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Computer puppetry maps the movements of a performer to amehed
character in real-time. In this thesis, we provide a comgnelve solution
to the problem of transferring the observations of the nmot@pture sensors
to an animated character whose size and shape may be diffesenthe
performer’s. Our goal is to map as many of thgortant aspects of the mo-
tion to the target character as possible, while meeting thie® real-time
demands of computer puppetry. We adopt a Kalman filter schbatead-
dresses motion capture noise issues in this setting. Wedertive notion of
importances that allow determining which aspects of théopeance must
be kept in the resulting motion based on interaction of theopeaer with its
environment and self-interaction among the performegssants. We intro-
duce a novel inverse kinematics solver that realizes thmpertant aspects
formulated with geometric constraints within tight reghé restriction. Our
approach is demonstrated by its application to broadchestiseon perfor-

mances.
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Chapter 1

| ntroduction

Computer puppetry [26] transforms the movements of a peréoto an an-
imated character in real-time. The immediacy of comput@petry makes
it useful for providing live performances and as a visudia@atool for tra-
ditional cinematic animation. However, this immediacyates a number
of challenges, as solutions to animation issues must bddwhirdan online
real-time manner. A computer puppetry system must capiermmbvements
of the performer interpret the important aspects of thisomand determine
the movements required to make the character reproduceithpsrtant as-
pects of the performance.

The challenges of mapping a motion from the performer to #nget
character become more difficult when the target charactef & differ-
ent size and shape than the performer [3, 5, 7, 12]. In sudakscése re-
sulting motion of the character cannot exactly duplicai ehiginal per-
former's. For example, we cannot simultaneously match tigiral joint
angles and end-effector positions. Generally, to presérwemportant as-
pects of the original motion we must alter the unimportamteass of the
motion. This process of adapting a motion for a new charastealled re-

targeting [12, 19]. To date, solutions to computer puppissyes have been
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limiting: either restricting the range of puppets that canulsed, or provid-
ing restrictive notions of what is important in motions. Th#&er implicitly

limits the range of puppets since artifacts are introducetha differences
of the puppet from the performer are increased. In this shege provide
techniques that address the challenges of computer pypple¢n the target
character is different from the performer. The followingjaraanimation
iIssues are addressed in a manner that fits within the onlatdinee nature

of computer puppetry.

1. The sensors used to capture the performprotion are often noisy.
Therefore, we provide a filtering technique that operatemnionline
manner with the efficiency required to process whole bodyianetin
real-time. We apply a Kalman filter to rotation vectors, pdavg an
orientation smoothing technique that is more efficient thesvious

methods.

2. The important aspects of the original performance mudeermined
such that these details can be reproduced in the resultinigmaVe
provide the notion of importance measures that allow us towtt
for changing situations even when the future is unknown. &ed
mine which aspects are to be preserved while sacrificing thers
we present importance criteria based on interactivity efgérformer.
We also account for the self-interactivity among the penfers seg-

ments in importance computation to obtain more realissalts.



3. The resulting pose of the target character must be com pute way
that recreates the important aspects of the original. Thzeethose
aspects which are formulated with geometric constrainesprovide
a fast inverse kinematics solver that provides the necgseal-time

performance and predictability.

The proposed solutions have been used to realize a compuipepy
system that has been used successfully to create animbeiditsn broad-
casts. We begin the discussion of computer puppetry by girayan overview
of our approach. We examine previous solutions with resfeettte issues
raised in the overview. The components of the suggesteadapiprare then
detailed in Chapters 3 through 5. An analysis in Chapter @vwes/why this
approach avoids introducing unwanted artifacts such apdesth disconti-
nuities. Some experimental results are provided to supbisrapproach in
Chapter 7. We conclude with a summary and discussion ofduesearch

directions.



Chapter 2

Overview

Computer puppetry requires the captured movements of tHerpeer to
be mapped to a target character in real-time. As shown inr€&idu the
proposed approach for online motion retargeting dividegdlk into phases.
First, the filtering phaséclean$ the sensor data to remove artifacts of the
motion capture device. The second phase examines thigdiltaotion and
determines the importance of each of those body parts suchrats, feet,
elbows, and knees which are highly likely to interact with @énvironment
and the other body segments. The final phase computes a pdke farget
character that achieves as many of the important aspectssaghfe while
properly interacting with the environment and the segmentthis chapter,
we provide an overview of these components and survey tékaition ship

to previous work.

2.1 OnlineFiltering of Orientations

In general, captured motion data are noisy. The real-timeas required
for computer puppetry are particularly problematic in ttagard. However

because of the dense sampling rates and signal characteoistotion cap-
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Figure 2.1: Overall structure

ture data, low-pass filtering is an effective tool to suppmesise in the cap-

tured data. This is challenging for several reasons.

1. Because computer puppetry is an online applicationdsrahoffline

filters cannot be employed.

2. Because the orientation space is highly nonlinear, stanglgnal pro-

cessing methods cannot be applied directly.

3. Because of the real-time demands, filtering should beopedd on

the entire body very efficiently.

A Kalman filter predicts the future values and corrects theamadcor-
dance with the actual input data to create a filtering schéieoperates in
an online manner. The technigue is common in online appdicat and was
firstintroduced to the graphics community by Friedmann.g9&l A version
of Kalman filter scheme, called hierarchical Kalman filteasvalso adopted

to track and estimate motion of articulated figures by Jurth\&ohn [15].
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However, a standard Kalman filter cannot be directly apglecbtation
data without accounting for nonlinearity of the orientatgpace. To address
this problem, Welch and Bishop [28] linearized the oriepotaspace by lo-
cally parameterizing the incremental orientation changé #wuler angles,
based on the result in Azarbayejani and Pentland [1] anddBrand Chel-
lappa [6]. Because they were interested only in trackinghtied motion,
they were less concerned with efficiency than we are andftireraddressed
only issues 1 and 2 above. In Chapter 3, we provide a modifitd&t@filter.
To achieve real-time performance, we locally parametdtizencremental
orientation changes with rotation vectors instead of thielEangles used in

Welch and Bishop [28].

2.2 Importance Deter mination

The goal of computer puppetry is to create the movements aniget char-
acter based on the performer's movements. If the targetctaris quite
different from the performer, there may not be a direct magpilndirect
mappings are common in traditional puppetry; for exampl@agionette is
controlled by strings that pull on its end-effectors. Coneplequivalents
may create arbitrary mappings from sensor input to chargaemeters.
For example, the Alive system from Protozoa [24] allows tasloy Scheme
functions [14] to be written to perform mapping.

Our interest is in recreating characters with human formthsotarget

character has equivalent degrees of freedom as a simplifeeklnof a hu-

6



man performer. In this thesis, we consider characters thatréiculated fig-
ures with identical connectivity, so that it is possibleranisfer the captured
joint angles directly to the target character. Despite $ligctural equiva-
lence, the resulting motion will not match the perforisarnless the charac-
ter has an identical size and shape. There will be some |éwailsonatching
even for characters that have the same size and shape asftrepe since
we simplify the real human by a hierarchy of rigid bodies. @pproach
to performance animation, described by Molet et al. [20, 2igdels the
character to be as similar to the performer as possible. iomer et al.
[5] presented a way to determine the segment lengths of actearthat best
fit the captured motion data while discarding outliers insthdata by a ro-
bust estimation technique. If the segment proportions efdmaracter are
kept the same as those of the performer a motion adaptatooften be
achieved by scaling the position data according to the siterehce and
then by translating the character globally. Restrictirgyphoportions of the
character precludes the use of stylized cartoon charact@ess we can find
similarly proportioned performers.

When the virtual character and performer have differerdssemd pro-
portions, not all aspects of the motions can be preservadgiorapping. At
the lowest level, it is simply not possible to mimic both tledtions of me
end-effectors and the joint angles. A system must make eb@is to which
aspects of the motion should be preserved and which shouddidveed to

change. We call an approach to motion retargeting that migkehoice



explicitly animportance-based approach. Nonimportance-based approaches
make implicit choices as to what should be preserved dudteggeting. For
example, the most naive implementation of retargeting Birtigpnsfers the
parameter (joint angles and root position) values from #régomer to the
target character. Such a scheme implicitly selects theegadd the param-
eters to be important and, therefore, the positions of tldeetfectors to be
unimportant. This is a poor choice when the character mustant with
other objects in the world such as the floor.

