Scheduling with Precedence Constraints

James Jolly and Pratima Kolan

November 25, 2009
Precedence Graphs in Task Scheduling

- typically DAGs
- vertices are tasks
 - processing time p_i
 - weight w_i
- edges are data dependencies
 - $i \rightarrow j$, i precedes j
Precedence Graphs in Task Scheduling
Precedence Graph Scheduling Problems

Objectives:

▶ minimize makespan
▶ minimize weighted completion time
▶ maximize throughput

Consider:

▶ release times
▶ resource constraints
Focus: Minimize Weighted Completion Time

- G is a DAG
- n tasks
- task i has weight w_i
- task i finishes at c_i

minimize $\sum_{i=1}^{n} w_i c_i$

under precedence constraints

(NP-Hard)
Our Goal

- show two approximations
- construct single-machine schedule
- convert single-machine schedule to multi-machine schedule
Single-Machine Scheduling With Precedence

- breaks tasks into groups (P-time)
- ranks groups
- schedules each group in order of increasing rank (P-time, $\alpha = 2$)
Sub-DAG Rank

- given collection of tasks $T = \{t_1, t_2, ..., t_k\}$
- importance of scheduling T first

\[
R(T) = \frac{\sum_{i=1}^{k} p_i}{k \sum_{i=1}^{k} w_i}
\]
Precedence Closed Sub-DAG

- every task inside only depends on other tasks inside
Minimal Rank Precedence Closed Sub-DAG, G*

- Properties:
 - feasible schedule for G^* is 2OPT
 - there exists an optimal schedule S of G where the optimal schedule for G^* comes as a segment starting at time 0
Approximation schedule for G^*

- if G^* has rank α, then any subgraph of G^* has rank higher than α

\[
\forall j \in G^*, \quad \frac{\sum_{1 \leq i \leq j} p_i}{\sum_{1 \leq i \leq j} w_i} \geq \alpha
\]

\[
\text{OPT} = \sum_j w_j C_j \\
\geq \sum_j w_j \sum_{i \leq j} \alpha w_i = \alpha \sum_j (w_j)^2 + \sum_{i \leq j} w_i w_j \\
= \alpha (W(G^*))^2 - \frac{(W(G^*))^2}{2} = \frac{\alpha (W(G^*))^2}{2} = \frac{P(G^*) W(G^*)}{2}
\]

- any schedule with no idle time has weighted completion time of at most $P(G) W(G)$
Overview of the Algorithm
Approximation Factor

- Total weighted completion time of G is:
 \[\gamma(G^*) + p(G^*)w(G - G^*) + \gamma(G - G^*) \]

- How do we find G^*?
G* Construction

construct a graph G_λ
solve it by finding min-cut of the graph
use min-cut to find sub-DAG of rank at most λ

- vertex set $V = T \cup \{(s, t)\}$
- add an edge from source s to every job with cost on it equal to λw_i
- add an edge from every job to the sink t with cost equal to processing time of the job
- for every precedence constraint between two vertices t_1, t_2 in G, then we add an edge from t_2 to t_1 having infinite cost
G^* Construction

if there exists any cut (A, B) in G_λ whose value is bounded $\lambda w(G)$ then subgraph $A - \{s\}$ is precedence closed and that the rank of $A - \{s\}$ is at most λ
\(\lambda \) Values

- how do we increase \(\lambda \)?
- \(\lambda_{\text{min}} = \) minimum rank of any vertex
- \(\lambda_{\text{max}} = \) rank of the graph
- perform binary search
Execution Step 1

Here \(\{A, B, C\} \) form a minimal rank precedence closed subgraph.
Execution Step 2

Here $\{D\}$ forms a minimal rank precedence closed subgraph.
Execution Step 3

\{F, E\} is a minimal rank precedence closed subgraph.
{G} forms minimal rank precedence closed subgraph.
Multi-Machine Scheduling With Precedence

- requires feasible single-machine schedule as input
- uses identical machines $M = \langle m_1, m_2, ..., m_k \rangle$
- weighs parallelism increases against input schedule ordering
Delay List Intuition

- schedule lowest rank ready tasks next
- sometimes beneficial to schedule tasks out of order
 - take advantage of an idle processor
 - may bump back an important process
Delay List Algorithm

\[t = 0 \]
if a machine \(m \) in \(M \) is idle, then:
 if the first task \(i \) in \(V \) is ready:
 schedule \(i \) on \(m \)
 mark all idle time up to start time of task \(i \)
 otherwise:
 scan through \(V \), pick the first task \(i \) that is ready
 if \(\beta \times P_i \leq \text{sum of all unmarked idle time} \)
 schedule task \(i \) on \(m \)
\[t = t + 1 \]
Choosing β

- low β, avoid processor downtime, more out-of-order scheduling
- high β, accept more downtime, more faithful scheduling
- input schedule quality and weight variance important factors
Conclusions

- can produce approximate single-machine schedules
- single-machine schedules beget multi-machine schedules
- weight and processing time distributions help tuning both
- immense practical significance