
~�Ì �� �<Æ 0A �7H ë�Hz�́r�çß�1lx������+þAx9��/{9��̀�0A��Ç×�æ¹̄�̧l�ìøÍ℄X���H

����&³ï�r (/H�)��������íß��<Æõ����íß��<Æ���/BN��Ç²DGõ��<Æl�Õüt"é¶
2002

z�́r�çß�1lx������+þAx9��/{9��̀�0A��Ç×�æ¹̄�̧l�ìøÍ℄X���H
An importance-Based Approach for

Computer Puppetry

An importance-Based Approach for

Computer Puppetry

Advisor : Professor Sung Young Shin

by

Hyun Joon Shin

Department of Electrical Engineering & Computer Science

Division of Computer Science

Korea Advanced Institute of Science and Technology

A thesis submitted to the faculty of the Korea Advanced In-

stitute of Science and Technology in partial fulfillment of the re-

quirements for the degree of Doctor of Philosophy in the Depart-

ment of Electrical Engineering & Computer Science Divisionof

Computer Science

Taejon, Korea

2002. 12. 5

Approved by

Professor Sung Young Shin

Major Advisor

z�́r�çß�1lx������+þAx9��/{9��̀�0A��Ç×�æ¹̄�̧l�ìøÍ℄X���H����&³ï�r
0A�7Hë�H�Ér��Ç²DGõ��<Æl�Õüt"é¶~�Ì���<Æ0A�7Hë�HÜ¼���<Æ0A�7Hë�Hd����0A"é¶�r\�"fd����:�xõ�
�%i�6£§.

2002̧Æ� 12�Z4 5{9�d����0A"é¶�©� ���$í
6 x (���)d����0A"é¶ �̂�<�ª �̧ (���)d����0A"é¶ �̧%ò
 8̈� (���)d����0A"é¶ "é¶F�g��� (���)d����0A"é¶ ýa�â
2 x (���)

DCS

975194

����&³ï�r. Hyun Joon Shin. An importance-Based Approach for

Computer Puppetry .z�́r�çß�1lx������+þAx9��/{9��̀�0A��Ç×�æ¹̄�̧ l�ìøÍ ℄X���H. Department of Electrical Engineering & Com-

puter Science Division of Computer Science. 2002. 69p. Advi-

sor: Prof. Sung Young Shin. Text in English.

Computer puppetry maps the movements of a performer to an animated

character in real-time. In this thesis, we provide a comprehensive solution

to the problem of transferring the observations of the motion capture sensors

to an animated character whose size and shape may be different from the

performer’s. Our goal is to map as many of theimportant aspects of the mo-

tion to the target character as possible, while meeting the online, real-time

demands of computer puppetry. We adopt a Kalman filter schemethat ad-

dresses motion capture noise issues in this setting. We provide the notion of

importances that allow determining which aspects of the performance must

be kept in the resulting motion based on interaction of the performer with its

environment and self-interaction among the performer’s segments. We intro-

duce a novel inverse kinematics solver that realizes these important aspects

formulated with geometric constraints within tight real-time restriction. Our

approach is demonstrated by its application to broadcast television perfor-

mances.

Contents

1 Introduction 1

2 Overview 4

2.1 Online Filtering of Orientations 4

2.2 Importance Determination 6

2.3 Inverse Kinematics . 10

3 Motion Filtering 12

4 Motion Analysis 17

4.1 Analysis of Interaction with Environment 21

4.2 Analysis of Self-interaction 23

5 Real-time Inverse Kinematics Solver 26

5.1 Root Position Estimation 27

5.2 Body Posture Computation 31

5.3 Limb Postures Computation 33

5.3.1 Range for Preserving Self-interactions 34

5.3.2 Range for Preserving Interaction with Environment . 38

5.3.3 Posture Computation 41

6 Analysis of Temporal Constraints 46

7 Experimental Results 48

8 Conclusion 58

A Finding the Closest Point on the Intersection of Spheres 60

Summary (in Korean) 65

References 66

Chapter 1

Introduction

Computer puppetry [26] transforms the movements of a performer to an an-

imated character in real-time. The immediacy of computer puppetry makes

it useful for providing live performances and as a visualization tool for tra-

ditional cinematic animation. However, this immediacy creates a number

of challenges, as solutions to animation issues must be handled in an online

real-time manner. A computer puppetry system must capture the movements

of the performer interpret the important aspects of this motion, and determine

the movements required to make the character reproduce these important as-

pects of the performance.