A common approach to motion retargeting matches the emdteff po-
sitions of the character to those of the performer. Such anoagh has the
advantage that it preserves the interactions between #raater and its en-
vironment. Badler et al. [3] used only the position data afideand feet
to adopt them to a virtual character with an inverse kinecsatchnique.
Residual degrees of freedom are fixed by exploiting biomeiclahknowl-
edge. Choi et al. [7] adopted the idea of inverse rate cof283lto compute
the changes in joint angles corresponding to those in eiedtef positions
while imitating the captured joint angles by exploiting #timematic redun-
dancy.

Implicit in the schemes that try to preserve the capturededfettor po-
sitions, is the notion that end-effector positions are nimygortant than joint
angles; that is, joint angles should be changed to achied«ector posi-
tioning goals. While this prioritization is often prefetalto the reverse, itis

not without its flaws. Consider the example of Figure 2.2.hiis example,



Figure 2.2: Artifacts of position-based approach

the importance of the foot position is properly reflected,levthat of the
hand positions is overstated.

The central observation of an importance-based approdbhatisvhat is
important can only be determined by the context of the mothtreach in-
stant, a system must somehow select among the many podsis that
are important, so it can change the aspects that are nottampo€onstraint-
based approaches to motion adaptation explicitly reptekails of the mo-

tion that are importance as geometric constraints. Theesjiae motion



editing and retargeting system of Gleicher [11, 12] prodabe notion of

preserving the importance quantities of the motion by chpgnimpor-

tance ones, where the important qualities were defined bgt@nts. Lee
and Shin’s [19] hierarchical motion editing provided sianitesults using a
different underlying implementation. Popovic and Witk&8] demonstrated
results that made the kinetic aspects of the original motrgortant to pre-
serve.

The methods mentioned in the previous paragraph are ahefiti that
they examine the entire motion simultaneously in procegssirhis offline
nature is also implicit in the problem formulation, as wedlia the solution
method. All of the methods require the constraints to betitied before the
motion can be processed. The decisions as to what is impantanmotion
must be known before processing can occur in these previoustraint-
based approaches. This is infeasible in online applicati@indiganavale
and Badler [4] introduced a scheme to generate constraintsnatically.
However, their motion adaptation is done in an offline manner

For computer puppetry, we must decide what is important invang
motion in an online manner. We observe that artifacts ofyapglonly the
captured joint angles are apparent when the performer esacting with
itself or the external world. Such interactions include ihieractions of
the performer with the environment and its self-interatsiamong the body
segments. Those interactions are mostly done by limb segnseich as

hands, feet, elbows and knees, since they are the most patitgeof human
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body. Therefore we analyze the importance of each endteff@osition
to preserve the interaction with the environment. Moredkierimportance
of the relative position of each limb segment to the othenssgs is also
measured for reproducing the self-interactions.

Those importance values are calculated based on sevetaisfatis-
cussed in Chapter 4. For example, the proximity of an enectdf to its
surrounding environment can be used as a predictor of theriance of
the end-effector position. The importance of the end-é&ffegosition is in-
versely proportional to its distance to the nearest objettée environment.
Similarly the proximity of a limb segment to the others iscaésgood cri-
terion for measuring the importance of its relative positwith respect to
the other body segments. A key notion of this work is that tbergr of
an importance-based approach, already demonstrated imeafthnstraint-

based systems, can be brought to the online domain of compueetry.

2.3 Inverse Kinematics

We employ an inverse kinematics (IK) solver to compute thsepof the
target character. IK has become a standard technique irainimsystems
to control the pose of a character based on the positions ehid-effectors.

IK solvers can be divided into two categories: analytic andharical
solvers. Most industrial robot manipulators are desigretave analytic
solutions for efficient and robust control. Paden [22] daddan IK problem

into a series of simpler subproblems each of which has clos®a solu-
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tions. Korein and Badler [18] showed that the IK problem otaian limb
allows an analytic solution, and Tolani et al. [27] derividit actual solu-
tions. A numerical method relies on an iterative procesbtaia a solution.
Girard and Maciejewski [10] generated the locomotion ofggs figure us-
ing a pseudo inverse of a Jacobian matrix. Based on neurmbbgyg, Koga
et al. [17] produced an experimentally good initial guessadaumerical
procedure. Gullapalli et al. [13] reduced the dimensidapali the redundant
control system using synergies as a basis control set. Zich&adler [30]
formulated the IK problem as a constrained nonlinear o@tndn problem.
Rose et al. [25] extended this formulation to cover constsahat hold over
an interval. To prevent the figure from making unnatural omdiand reduce
the redundancy of the IK problem, Badler et al. [3] incorpedsbiomechan-
ical information.

For computer puppetry, we make a number of demands on IK é&3at r
quire the development of a novel solver. First, we must aehreal-time
performance on the entire body of the character. Secondee the solver
to provide predictably consistent solutions: small chanigethe problems
should provide similar answers. Finally the solver must lble &0 account
for the importance of each feature to preserve that is détechdynamically
in the analysis phase. The proposed IK solver is discuss€tiapter 5. To
solve an IK problem in real-time, we divide it into three sutigems: root
position estimation, body posture computation, and limbtp@ computa-

tion. First, the root position of a virtual character is carted to provide
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a good initial guess for the body posture computation. Ifdeee we then
adopt numerical optimization to refine the body posture,cwhionsists of
the root position, the root orientation and the posture efupper body. Fi-
nally, we use an analytic IK solver to compute the limb postuand blend
them with the captured limb postures.

The solution for each of these subproblems is designed twpocate the
importance values measured in the analysis phase. Sohaiy$t and sec-
ond subproblems, our IK solver tries to preserve the cagtaral-effector
positions when their importance values are high. Otherwise captured
joint angles are preserved. Here we need not to accountdaetative posi-
tions of the limb segments, since those two steps adjustidf@igposture of
the character and unlikely affect the spatial relation leefavthe segments.
In contrast, at the final limb posture computation we adjlstitmb to pre-
serve the relative position of the limb segments as well astid-effector
positions in accordance with their importance values. T$)ate reproduce
the more important features in the resulting motion whileriaing less
important ones. To generate realistic motions, our IK Sotiies to keep
the captured joint angles of the limb, when none of thoseufeatare im-
portant enough to preserve the interaction with the otheylparts or the

environment.
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Chapter 3

Motion Filtering

In general, motion capture devices capable of providindrtreee perfor-
mance are particularly susceptible to noise. Magnetic anotapture sys-
tems, which are widely used for real-time motion capturdfesdrom the
interference of low-frequency current-generating devsiech as a CRT-type
display. Thus, there always exists some level of jittert tharapid random
changes in reported positions and orientations that doaro¢spond to ac-
tual movements [8]. Since computer puppetry requires a gigiity input
motion as the reference of an output motion, filtering is aseersal part.
In the context of computer puppetry filtering must be realetj online, and
performed on orientations as well as positions.

For online filtering, Kalman filters [2, 9, 28] are often emyxd because
of their capability of prediction and correction, that iseg@icting future in-
put data from their history and correcting them by incorpiagaactual input
data. In a standard(extended) Kalman filter, its state woaldpletely de-
scribe the positions of a sensor and its velocity. Howevecahse of the
nonlinearity of the orientation space, this scheme canlydxel applied di-

rectly to orientation data. Adopting the results in Azargayi and Pentland
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[1] and Broida and Chellappa [6], Welch and Bishop [28] pagtarize an
incremental orientation change with Euler angles whichragarded as a
three-vector to filter. The filtered Euler angles are tramsém back to an in-
cremental orientation change in the nonlinear space totaphba target ori-
entation at each time step. However, the conversion betae@mcremental
orientation change and its equivalent Euler angles is mefft. Moreover,
recent motion capture devices measure orientations bBjinectinit quater-
nions. Therefore, differently from Welch and Bishop, wegrmaeterize in-
cremental orientation changes with rotation vectors.

