Estimating Statistical Aggregates on Probabilistic Data Streams

T. S. Jayram et al. 2007

James Jolly March 17, 2010

Probabilistic Data Streams

Events produced by...

- financial markets
- ▶ IP networks
- environmental sensors

These are uncertain...

- incomplete knowledge
- stochastic phenomena
- measurement error

Difficulty Computing Aggregates

Want to summarize these events with aggregates...

- min, max, median, etc.
- mean, variance, skew, etc.
- distinct, repeat-rate, etc.

Want to process events online...

- limited working memory
- desire one-pass methods

We are stuck estimating aggregates.

Contribution

Single-pass approximation algorithms for estimating...

- mean
- median
- distinct
- repeat-rate

... which store a data sketch in memory.

Probabilistic Data Stream Model

Uncertain events...

- are marginal distributions over possible events
- m values in domain
- \triangleright have a probability of not occurring (N/A)
- ▶ *n* elements in stream

Ballot 1

David 0.7 Mike 0.1 N/A 0.2 Ballot 2

David 0.4 Joe 0.6 . . .

Ballot n

Sam 0.3 David 0.3 Joe 0.1 N/A 0.3

Estimating Distinct (F_0)

- reduced to finding distinct over many deterministic streams
- deterministic streams randomly-generated using marginal probabilties
- ▶ distinct value counts approximated in each stream Ziv Bar-Yossef et al. 2002

Converting to a Deterministic Stream

- $ightharpoonup a_i \in [m]$
- $ightharpoonup \forall a_i, p_i$ chance of adding each $(j, p_i) \in a_i$ to new stream

Finding Expected Minimum

▶ apply random hash function to stream $h(j) : \rightarrow [0,1]$

Approximation Intuition

▶ given expected minimum of n hash values in stream $v = \min(h(a_1), h(a_2), ..., h(a_n))$

ightharpoonup if F_0 independent and uniform values in [0,1]

$$F_0 \stackrel{\sim}{=} \frac{1}{v}$$

 \triangleright average F_0 estimates across multiple streams

Approximation Cost

$$O\Big(log(m)\Big)$$
 in time, $O\Big(rac{1}{\epsilon^2}log(m)\Big)$ in space

 ϵ - approximation parameter

 δ - confidence parameter

$$P(F_0^{est} - F_0 \le \epsilon F_0) \ge 1 - \delta$$

Old Techniques Reborn

- desirable to use the results computed in previous queries
- can compute some aggregates from other aggregates
- useful in 'roll-up' and 'drill-down' operations

Summary

- can estimate aggregates over uncertain data
- cheap to compute in both time and space
- cost is function of domain size