The challenges of mapping a motion from the performer to the target

character become more difficult when the target character isof a differ-

ent size and shape than the performer [3, 5, 7, 12]. In such cases, the re-

sulting motion of the character cannot exactly duplicate the original per-

former’s. For example, we cannot simultaneously match the original joint

angles and end-effector positions. Generally, to preservethe important as-

pects of the original motion we must alter the unimportant aspects of the

motion. This process of adapting a motion for a new characteris called re-

targeting [12, 19]. To date, solutions to computer puppetryissues have been

1

limiting: either restricting the range of puppets that can be used, or provid-

ing restrictive notions of what is important in motions. Thelatter implicitly

limits the range of puppets since artifacts are introduced as the differences

of the puppet from the performer are increased. In this thesis, we provide

techniques that address the challenges of computer puppetry when the target

character is different from the performer. The following major animation

issues are addressed in a manner that fits within the online real-time nature

of computer puppetry.

1. The sensors used to capture the performerïs motion are often noisy.

Therefore, we provide a filtering technique that operates inan online

manner with the efficiency required to process whole body motions in

real-time. We apply a Kalman filter to rotation vectors, providing an

orientation smoothing technique that is more efficient thanprevious

methods.

2. The important aspects of the original performance must bedetermined

such that these details can be reproduced in the resulting motion. We

provide the notion of importance measures that allow us to account

for changing situations even when the future is unknown. To deter-

mine which aspects are to be preserved while sacrificing the others,

we present importance criteria based on interactivity of the performer.

We also account for the self-interactivity among the performer’s seg-

ments in importance computation to obtain more realistic results.

2

3. The resulting pose of the target character must be computed in a way

that recreates the important aspects of the original. To realize those

aspects which are formulated with geometric constraints, we provide

a fast inverse kinematics solver that provides the necessary real-time

performance and predictability.

The proposed solutions have been used to realize a computer puppetry

system that has been used successfully to create animated television broad-

casts. We begin the discussion of computer puppetry by providing an overview

of our approach. We examine previous solutions with respectto the issues

raised in the overview. The components of the suggested approach are then

detailed in Chapters 3 through 5. An analysis in Chapter 6 reviews why this

approach avoids introducing unwanted artifacts such as temporal disconti-

nuities. Some experimental results are provided to supportthis approach in

Chapter 7. We conclude with a summary and discussion of future research

directions.

3

Chapter 2

Overview

Computer puppetry requires the captured movements of the performer to

be mapped to a target character in real-time. As shown in Figure 1, the

proposed approach for online motion retargeting divides the task into phases.

First, the filtering phaseðcleansñ the sensor data to remove artifacts of the

motion capture device. The second phase examines this filtered motion and

determines the importance of each of those body parts such ashands, feet,

elbows, and knees which are highly likely to interact with its environment

and the other body segments. The final phase computes a pose for the target

character that achieves as many of the important aspects as possible while

properly interacting with the environment and the segments. In this chapter,

we provide an overview of these components and survey their relation ship

to previous work.

2.1 Online Filtering of Orientations

In general, captured motion data are noisy. The real-time sensors required

for computer puppetry are particularly problematic in thisregard. However

because of the dense sampling rates and signal characteristics of motion cap-

4

captured
motion

Kalman
Filter

Inverse Kinematics
Solver

Limb Posture
Computation

Body Posture
Computation

Root Position
Estimation

motion
final

Posture
Analyzer

Figure 2.1: Overall structure

ture data, low-pass filtering is an effective tool to suppress noise in the cap-

tured data. This is challenging for several reasons.

1. Because computer puppetry is an online application, standard offline

filters cannot be employed.

2. Because the orientation space is highly nonlinear, standard signal pro-

cessing methods cannot be applied directly.

3. Because of the real-time demands, filtering should be performed on

the entire body very efficiently.

A Kalman filter predicts the future values and corrects them in accor-

dance with the actual input data to create a filtering scheme that operates in

an online manner. The technique is common in online applications, and was

first introduced to the graphics community by Friedmann et al. [9]. A version

of Kalman filter scheme, called hierarchical Kalman filter, was also adopted

to track and estimate motion of articulated figures by Jung and Wohn [15].

