PECARI Pig Engineers Care About R Improvements

Tristan Ravitch, Evan Driscoll, and James Jolly

December 2, 2008

Tristan Ravitch, Evan Driscoll, and James Jolly PECARI Pig Engineers Care About R Improvements

2 Our Goal

Implementation

4 Future Work

Tristan Ravitch, Evan Driscoll, and James Jolly PECARI Pig Engineers Care About R Improvements

イロト イロト イヨト イヨト

What is Pig Latin?

Set-oriented data transformation language in which:

- Primitives filter, combine, split, and order data
- Users describe a sequence of transformations
- Set transformations are stateless

The Pig Environment

Advantages include:

- Set transformations massively parallel (Hadoop)
- Familiar programming style
- Support for semi-structured data
- Ad-hoc data analysis and manipulation

An Opportunity

Pig currently performs no optimizations.

- "the user knows best" philosophy
- Minimal knowledge of dataset
- Computing costs is hard

イロト イワト イヨト イヨト

イロト イロト イヨト イヨト

Join Order Optimizations

Why these?

- High cost operations
- Non-trivial implementation
- Users adopt Pig to make joins simple

Example Query

- a = LOAD 'input_A.txt' USING PigStorage('\t')
 AS (a_key, a_data);
- -- ...
 x = JOIN d BY d_key, c BY c_key;
 y = JOIN x BY c_key, b BY b_key;
 z = JOIN y BY b_key, a BY a_key;
 STORE z INTO 'results.txt' USING PigStorage();

Our Goal

Implementation

Logical Dataflow Reordering

< = > < = > < = > < = >

4 Future Work

Tristan Ravitch, Evan Driscoll, and James Jolly PECARI Pig Engineers Care About R Improvements

イロト イロト イヨト イヨト

Necessary Components

- A method to pick the best join order
- A method to compute join costs
- Relation cardinalities and key distributions

イロト イワト イヨト イヨト

Distributed Sampling

- Hadoop stores data in HDFS
- Plenty of bandwidth and spare cycles

Each sampling daemon takes:

Inputs: filename, join attribute

Output: histograms

Estimating Join Cost

Examine *logical* plans by walking through the operator tree

- Gauge cardinality of inputs at load nodes
- Combine equidepth histograms at join nodes

< AP

-

イロト イロト イヨト イヨト

What's next?

- Performance numbers:
 - Time savings for various workloads
 - Overhead of sampling and optimization
- Evaluate bushy plans

Future Work

- Re-optimize on-the-fly
- Project early, rejoin later
- Informed DFS
- Distribute plan searches using MapReduce

(日)

Questions?

Tristan Ravitch, Evan Driscoll, and James Jolly PECARI Pig Engineers Care About R Improvements

э