To facilitate this scheme, the target orientatignis maintained exter-
nally to the Kalman filter together with the internal stateteex. In partic-

ular, q. is represented by an unit quaternion:

9 = (w (v y 2)),

wherew? + 22 + y* + 22 = 1. The internal state consists of the position

p, the rotation vector, and their derivativep andr:

x=(p’p" 7). (3.1)

Here the rotation vectar parameterizes the incremental orientation change
of the actual sensor inpuf(t) at the current frame with respect to the target

orientationq, (t — At) at its previous frame. Thereforg(t) can be measured
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through the logarithm map [16]:

r(t) = In(q; ' (¢ — At)q(h)). (32)

At each filter update step(t) in the state is converted into its incremental
orientation change equivalent) through the exponential map to update
the external target orientatiepp and then reset to be zero. Therefore, incre-
mental orientations are linearized for the (extended) kaliiter, centered
about zero.

The dynamic model predicts the current position and theiostdy first-
order approximations. Therefore, the predictiont) of the state through

thestate transition matrix A can be described :

13 AtIg 03 03

0, I, 0; 0
Ax(t—A)=| 77 T ke — Ay, (3.3)

0; 03 I3 At

% (1)

0; 03 03 I

wherel; and0; are, respectivelyy x 3 identity and zero matrices. Similarly,

theerror covariance matrix P(¢) is predicted:

P (t) = AP(t— AHAT + Q. (3.4)

Here,P(t) = E | (% (t) — x(t)) (¥~ (¢t) — x(¢))" |, which models estima-

tion uncertainty. Theoprocess noise covariance matrix Q characterizes the

16



accuracy of the dynamic model. In our implementation, wepdiim Q as:

@l gls 03 03

I3 @l 03 03
Q= | (3.5)

03 05 qsls gl

0; 03 grl3 CISI3_

When the values of;’s are small, the filter tends to suppress the detail of
the captured motion. On the other hand, if they are largends to preserve
the captured motion. Thereforg’s should be tuned interactively for a good
filter response.

In practice, we sample motion signals at a higher frame &6 {Hz)
than that actually required for animation to avoid the okeaging which
occasionally occurs in constant velocity models, espigorgien the veloc-
ity changes suddenly. Our measurement consists of theigqosit a sen-
sor and its incremental orientation represented by a ootatector; that is,
=(pT rT)T which can be obtained from of the state vector directly. €her
fore, our measurement can be estimated from the prediciesl st

I, 0; 0; O

2(t) = Hx (1) = % (1), (3.6)
03 03 13 03

Now, we are ready to compute the Kalman gKift):

K(t) =P ()H'(HP (t)H' + R) ', (3.7)
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whereR is themeasurement noise covariance matrix. That matrix is either
given from the device manufacturer or acquired by offline sneament. In
practice, we measure the noise while holding the sensooséay to com-
pute its noise covariance matik.

The residual between the actual sensor measureafgnand the pre-

dicted measurementt) from Equation (3.6) is:

Az(t) = () — 2(t). (3.8)

Then, the predicted state and the error covariance mateixairected as
follows,

x(t) =x(t) + K(t)Az(t), and
(3.9)

P(t)=(I-K({)H)P (t).

We finish filtering at each frame by updating the externaldbagienta-
tion using the rotation vectait). Taking the exponential map of the rotation
vector and postmultiplying it with the external target ot&tionq. (t — At)
at the previous frame, we can find the final target orientadjgm) at the

current frame:

de(t) = @e(t — At)e’™. (3.10)

The rotation vectot(¢) is reset to zero for filtering at the next frame.
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Chapter 4

Motion Analysis

When the performer and the target character do not have the siae and
shape, not all aspects of the original motion can be predevgystem must
determine what aspects of the motion are important to presso that other
less important aspects may be changed to preserve them.

For an articulated figure, differing segment lengths mehasthe joint
angles and end-effector position cannot be recreated &nmadusly. More-
over, the difference in shape prevents the character fresepve the relative
position of segments to the other while keeping the jointesmgThere are

five obvious choices of motion aspects to preserve:

H

. the position of the root of the character,

2. the joint angles

3. the positions of the end-effectors,

4. the distance from the end-effector to its closest segsnant

5. the distance from the elbow/knee to its closest segments.

19



1)

(@) (b) (€) (d)

Figure 4.1: Two different situations

There exist situation under which any of these five might bstrimoportant.
For example, observe the arm postures in Figure 4.1. Figd(@y4shows
a captured arm posture from the performer that does not tanglobject.
Retargeting this motion to a virtual character, we prefer pbsture in the
Figure 4.1(b) that preserves the joint angles. However ptistion of a
hand needs to be preserved when it touches an object as shdviguire
4.1(c) and (d). When the character is clapping, as shownguar€gi4.2(a),
the distance between the hands are the most important éetatyoreserve
to prevent the unnatural posture given in Figure 4.2(b). vimcaunwanted
penetration, the distance between the elbow and the boadyesggnust be
kept especially when the character is fat.

The suggested system must choose which of the five choices ae
important in a dynamic online way. To make this decision, \wgky a

number of heuristics.
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(a) Captured Clapping Motion (b) Applying Joint Angles

Figure 4.2: Clapping motions

. The position of the root is most likelyot important. This heuristic
comes from the observation that the choice of making theisoat-
bitrary: we could have just as easily chosen any point asdbe in
fact, preserving the root position may change some impbparam-
eters that characterize a posture itself. Because of ti@spiportance
of the root position is downplayed in many approaches thasicier
importance. Like the proposed solver, described in Chaptésle-

icher’s retargeting system [12] uses a heuristic that giterto satisfy
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the constraints (generally on the end-effectors) as muplossble by

moving the root position.

. If an end-effector is interacting with another objectfsas the floor),
then its position is likely to be important. Therefore, proity to ob-
jects in the environment should increase the importandescdibsolute

position of an end-effector.

. If an end-effector is close to another segment of the charahen its
relative displacement is likely to be important to duplecatpossible
self-interaction and to prevent self-penetration. Thaefproximity
to the other segments of the body increases the importarae efd-

effector’s distance from the nearest segment.

. Similarly, if an elbow/knee is close to the another segroéthe char-
acter, then their distance is likely to be important. Theref prox-
imity to the other segments should increase the importahtteealis-

tance from the elbow/knee to the nearest segment.

. If an end-effector will be interacting with another olij&t the near
future, then its position is important (as it is likely to betting ready
for the interaction). Therefore, we incorporate preditiod proximity

of an end-effector to an object in the measure of its impasan

. If an end-effector has just finished interacting with &eotobject and

IS moving away from it, its position may not be as importanitas
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proximity suggests.

7. If the end-effector is not in proximity to another objatts likely that

its position is unimportant.

In order to measure the interactivity of an end-effectohvitis environ-
ment and the self-interactivity of an end-effector or aroeltknee, we in-
troduce the notion ofmportance of features, which can be determined by
analyzing the posture of the performer. In particular, ttstashce from the
end-effector to objects in the environment is a good meastirgeraction
possibility of the end-effector. That is, the end-effeagsomore likely to in-
teract with the environment when it is closer to objects m ¢mvironment.
Therefore, as the end-effector approaches an object, geriance value
should be increased to enforce the geometric constraietdest by the ob-
ject. As the end-effector moves away from the object, theoirtgmce value
should be continuously decreased to preserve the captastarp of the cor-
responding limb. Moreover, it is desirable to develop tretatice measure
to reflect the trajectory of an end-effector and its dynanaittre. Similarly,
the importance of the distance between an end-effectorn(@il@ow/knee)
its the closest segment can be used to measure self-inéé@yaas well as
the self-penetration possibility of the character. Theawer of this chap-
ter, we describe the way to measure importance values afrésabased on

those observations.
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Figure 4.3: Trajectories of the left foot generated by vagyimportance
measure

4.1 Analysisof Interaction with Environment

Given end-effectoe; of the performer and objeet; in the real space, let
d;;(t) be Euclidean distance between them at time; has is its corre-
sponding object in virtual space. The new distance funqtj*ga(m) is defined

as
dij (t) + dij (t + HAt)

. (4.1)

dj(t) =

for small positivex and At. d;;(t) represents the average of the current

distance and the predicted distance aftar time. For smallAt, df(t) can
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be approximated as

2

%Atdz](t) = dz‘]’(t) + )\d.ij(t)a (42)

dj; (1) =~

= dy(t) +

whered;;(t) is the first derivative ofl;;(t). d;;(t) reflects both the distance
att frome; to o; and its changing ratéij(t). By varying A\ we can control
the degree of prediction fai(t).