5

However, a standard Kalman filter cannot be directly appliedto rotation

data without accounting for nonlinearity of the orientation space. To address

this problem, Welch and Bishop [28] linearized the orientation space by lo-

cally parameterizing the incremental orientation change with Euler angles,

based on the result in Azarbayejani and Pentland [1] and Broida and Chel-

lappa [6]. Because they were interested only in tracking thehead motion,

they were less concerned with efficiency than we are and therefore addressed

only issues 1 and 2 above. In Chapter 3, we provide a modified Kalman filter.

To achieve real-time performance, we locally parameterizethe incremental

orientation changes with rotation vectors instead of the Euler angles used in

Welch and Bishop [28].

2.2 Importance Determination

The goal of computer puppetry is to create the movements of a target char-

acter based on the performer’s movements. If the target character is quite

different from the performer, there may not be a direct mapping. Indirect

mappings are common in traditional puppetry; for example, amarionette is

controlled by strings that pull on its end-effectors. Computer equivalents

may create arbitrary mappings from sensor input to character parameters.

For example, the Alive system from Protozoa [24] allows arbitrary Scheme

functions [14] to be written to perform mapping.

Our interest is in recreating characters with human form, sothe target

character has equivalent degrees of freedom as a simplified model of a hu-

6

man performer. In this thesis, we consider characters that are articulated fig-

ures with identical connectivity, so that it is possible to transfer the captured

joint angles directly to the target character. Despite thisstructural equiva-

lence, the resulting motion will not match the performerïs unless the charac-

ter has an identical size and shape. There will be some level of mismatching

even for characters that have the same size and shape as the performer, since

we simplify the real human by a hierarchy of rigid bodies. Oneapproach

to performance animation, described by Molet et al. [20, 21], models the

character to be as similar to the performer as possible. Bodenheimer et al.

[5] presented a way to determine the segment lengths of a character that best

fit the captured motion data while discarding outliers in these data by a ro-

bust estimation technique. If the segment proportions of the character are

kept the same as those of the performer a motion adaptation can often be

achieved by scaling the position data according to the size difference and

then by translating the character globally. Restricting the proportions of the

character precludes the use of stylized cartoon characters, unless we can find

similarly proportioned performers.

When the virtual character and performer have different sizes and pro-

portions, not all aspects of the motions can be preserved during mapping. At

the lowest level, it is simply not possible to mimic both the locations of me

end-effectors and the joint angles. A system must make choices as to which

aspects of the motion should be preserved and which should beallowed to

change. We call an approach to motion retargeting that makesthis choice

7

explicitly animportance-based approach. Nonimportance-based approaches

make implicit choices as to what should be preserved during retargeting. For

example, the most naive implementation of retargeting simply transfers the

parameter (joint angles and root position) values from the performer to the

target character. Such a scheme implicitly selects the values of the param-

eters to be important and, therefore, the positions of the end-effectors to be

unimportant. This is a poor choice when the character must interact with

other objects in the world such as the floor.

A common approach to motion retargeting matches the end-effector po-

sitions of the character to those of the performer. Such an approach has the

advantage that it preserves the interactions between the character and its en-

vironment. Badler et al. [3] used only the position data of hands and feet

to adopt them to a virtual character with an inverse kinematics technique.

Residual degrees of freedom are fixed by exploiting biomechanical knowl-

edge. Choi et al. [7] adopted the idea of inverse rate control[29] to compute

the changes in joint angles corresponding to those in end-effector positions

while imitating the captured joint angles by exploiting thekinematic redun-

dancy.

Implicit in the schemes that try to preserve the captured end-effector po-

sitions, is the notion that end-effector positions are moreimportant than joint

angles; that is, joint angles should be changed to achieve end-effector posi-

tioning goals. While this prioritization is often preferable to the reverse, it is

not without its flaws. Consider the example of Figure 2.2. In this example,

8

Figure 2.2: Artifacts of position-based approach

the importance of the foot position is properly reflected, while that of the

hand positions is overstated.

