7.1), and
(ii) make calls via pointers to procedures (§7.2).
We show that the algorithm possesses a kind of idempotence
property (§7.3).
We show how to speed up one of the key steps of the
algorithm (§7.4).

• We describe a method for removing unwanted program features
(§8). The method uses specialization slicing in conjunction with
forward slicing. While it was previously known how to solve
the feature-removal problem for single-procedure programs, no
algorithm was known for multi-procedure programs.
• In §9, we present the results of experiments using C programs to

evaluate (i) our specialization-slicing algorithm (for polyvariant
executable slicing), and (ii) an algorithm for monovariant exe-
cutable slicing.

§10 discusses related work. §11 concludes. Proofs are given in
Appendix A.

167