For example, Figure 4.3 exhibits a jumping motion adaptet wi= 0
and\ = 0.15. The legs of the character are shorter than the perforntesis.
A = 0, the left foot trajectory of the character (dashed lineagrwith that
of the performer (thicker line) only near the floor. Poe= 0.15, the former
follows the latter while approaching down to the floor (sdiigk). The foot
is moving off the captured trajectory to preserve the caatyoint angles,
either near the peak (= 0) or approaching to the peak & 0.15).

Let D;; denote the maximum distance within whiehis influenced by
o;. Then, the normalized distandg is defined as

7, = L
1) D

(4.3)

ij

An animator assign®);; for the pair of end-effectoe; and objecb, in the
environment in accordance with a given animation contextvider range

of D,; shows a sensitive interaction of end-effectpmwith objecto;. On
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the other hand, a narrower range exhibits thahoves independently of;
unlesse; is close too;.

The importance is zero when the normalized distahgés greater than
or equal to one, that is;; is out of the influence ob;. As the distance
decreases to zero, the importance increases to one. Tlusnplortance
functionp of the normalized distane&; can be designed with the condition
of p(1) = 0 andp(0) = 1. In addition, we set its derivatives there to be zero,
that is,p’(0) = 0 andp'(1) = 0, to reduce the rate of change of the function
p at both extreme points. Thus, the importance:ofvith respect ta; is
represented by the cubic polynomial functipsatisfying those conditions.
That is,

_ 2d% — 3d;; + 1, if diy < 1,
p(dij) = (4.4)
0, otherwise
The importance value; of end-effectore; over all external objects can be

defined as the maximum of them:

w; = max(p(dij)). (4.5)

J

It requires much time to compute the distaagefrom each end-effector
e; of a virtual character to every objectin the environment, especially for a
complex surrounding environment. To achieve a real-timéop@ance, we
need to minimize the number of possible objects that intevih each end-

effector in accordance with an animation context. An obibat is hardly
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touched during the animation may be eliminated in imporaratue compu-
tation. Moreover, objects may also be described approxiynatith simpler

geometry for easy distance computation.

4.2 Analysisof Self-interaction

To obtain realistic results, we need to preserve self-&t®rns among the
segments of the performer as well as its interaction withehronment
while preventing their self-interpenetrations. Most off-gsteractions are
done by the limbs, which are the most active segments of a hurody.
Therefore, we try to reproduce the captured self-intevastiof the per-
former in the resulting motion by analyzing the importanedues of the
self-interactions done by hands, feet, elbows, and knegtpr@serving them
in accordance with their importance values. For furtheenezice, we call
those parts ‘general end-effectors’, since each of theimeighdpoint of the
corresponding segment.

The importance of the self-interaction of each general efettor is
measured based on its proximity to the other segments. Wieegdneral
end-effector is close to another segment of the perfornbady, it is likely
to either interact with or penetrate into the segment. Theeethe distance
of a general end-effector from the other segments givesstaldetermining
how much we need to preserve its relative position with ressjpethe closest
segments. In this section, we first discusses how to combatproximities

of the general end-effectors and then how to analyze theriapce values
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Figure 4.4: Example of body point sampling

based on their proximities.

To measure the distance of a general end-effector from ther seg-
ments, we need to know the geometries of the performer. Hervévis
time-consuming to capture the precise geometry of the pedp and to
measure the exact distance between a pair of segments. Wefgidis-
tance computation by measuring the proximity of a generdteffector to
its closest sample point on another segment of the perforrAemumber
of points are sampled on the surface of the performer withonatapture

sensors. In practice, we sampled forty points regularlyammeegment as il-
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lustrated in Figure 4.4 by drawing eight closed curves organeat aligned
with its skeleton and spaced evenly, and sampling five palisg each
curve regularly. With those sample points, the distance gémeral end-
effector from a segment can be computed by measuring thénpitgrof the
general end-effector to its closest sample point on the sagm

Similarly to the importance value of the end-effector iatgion with the
environment, we can measure the importance value of thentdetaction of
a general end-effector based on its distances from the edgnents. As
shown in Section 4.1, the importance value is inversely @rtopnal to the
distance from another segment, since the closer the gesretadffector is to
the segment, the more it is likely interact with the segm&atcompute the
importance value of the self-interaction with each segmena first-order
prediction and normalization are applied to the distanchefgeneral end-
effector from the segment of the performer through Equat{@dr?) and (4.3),
respectively. Then, each importance value is obtained byirttportance
function shown in Equation (4.4). Finally, the importancdue of each
general end-effector over all segments of the performerbeadefined as
the maximum of them. Those importance values allow us tarohete how

urgent the self-interaction among the segments is.
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Chapter 5

Real-time I nver se Kinematics Solver

The final step of motion retargeting is posing the charaatethat it pre-
serves the as many important features in the motion as pess#ven the
captured end-effector position with its importance, ang ltlounding 3-D
balls of the end-effector and elbow/knee, we adjust theucadtjoint an-
gle by introducing an inverse kinematics solver that is gdeed for the
problem.

For computer puppetry, we must position the character satttle im-
portant aspects of a captured motion are preserved whiléding real-time
performance. For the application, this demands compuhegcharacter’s
posture 30 times per second. Therefore, we need an IK sdlgenot only
can incorporate the importance measures of the previoystehdut also
has real-time performance even in the worst case.

As discussed in Section 2.3, previous IK solution methodasataneet
the demands of computer puppetry. Analytic methods progitsranteed
performance but cannot incorporate importance measucesred for re-
targeting. Numerical solvers can include the importancéioss but they
hardly guarantee real-time performance. To meet these tnwficting de-

mands, we have developed a hybrid solver.
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In this chapter, we present a fast IK algorithm that is spized for
human-like articulated characters. We divide the IK predato three sub-
problems: root position estimation, body posture comparatand limb-
posture computation. For each step, We give a method thakeisaized
to achieve high-performance. This leads us to employ inesige, closed-
form solutions if applicable, and reserve numerical optation for the case
in which it is absolutely required. Notice that we need noinidude the
bounding 3-D spheres in the root position estimation, aedothdy posture
computation, since those steps manipulate the globaliposihd posture of

the character.

5.1 Root Position Estimation

In order to position the end-effectors of a character, andies may change
the root position of the character or adjust its joint angks mentioned in
Chapter 4, the root of the character has been arbitrarilgamas the charac-
ter’s root, which is rarely the most important aspect to @res. Therefore,
the solver first attempts to make the character satisfy thstcaints as much
as possible by moving the root position. This strategy wasatestrated for
retargeting by Gleicher [12].

Beginning with the positional offset has an important adaga: unlike
angular changes that cause non-linear equations to conpasiéonal offset
computation is trivial and therefore efficient. L} represent the position

of the ith end-effector when the character is posed with the caghtimiat
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angles, ang! denote the goal position for that end-effector. The disgplac
ment vectord, = p? — p¢ measures how much the solver must move an
end-effector to reach its goal. If there were only one erieetdr with a
specified goal position, this constraint could be met by $ympoving the
character’s root position by the displacement vector, whiee joint angles
would not need to be changed.

In the event that multiple end-effectors are to be positiprvee com-
pute the weighted average of the displacements to find dalioffsetd as

follows:
d= 2 tidi (5.1)
Zi w;

wherew; is the importance of thi&h end-effector. In the (unlikely) event that
all end-effectors require the same displacement, thisatisment will solve
all of the constraints. More likely, the joint angles willeteto be adjusted
so that all of the end-effector goals can be met.

While the weighted averaging attempts to position the rooheet all of
the goals simultaneously, it does not necessarily guagaht all goals can
be met. Once the root position is fixed, the character can itsegbals by
straightening its joints. Therefore, the root position iaeschosen such that
all end-effector goals are “reachable,” that is, close ghdhat straightening
limbs will be sufficient. The root position estimate are it refined such
that it guarantees reachability if possible. We relocagertiot such that it is

within the reachability limits to the goals while being ass# to the initial
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Figure 5.1: Range 3-D balls: range of hand, shoulder, anido@sition

estimate as possible.

