
Scheduling with Precedence Constraints

James Jolly and Pratima Kolan

November 25, 2009



Precedence Graphs in Task Scheduling

I typically DAGs
I vertices are tasks

I processing time pi

I weight wi

I edges are data depedencies
I i → j , i precedes j



Precedence Graphs in Task Scheduling



Precedence Graph Scheduling Problems

Objectives:

I minimize makespan

I minimize weighted completion time

I maximize throughput

Consider:

I release times

I resource constraints



Focus: Minimize Weighted Completion Time

I G is a DAG

I n tasks

I task i has weight wi

I task i finishes at ci

I minimize
n∑

i=1

wici

under precedence constraints
(NP-Hard)



Our Goal

I show two approximations

I construct single-machine schedule

I convert single-machine schedule to multi-machine schedule



Single-Machine Scheduling With Precedence

I breaks tasks into groups
(P-time)

I ranks groups

I schedules each group in order of increasing rank
(P-time, α = 2)



Sub-DAG Rank

I given collection of tasks T = {t1, t2, ..., tk}
I importance of scheduling T first

I R(T ) =

k∑
i=1

pi

k∑
i=1

wi



Precedence Closed Sub-DAG

I every task inside only depends on other tasks inside



Minimal Rank Precedence Closed Sub-DAG, G*

I Properties:

I feasible schedule for G∗ is 2OPT
I there exists an optimal schedule S of G where the optimal

schedule for G∗ comes as a segment starting at time 0



2 Approximation schedule for G ∗

I if G ∗ has rank α, then any subgraph of G ∗ has rank higher
than α

∀j ∈ G ∗,

∑
1≤i≤j pi∑
1≤i≤j wi

≥ α

OPT =
∑

j

wjCj

≥
∑

j wj
∑

i≤j αwi = α
∑

j (wj)
2 +

∑
i≤j wiwj

= α(W (G ∗))2 − (W (G∗))2

2 = α(W (G∗))2

2 = P(G∗)W (G∗)
2

I any schedule with no idle time has weighted completion time
of at most P(G )W (G )



Overview of the Algorithm

Figure: Breaking the Scheduling Problem in Subproblems



Approximation Factor

I Total weighted completion time of G is:
γ(G ∗) + p(G ∗)w(G − G ∗) + γ(G − G ∗)

I How do we find G ∗?



G ∗ Construction

construct a graph Gλ

solve it by finding min-cut of the graph
use min-cut to find sub-DAG of rank at most λ

I vertex set V = T ∪ {(s, t)}
I add an edge from source s to every job with cost on it equal

to λwi

I add an edge from every job to the sink t with cost equal to
processing time of the job

I for every precedence constraint between two vertices t1, t2 in
G, then we add an edge from t2 to t1 having infinite cost



G ∗ Construction

if there exists any cut (A,B) in Gλ whose value is bounded λw(G )
then subgraph A− {s} is precedence closed and that the rank of
A− {s} is at most λ



λ Values

I how do we increase λ?

I λmin = minimum rank of any vertex

I λmax = rank of the graph

I perform binary search



Execution Step 1

Here {A,B,C} form a minimal rank precedence closed subgraph.



Execution Step 2

Here {D} forms a minimal rank precedence closed subgraph.



Execution Step 3

{F ,E} is a minimal rank precedence closed subgraph.



Execution Step 4

{G} forms minimal rank precedence closed subgraph.



Multi-Machine Scheduling With Precedence

I requires feasible single-machine schedule as input

I uses identical machines M = 〈m1, m2, ..., mk〉
I weighs parallelism increases against input schedule ordering



Delay List Intuition

I schedule lowest rank ready tasks next
I sometimes beneficial to schedule tasks out of order

I take advantage of an idle processor
I may bump back an important process



Delay List Algorithm

t = 0
if a machine m in M is idle, then:

if the first task i in V is ready:
schedule i on m
mark all idle time up to start time of task i

otherwise:
scan through V , pick the first task i that is ready
if β ∗ Pi ≤ sum of all unmarked idle time

schedule task i on m
t = t + 1



Choosing β

I low β, avoid processor downtime, more out-of-order scheduling

I high β, accept more downtime, more faithful scheduling

I input schedule quality and weight variance important factors



Conclusions

I can produce approximate single-machine schedules

I single-machine schedules beget multi-machine schedules

I weight and processing time distributions help tuning both

I immense pratical significance