As shown in the left column of Figure 5.1, the reachable raoigihe
hand can be represented as the 3-D ball centered at the shoaldl its
radius is the length of the arm. Here, a 3-D ball consists qireese and the
set of all points bounded by it. The middle of Figure 5.1 shtve$ the same
3-D ball centered at the goal position represents the rahgjeecshoulder
joint position. Finally, with the orientations of the pedvand the waist fixed
as in the captured posture, the range of the root positioonspated as
illustrated on the right of Figure 5.1. Lel, denote the vector from the
shoulder to the root position. The translation of the 3-Dl balthe goal

positionp,. by the vectord, yields the 3-D ball that gives the range of the
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root position. If the root is in this 3-D ball, the charactanaeach the goal
position by stretching the limb only.

When the importance value of an end-effector is low, the pmsition
does not need to be modified to make this end-effector reéehalis goal.
Therefore, the range corresponding to this end-effector lb@alarger than
the actual reachable range. To avoid an unnecessary offet ooot posi-
tion, we enlarge the size of the 3-D ball, so that its sizevsrisely propor-
tional to the importance value. The increased radjurresponding to the
ith limb is given as

ri(ls, w;) = ﬁ, (5.2)

wherel; is the length of theth limb andw; is its importance value.

Since the virtual character has four end-effectors, we fawe3-D balls.
The common intersection of these 3-D balls is the range ofdbeposition
that makes all of the end-effectors reachable to their gositipns. As an
initial guess for the root position, we choose the closesttgmm the offset
root position to this intersection to preserve the postiith® performer as
much as possible. Thus, the root position estimation is @beted as the
problem of finding the closest point from a given positiontie tommon
intersection of four 3-D balls.

The intersection of 3-D balls consists of four surface eletsias shown
in Figure 5.2: spherical regions, circular edges, and eesti A spherical

region is a part of a sphere bounded by a sequence of spharagsal A
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(a) On a sphere (b) On acircle (c) At a vertex

Figure 5.2: Closest points

circular edge is a part of a circle that is the intersectiotwaf spheres. A
vertex is determined by the common intersection of threesgsh

There are two cases depending on the offset root positidm negpect
to the intersection. If this point is contained in the inberof the intersec-
tion, then the point itself is the closest point to the intetion. Suppose
that it is not contained in the interior. Then the closesnponust lie on
the boundary of the intersection. Therefore, we may enu@athpossible
surface elements due to the intersection of the four sploeressponding to
the bounding surfaces of the balls, respectively.

Three spheres determine at most two vertices. Since therfearways
of choosing a triple out of four spheres, we have a maximumigiftever-
tices. Every pair of vertices can possibly admit a sphegadgk, and thus we
have at most 24 edges. However, these are completely ircCinde maxi-
mum of six circles. Moreover, each spherical face is conepfatontained

in one of four spheres. Instead of enumerating all surfatEsents, we
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equivalently check those spheres, circles and vertices.

We first compute the closest point to each sphere from thetoftot
position. Among these points, if any, we choose the poirntitheontained
in the intersection and the closest to the root positionuthsa point does
not exist, then we compute the set of points, each of theneisltsest from
the root position to each circle. Out of them, we choose tleetbat is closest
to the root position and in the intersection. Suppose thattboes not exist
such a point. Then one of vertices may be the solution. Wesghtite one
closest to the root position among those contained in trexgattion. For
more details in computing the initial root position, referthe Appendix.
If there does not exist a common intersection of the ballsdigeard the
spheres that do not intersect the one whose correspondiigfattor has

the largest importance value and repeat this process faoethaining balls.

5.2 Body Posture Computation

If the initial root position estimate does not allow all lisito be reachable to
the goal positions, we need to adjust the body posture dorgsisf the root
position, the root orientation, and the posture of the uppely. Since those
segments are tightly coupled, a numerical method is addptdithd their
configurations. Numerical methods hardly guarantee atimeal-response
for computing the inverse kinematics of an entire human &gwhile it is
practical to solve only a small part of the IK problem numalli; and to

employ analytic methods for the rest of the task. Such a Hydwlver was
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demonstrated in [19].

We formulate a restricted version of the IK problem for detigring the
posture of the body posture separately from the problem woifpeding the
posture of the limbs. The body posture of a character can heewasv =
(pPo, a0, a1, - ,4qn), Wherep, andq, are the position and the orientation of
the root, respectivelyy ;,1 < j < n, are the orientations of body segments
such as the waist and the upper body. When the character Igad #orso,

v is simply reduced tdp,, qo, q1), Sincen = 1.

The objective function consists of two terms:

E = E, +aE,, (5.3)

where the first term¥, is for making the end-effectors reachable to their
goals and the last ter, is to preserve the captured posture. We will ex-
plain those two terms in detalil.

E, is the sum ofE;’s, each of which is a function of the distance from
the ith end-effector; to its goal position. Provided with the shoulder (or
the coxa) positiop?$ of theith limb and its goal positiop?, F; is given as
follows:

0, if [|pf — p7|| <
By = (5.4)
(Ilp¢ — pY|| — 1,)*, otherwise,

wherel; is the length of th&th limb when it is maximally stretchedt; is

zero when the end-effectey is able to reach its goal position. For this case,
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we prefer to lengthen or shorten the corresponding limb tbaadjust the
body posture. Recall that an end-effector of a low importavedue has no
need to preserve its captured position. Thus, to relax thstcaint on this
end-effector we enlarge the range of the shoulder. By dukisg the length
[; of each limb with the new radius = Qi)— as mentioned in Section 5.1, we

have

0 b [pf — pi|| < 7,
Ei:

(Ilps = p?|| — ;) , otherwise.

Note that with the importance value; of one, E; plays a role of pulling
the end-effector to reach the goal position exactly. On tiverohand, as
importance valuev; approaches zero, thith end-effector keeps the original
posture by preserving the joint angles.

Letting q; andp; be the captured orientation of théh segment and
the estimated position of the root, respectivély,is a weighted sum of the
squared geodesic distances betwggmndg; for all 0 < j < n, and the

squared distance betweppandp;:
E, =Y BillIn(q; a)l* +7lpo — pilI* (5.5)
7=0

Minimizing E,, we preserve the captured motion as much as possible. We
find the optimal solution that minimizes the objective fuantby employ-
ing the conjugate gradient method. Here, we use the capjoirgicangles

and the root position computed in Section 5.1 as the initiedsg for the
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Figure 5.3: Ranges given for a limb

optimization.

5.3 Limb Postures Computation

Given the root position and the body posture, we finally adjtise limb
postures of the target character to preserve the impoegatires in the cap-
tured motion to reproduce both the interaction with the emment and the
self-interactions among the segments. Here, we have tlogsiqly impor-
tant features for a limb: the interaction of the end-effeatith the envi-

ronment, and the self-interactions of two kind of general-effectors such
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as hands/feet and elbows/knees. We represent each of thosetyic con-
straints for preserving the interactions by the range 3-Ddsmdrawn in

Figure 5.3. The target character can reproduce the intenachy locating
each general end-effector inside of the corresponding Balbrovide an an-
alytic solution for this problem, we first solve the joint &agf the shoulder
to locate the elbow position and then calculate the jointaonfjthe elbow
from the fixed elbow position to locate the end-effector. aflip the joint

angle of the wrist is adjusted to satisfy the captured hamehtation. The
configuration of a leg is computed similarly by fixing the hont angle first,

and adjusting the knee and the ankle in order.

5.3.1 Rangefor Preserving Self-interactions

We first determine the range of a general end-effector ofatgget character
in which the character can preserve its self-interactioitls the other seg-
ments while avoiding the self-interpenetrations. Fosilfation, the range of
a hand and that of an elbow are drawn with the dotted and theedasrcles
in Figure 5.3, respectively. If the importance value of tei-gteraction of a
general end-effector is low, the corresponding range shioeiwide enough
not to alter the captured joint angle unnecessarily. Otlsgrvthe position of
the general end-effector needs to be bounded tightly byahge 3-D ball
to preserve its self-interaction. In both cases, the 3-Ddbaluld effectively
prevent the self-interpenetration.

The radius of the 3-D ball must be defined, so that it can prethen
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Figure 5.4: Range of an elbow to preserve its relative pwsiti

self-interpenetration of the corresponding general dfett®r. Therefore, it
should be smaller than or equal to the distance from the sigsenple point,
that is,miny, (||v;x||), wherev,; is the vector from théth sample point to
the joint position corresponding to théh 3-D ball as shown in Figure 5.4.
Moreover, the 3-D ball needs to gradually tighten up thedbppsition as
the importance value increases. Therefore, we define thesradof the jth
range 3-D ball as:

1y = wymin ([[vel) (5.6)

This 3-D ball can limit the position of the general end-eftedo preserve the
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self-interaction and prevent the self-penetration whes likely to interact
with the other segment, while growing enough to allow thetwaga joint
angles being preserved.

The center of the 3-D ball should be determined so that thermtte
from the closest segment is preserved. We choose the céitber loall as a
weight average of the displacement from the three closespleapoints as
shown in Figure 5.4. To reduce the influence of farther pothisir weight
should be smaller than nearer ones. The weight of a pointipated by the
importance function, which gives a lower value when theagtise gets larger.
Therefore, the resulting center position reflects the dgrhent from the
closest point while moving smoothly due to the influence adrbg points.
To compute the center positien of the jth end-effector (or elbow/knee), let
v, be the displace of thgth end-effector to théth sample point measured

from the performer. Ther; is

>k (Wik (Vi + Pr))
>k Wik ’

C; = (57)

wherewj;, is the weight of thetth sample point computed through the im-
portance function, ang, is the position of.th sample point of the character.
However, when both of the general end-effector and the stasgment
are included the limbs, their positions are adjusted by Ipobture com-
putation. Therefore, the range ball cannot make the geradeffector

preserve the self-interaction. For example, supposehbdtdands of the per-
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Figure 5.5: Target position when the closest segment is thove

former are very close to each other in the captured postuittisated in
the right column of Figure 5.5. Applying the captured joingée gives the
posture of the target character in which the end-effecterfar from each
other as show in right column of Figure 5.5. In such a casethtbeenter

c; of the ball obtained as above is the position of the other hafdw-
ever, the more desirable target position is their midposndi@wn with the
crossed circle in the right column of Figure 5.5. In geneasdien the closest
segment to thgth general end-effector is a part of limbs, the center of the
corresponding ball should located at the midpoint of théahposition of
the general end-effector and the center positipsomputed as above. To

address this situation, the center of the ball needs furdignng. We begin
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with rewriting Equation (5.7) into an equivalent form:

>k (wir(Vie + Pe — p))

>k Wik

C; = + p?, (58)

wherep?, is the initial position of thgth end-effector (or elbow/knee) which

is obtained by applying the captured joint angle. The refoetter position

5
!
W;iEV,
c; = 2ok WiV +p$ and
>k Wik
MLha L wherek € S, (5.9)
!/
Vik +Pr —Pj,  oOtherwise.

HereS is the set of points sampled on the segments which are to bednov

by IK, that is the limb segments.

5.3.2 Rangefor Preserving Interaction with Environment

As drawn with the solid circle in Figure 5.3, we can similadigtermine the
range of the end-effector of the target character to presew interaction
with the environment. When the importance value of the adton with

the environment is low, the end-effector needs not to betgxacated at its
captured position. Otherwise, we have to preserve the aptnd-effector
position. Those requirements can be achieved by boundengritd-effector
position in the 3-D ball of which the center is located at tbalgposition and

its radius is inversely proportional to its importance. fidiere, its center is
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simply the captured position of the end-effector and théusathust be zero
when its importance value is one, and increased as the ianprrdecreases.

We define the radius; of the 3-D ball of theith end-effector as

ri =11 — wy), (5.10)

wherew; is the importance value of the interaction of tile end-effector
with the environmentz*** is the maximum radius of the end-effector range,
which is defined as the radius of the maximum influence rangkeoénd-
effector with respect to its closest object in the environtme

In shoulder joint computation, we have to apply the rangel3als of a
hand together with the range balls of the correspondingreltidherwise we
may be unable to find the solution in the following hand positdjustment.
We have two range balls of the hand, one is due to the interactith the
environment and the other is for preserving the self-irtiswa. Therefore,
we need to compute the ranges of the elbow correspondinge ttange
3-D balls of the hand.

Suppose that the end-effector is located at the boundarg-&f aall, and
the lower arm is directed outward. Then as drawn with theelasglid sphere
in Figure 5.6, the elbow lies on the sphere of which the racdaiiscides with
the 3-D ball and its radius i& + r,,, wherel; andr,, is the length of the
ith forearm and the radius of the 3-D ball bounding the hargheetively.

In contrast, the lower arm passes through the center of thehmposition
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Figure 5.6: Range of elbow corresponding range of hand

of the elbow is on the sphere centered at the same as the dadif avhich
the radius ig; — r,, as shown with the smaller solid circle in Figure 5.6.
Therefore, if the hand is placed in the 3-D ball, the elbovwtated inside of
the larger sphere and outside of the smaller one. Moreovemnuwhe elbow
is in this range, we are able to make the end-effector redeliatihe 3-D
ball. With this fact, we can represent the range of the elbmwpfeserving

each interaction of the end-effector by two 3-D balls.
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Figure 5.7: Range balls of elbow and its range sphere

5.3.3 Posture Computation

The target elbow position is selected in the common int¢is@of the range
3-D balls representing its geometric constraints. As drawth the solid and
dotted circle in in Figure 5.7, we have five range balls, onenloiing ball

from the range for keeping the self-interaction of the elptwo from the

range of the hand for preserving the interaction with tharenwent, and
two for preserving the self-interaction of the hand. Thogelballs are drawn
with the solid and dotted circle in Figure 5.7. When the elbsvwocated

in the common intersection, the elbow position presengedigtance from
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the closest segment in accordance with the correspondipgrtance value
while guaranteeing the reachability of the hand to its baugpdange. From
the fixed position of the shoulder, the elbow lies on the sploéwhich the
center is the position of the shoulder and its radius is thgtteof the upper
arm (See the dashed circle in Figure 5.7.) On this sphereéte closest
point included in the common intersection from the initildav position
which is obtained by keeping the captured joint angles ofsth@ulder to
preserve the original posture as much as possible. Thestlpset to the
common intersection of the 3-D balls from the sphere can bedavith the
algorithm described in Section 5.1.

Given the target position of the elbow, the joint angleof the shoulder
Is computed as follows: Let the position of the shouldgsiisind the initial
and the target elbow positions gv¢ andp,, respectively. Then, as shown
in Figure 5.8, the vectore; andv, representing the captured and the target
directions of the upperarm ax¢ = p — p: andv, = p. — p}, respectively.

The quaternion which rotateg to v, is
o, = em02, (5.11)
wheren is the rotation axis and the andldetweenv; andv, are given as
Vy X Vo

n— ——-—
[va x Vi
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Figure 5.8: Adjusting Shoulder Joint Angle

and

0 =cos (v, V),

respectively. The shoulder joint angig can be achieved by premultiplying

it to the the captured shoulder joint angjg:

Qio = 9y, 9. (5.12)

Provided with the fixed position of the elbow, its joint angdeomputed
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Figure 5.9: Range of hand

similarly to the shoulder joint angle. For the position o thand, we have
two bounding balls (the solid circles in Figure 5.9) for gesng its interac-
tion and the self-interaction, and one sphere represetitewgeachable range
of the hand from the fixed elbow position (the dashed circlEigure 5.9).
We find the closest point on the common intersection of them fihe initial
hand position which is obtained by applying the capturedwlwint angle
to preserve the original posture while reproducing therestgnteraction of
the hand and its self-interaction.

When the target position of the hand is determined, the amigte of the

elbow can also be computed similarly to the shoulder joigi@anWe are
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given the fixed elbow positiop., the initial positionp;, of the hand and its
target positiorp,. The vectorss; andv, representing the captured and the
target forearm directions can be obtainedas= p; — p. andv;, = p, — p..,
respectively. The quaternioqi representing the rotation from the initial

forearm direction to the target direction is

q =", (5.13)

wheren' is the rotation axis and the anglebetweenv; andv, are given as

o Vi X V]
[vi x il

and

0 = cos™' (v, - v}),

respectively. Premultiplying; with the initial elbow joint angle yield the
elbow joint angle which places the hand in the bounding 3-b&inally,
the joint angle of the wrist can be calculated so that it presethe hand
orientation.

Now, with both the captured and the computed limb posturagabie,
we blend them together to obtain a realistic motion. Forghipose, we per-
form spherical linear interpolation between each captjoied orientation of
a limb with its corresponding IK solution. Lef, andq;, be the orientation

of the kth joint in theith limb obtained from the IK solver and that from
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the captured posture. Then the blended joint angjlecan be described by
spherical linear interpolation as follows:

a;;, = slerp(ajy, ik, Wik)
(5.14)

— ewikln(Qiquk_l>q;‘k,
wherew;;, is the maximum importance value of thth joint of theith limb.
That is, for a shoulder/hip jointy;; is the maximum among the importance
values of the end-effector interaction to the environmant those of the
self-interaction of the general end-effectors. For blagdihe elbow/knee
joint angle, the larger between the importance value of titeedfector in-
teraction and that of its self-interaction is used as thgtei,,. As a result,
the limb preserves the captured joint angle when the impoetaalues of
the interaction with the environment and the self-intaoacare low. Other-
wise, the target character is able to reproduce the capioteicction with
the environment and the self-interaction in accordanck thi¢ir importance
values.

The non-penetration condition may be violated since th&ypess blended
regardless of the constraints. Thus the blended postute basadjusted ex-
plicitly to prevent unwanted penetration. Provided witl firedefined exter-
nal objects for each end-effector, this violation can becked easily. Before
penetrating an object, the end-effector touches the boyrafahe object.
Thus, the preferable position of the end-effector is therggction point of

the object boundary and the ray from the shoulder to the éedter during
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penetration. This position moves continuously on the dbjeaccordance
with the end-effector movement. The penetration problembeaeffectively

eliminated by adjusting the limb posture using the IK sofeedimbs.
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Chapter 6

Analysis of Temporal Constraints

In retargeting motions, we must preserve important term@spects of the
motion along with spatial aspects. Gleicher [12] emphasilze importance
of avoiding the introduction of high-frequencies duringptition. Both this
work and the work of Lee and Shin [19] provide approachesvording the
addition of discontinuities during adaptation. Unforttelg, both schemes
rely on examining durations of motions and therefore cary del applied
in offline applications. In this chapter, we show that therapph presented
in this thesis does not introduce unwanted discontinuitigssthe resulting
motion.

To begin, we must assume that the initial motion is free of amed
discontinuities. This assumption is not restrictive beeatne movement of
the performer is continuous. Discontinuities may be inticet! by noise in
the capture process, but these are generally removed byltdran§ pro-
cess described in Chapter 3. The continuity of the initiatioroapplies to
the captured joint angles, end-effector positions, dtaf the end-effector
from other segments, and distance of the elbow/knee.

Provided with smooth trajectories of segments and motiatufes, the

proposed analysis method yields continuous output. Focaniinuous dis-
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tance function, the suggested importance function givesirmeous impor-

tance values as described in Chapter 4. In other words, {hertance values
are consistently changed to reflect the temporal proxinfitgnal-effectors
to the environment. Therefore, the importance values hateg-frame co-
herence. For example, as an end-effector is approachingdpjacton the

environment, its distance from the object is monotonicdégreasing. Sim-
ilarly, the distance is monotonically increasing as the-efielctor is depart-
ing from the object. When the end-effector touches (or malsgethe object,
the monotonicity changes but the distance function isaifitinuous at that
instance. The similar analogy can be also applied the irapoe of fea-
tures due to the self-interaction. Moreover, the trajeesof the bounding
3-D balls are smooth, since both end-effector (or elbowdkaad the other
segments move smoothly.

For the proposed IK solver, the kinematic constraints aggtsitions of
end-effectors, and the bounding 3-D balls. These conssrane specified at
every frame as temporal constraints as shown above. Giveimoous paths
for the segments of the performer, the IK solver will providentinuous
trajectories for the parameters. Achieving this requitesdolver to make
consistent changes. That is, similar inputs to the solvestqovide similar
outputs. To guarantee this consistency, the IK solver ta&sd the solution
in an online manner so that it is close to the filtered inputtyp@s while
satisfying the kinematic constraints.

Since the IK solver utilizes as input the reference motiota@and the
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importance values, we can exclude unexpected motion @gifaich as un-
wanted jerkiness. That is, enforced to minimize the chang®m the refer-
ence motion, the suggested IK solver tries to find an intenaeitbn. More-
over, guided by the importance values for interaction whi énvironment,
it also predicts the future temporal constraints and cowotiisly pays atten-

tion to them for motion coherence.
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Chapter 7

Experimental Results

For puppetry performance we use a MotionStar Wireless ma@pture de-
vice from Ascension Tech, Inc. with 14 sensors and two exdrmange
transmitters. Each of sensors detects the magnetic fieldeshiny a trans-
mitter to report its position and orientation up to 144 tirpes second.

The prototype system has been deployed for production aad sisc-
cessfully to create a virtual character for a children’s\t&ion program as
well as a virtual news reporter. Both have been shown on Konedional
television, called KBS. The frog-like creature shown inig7.1(a) (‘Pang-
Pang’) who regularly appears in a daily TV show for childreémonstrate
his comic performance. Thanks to the capability of the sydiar synthe-
sizing realistic motion in real-time, Pang-Pang and a retdrecan interact
with each other. Figure 7.1(b) shows a virtual characteligi#gy’) who has
performed the role of a news reporter for the election of Kd¥ational As-
sembly. Even in a time-critical situation such as reporimtgrim election
results, Aliang can accomplish his role successfully.

The skeleton used in the system has fifty-one degrees ofdneatclud-

ing fifteen revolute joints of three degrees of freedom aedoibsition of the
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(a) Pang-Pang

(b) Aliang

Figure 7.1: Virtual characters on air controlled by the ptgpe system
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Table 7.1: The number of iterations in numerical solver vatid without
root position estimation

the number of iterations

motion #frames without with
Blubby | Sally | Blubby | Sally
Walk 39 47 0 0 0
Throw 157 244 0 0 0
Jump 88 111 0 0 0
Handstand 211 266 38 0 0
Dance 591 1253 0 1 0
Total (61 Clips) 9692| 15634| 429 8 0

root and its orientation. The floor is modelled as a plane llavfahe uses
of the system to date.

To test the system’s performance, we created two puppetsfispy
designed to provide challenging retargeting problems. chiagacter named
longtall Sally has long arms and legs, while a ball-shaped man cBlietoby
with extremely short legs. To perform experiments, 61 prerged motion
clips were used as the input for motion retargeting.

Table 7.1 shows the number of iterations in numerical o@ton with
and without initial root position estimation. Statisticy five selected mo-
tion clips are given in the first five rows of the table. The kdigures for
61 clips are shown in the last row. Since Sally has long armdegs, she
can reach the captured end-effector positions without ngits root posi-
tion. Thus, the number of iterations for Sally is small evathaut initial

root position estimation. However, with estimated initiabt positions, the
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Table 7.2: Timing data

Blubby Sally

motion #frames| elapsed per | elapsed per
time | frame time | frame

(msec)| (msec)| (msec)| (msec)

Walk 39 61.3| 1.613 53.4| 1.406
Throw 157| 246.9| 1.583| 218.6| 1.401
Jump 88| 148.5| 1.707| 122.3| 1.417
Handstand 211 359.4| 1.711| 296.1| 1.410
Dance 591 960.4| 1.628| 838.1| 1.421

Total (61 Clips)|  9692| 16.286] 1.680| 1366.6] 1.410

number of iterations decreases to zero for the test motips.clhe effect of
initial root position estimation is more apparent for Blybkith short legs.
In most cases, the suggested estimation algorithm findetigosition that
makes the end-effectors reachable to their goal positiah®ut any help of
the numerical solver given in Section 5.2.

Table 7.2 gives an overall performance of the proposed entiotion
retargeting algorithm excluding rendering time. Timinfpmation was ob-
tained on a IBM compatible PC with an Ing@@lPentiun® 4 1700MHz pro-
cessor and 512Mb memory. The execution time for each examaiely
depends on the number of iterations in numeric optimizatidhe tables
show real-time performance for each examples.

In Figure 7.2, a captured walking motion is applied to a ctigrawith
various methods. The upper images of Figure 7.2 reveabhetsifdue to

the geometric inconsistency between the performer and uppgi. Since
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the positions of the feet are not incorporated into the nmotitargeting,

the supporting foot is sliding. In contrast, the middle rontpreserves the
positions well. However, the motions of the arms look unstial since

the joint angles of the arms are overadjusted to preserv@dbiions of

the hands. The bottom figure is generated by the motion etiagy The

supporting foot is fixed at the proper position without sigli and the joint
angles of the arms are preserved as the original ones.

With conventional approaches based on joint angle presenyahere
would also exist foot-sliding artifacts when the charac¢tas longer limbs,
as given in the top of Figure 7.3. The middle image exhibitstemded
bending of legs due to position preservation and an illetetéinitial root
position. By assigning low importance values to the handisadisetting the
root position, we have a better result in which the legs atdoant as shown
in the bottom figure.

More examples are given in Figures 7.4 through 7.6. In paer¢cFig-
ure 7.5 shows the motions such as crawling and picking up ahdxhibit
interaction of hands with objects in addition to that of fekt Figure 7.6,
motions including self-interaction are illustrated. Wawra selected frame

from each movie clip to show the resulting posture clearly.
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(a) the captured joint angles only

(b) a conventional IK solution with kinematic constraintsend-effectors

(c) Proposed algorithm combining the captured joint angtesthe IK solution

Figure 7.2: Walking motion oBlubby
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(c) Proposed algorithm combining the captured joint angtesthe IK solution

Figure 7.3: Walking motion o%ally
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(a) Throwing

(c) Handstand

Figure 7.4. Example motions & ubby andSally
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(c) Picking a box up

Figure 7.5: Example motions with interaction of hands
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(a) Smoking

(b) Hands on waist

(c) Clapping hands

Figure 7.6: Example motions with self-interaction
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Chapter 8

Conclusion

We have presented a new approach for online motion retarg#tat trans-
forms motions of a performer to a virtual character of a défe size and
shape. Introducing the notion of the importances to detegmihich aspects
of the motion must be kept, we have been able to generatstieatiotion
for a character in real-time while preserving the charasties of captured
motions as much as possible.

The proposed motion analysis automatically computes thpoitance
values of the captured end-effector positions and theivelaositions of
the limb segments with respect to the other segments, temwemore im-
portant ones among them while altering the others. Basedranrder of
heuristics, we measure the interactivity of the charactén s surround-
ing environment and the self-interactivity among its segte¢o compute
the importance values of the captured end-effector positamd the relative
positions of the limb segments, respectively. By includsogh interactions
and transferring important features, we can dramaticatptten the types of
characters as well as the repertoire of the motions whictbeareproduced

realistically.
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Moreover, the notion of importance gives reasonable loe&dltapabil-
ity useful for avoiding jerkiness in motion, even when we d know the
future data. However, unlike full-scale space-time opgion [12] which
observe the whole motion clip at once and adopt time consyioptimiza-
tion techniques, the proposed approach has limited lodkbapability im-
plicitly achieved by the Kalman filter, and allows only a ltexl repertoire of
constraints.

In this thesis, we proposed a novel inverse kinematics sallieeh solves
a number of geometric constraints simultaneously. By digdhe problem
into subsproblems, we can guarantee a real-time perforenainthe solver.
However, the suggested inverse kinematics solver is dpzidor human-
like characters to insure real-time performance, althouigian be easily
adapted to other types of creatures with limbs.

KBS (Korean Broadcasting System), the largest public teilen broad-
casting company in Korea, has been adopting a part of theested)jcom-
puter puppetry algorithm to control the virtual charad®amg Pang in a daily
TV show for children. This show has become one of the faverteong
children partly due to Pang Pang’s successful performal&sS also suc-
cessfully showed the performance of a virtual reporteraigi for the real
election using this algorithm.

In addition to such onair broadcasting, the computer pup@dgorithm
is useful to the applications which require real-time motoaptation. Those

applications include the previewing motion capture dadajilling avatars
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in virtual reality applications, and animating the chaeastin video games.
Furthermore, this algorithm can be adopted as a real-timBomoefining
tool for the emerging researches on motion synthesis framgoibed mo-
tion.

In this approach, we focus on handling only the geometricrdigancy
between a performer and a puppet. To generate more reatistions, com-
puter puppetry should also incorporate the charactesisfithe puppet. An-
thropomorphized animals such as cartoon-like birds andkeyshave their
unique characteristics of motions. Those motions can hdvdlcaptured
directly from a human performer, and thus give an additibaatier to over-

come.
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Appendix A
Finding the Closest Point on the

| nter section of Spheres

As given in Section 5.1, there are three types of surfaceesiésn spheres,
circles, and vertices. We describe how we find the closest poieach type
of element to a given poini. Itis trivial to find the closest point on a sphere
to the given point. Therefore, we proceed directly to theepttases.

Now, consider the closest point on a circlego We start with how to
construct the circl€’, which is the common intersection of the two spheres
S; andS;. The radiug-, of C' can be computed with Pythagorean theorem.
Let c,, andr,, for i = 1,2, 3 be the center of the sphef and its radius,
respectively. The radius. of C' satisfies the following equations:

2 = 72, and (A.1)

2
r.+x o

re +(ldll —2)* = 0] (A.2)

EPR

wherez is the distance between the centeiof C' and that ofS,, andd is
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2

Figure A.1: Intersection of two spheres

the vector fronms; tos,. Solving those equations, we get

2 2 2\2

2 2 (Tsl _TSQ_'_HdH )
=r;, — : A.3
e [ A

Here S; and S, intersect unless? is negative. From Equations (A.1) and
(A.2),
_ord o, H[d]P
2||d]|

(A.4)

Thus,
r2 — er +|d|> d

c, =2 .
2||d]| ]|

+ Cy, - (A.5)
Let n be the normal vector of the plane where the circle lies. Then,

n= i (A.6)
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Figure A.2: Closest point from a point to a circle

We are ready to find the closest point on the cikCléo the given point
p. Leth be the projection of the vecter. — p onto the normal vectan of
the plane, thatish = [n- (c. — p)|n. Then, the closest poipt. onC top is

P: =Cc+ QTC. (A7)
Hp - CCH

wherep = p + h, that is,p is the projection op onto the plane containing
C. As shown in Figure A.2, the distanégrom p to p, is \/||h||? + 12,
wherel is the distance fronp to p., thatis,/ = |[p — c.|| — 7.

Finally, we show how to find the closest among vertices, if, aoythe
given pointp. Given those vertices, it is trivial to find the closest. Thue
focus on explaining how to compute the vertices lying at thers of the
common intersection of three spherss, S, andS;. We first calculate the
intersection circle”; of two spheress; andS,. Cutting the spheré; with

the plane containing’;, we have the circl€”,. Provided with the center
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Figure A.3: Intersection of a sphere and a plane

point c., of C; and the normal vectan of the plain containing the circle
(4, the center point,, of C is the projection of the center poiaf, of the

sphereS; onto the plane. Thus,

Cep, = Cs3 + ha (A8)

whereh is the vector frone,, to c., on the plane, thatid = [n - (c., — c,,;)| n.

The radius-., of Cs is given as follows:

2 2 2
o, = Ts, — ||h||7, (A.9)

wherer,, is the radius of the spherg,. The sphere5; does not touch the
plane ifr2 has a negative value. Two vertices determined by three spher

are the intersection of the circlés andC,. To compute the intersection
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Vi

Vo

Figure A.4: Intersection of two circles

of C; andCs,, we evaluate the mid-point, of the verticesv; andv, (see
Figure A.4.) Similarly to the sphere-sphere intersectibe, mid-pointc,

and the distance, from each of vertices to are given as follows:

(re, —re, +11d[ )

r2 = 2 - , and (A.10)
: 4fdl[?
r2 —r2 +[d|* d
Cy e : +c,, (A.11)
2||d]| "

where thed is the vector from the., to c.,. The normalized direction

vectoru from c, to v; is obtained from the cross productwfindd, that is,

u = 2x4_ Hence, we have the vertices = ¢, + r,u andv, = ¢, — r,u.

Inxd]|
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