The central observation of an importance-based approach isthat what is

important can only be determined by the context of the motion. At each in-

stant, a system must somehow select among the many possible things that

are important, so it can change the aspects that are not important. Constraint-

based approaches to motion adaptation explicitly represent details of the mo-

tion that are importance as geometric constraints. The space-time motion

9

editing and retargeting system of Gleicher [11, 12] proposed the notion of

preserving the importance quantities of the motion by changing unimpor-

tance ones, where the important qualities were defined by constraints. Lee

and Shin’s [19] hierarchical motion editing provided similar results using a

different underlying implementation. Popovic and Witkin [23] demonstrated

results that made the kinetic aspects of the original motionimportant to pre-

serve.

The methods mentioned in the previous paragraph are all offline in that

they examine the entire motion simultaneously in processing. This offline

nature is also implicit in the problem formulation, as well as in the solution

method. All of the methods require the constraints to be identified before the

motion can be processed. The decisions as to what is important in a motion

must be known before processing can occur in these previous constraint-

based approaches. This is infeasible in online applications. Bindiganavale

and Badler [4] introduced a scheme to generate constraints automatically.

However, their motion adaptation is done in an offline manner.

For computer puppetry, we must decide what is important in a given

motion in an online manner. We observe that artifacts of applying only the

captured joint angles are apparent when the performer is interacting with

itself or the external world. Such interactions include theinteractions of

the performer with the environment and its self-interactions among the body

segments. Those interactions are mostly done by limb segments such as

hands, feet, elbows and knees, since they are the most activeparts of human

10

body. Therefore we analyze the importance of each end-effector position

to preserve the interaction with the environment. Moreoverthe importance

of the relative position of each limb segment to the other segments is also

measured for reproducing the self-interactions.

Those importance values are calculated based on several factors dis-

cussed in Chapter 4. For example, the proximity of an end-effector to its

surrounding environment can be used as a predictor of the importance of

the end-effector position. The importance of the end-effector position is in-

versely proportional to its distance to the nearest object in the environment.

Similarly the proximity of a limb segment to the others is also a good cri-

terion for measuring the importance of its relative position with respect to

the other body segments. A key notion of this work is that the power of

an importance-based approach, already demonstrated in offline constraint-

based systems, can be brought to the online domain of computer puppetry.

2.3 Inverse Kinematics

We employ an inverse kinematics (IK) solver to compute the pose of the

target character. IK has become a standard technique in animation systems

to control the pose of a character based on the positions of its end-effectors.

IK solvers can be divided into two categories: analytic and numerical

solvers. Most industrial robot manipulators are designed to have analytic

solutions for efficient and robust control. Paden [22] divided an IK problem

into a series of simpler subproblems each of which has closed-form solu-

11

tions. Korein and Badler [18] showed that the IK problem of a human limb

allows an analytic solution, and Tolani et al. [27] derived their actual solu-

tions. A numerical method relies on an iterative process to obtain a so1ution.

Girard and Maciejewski [10] generated the locomotion of a legged figure us-

ing a pseudo inverse of a Jacobian matrix. Based on neurophysiology, Koga

et al. [17] produced an experimentally good initial guess for a numerical

procedure. Gullapalli et al. [13] reduced the dimensionality of the redundant

control system using synergies as a basis control set. Zhao and Badler [30]

formulated the IK problem as a constrained nonlinear optimization problem.

Rose et al. [25] extended this formulation to cover constraints that hold over

an interval. To prevent the figure from making unnatural motions and reduce

the redundancy of the IK problem, Badler et al. [3] incorporated biomechan-

ical information.

For computer puppetry, we make a number of demands on IK that re-

quire the development of a novel solver. First, we must achieve real-time

performance on the entire body of the character. Second, we need the solver

to provide predictably consistent solutions: small changes to the problems

should provide similar answers. Finally the solver must be able to account

for the importance of each feature to preserve that is determined dynamically

in the analysis phase. The proposed IK solver is discussed inChapter 5. To

solve an IK problem in real-time, we divide it into three subproblems: root

position estimation, body posture computation, and limb posture computa-

tion. First, the root position of a virtual character is computed to provide

12

a good initial guess for the body posture computation. If needed, we then

adopt numerical optimization to refine the body posture, which consists of

the root position, the root orientation and the posture of the upper body. Fi-

nally, we use an analytic IK solver to compute the limb postures and blend

them with the captured limb postures.

The solution for each of these subproblems is designed to incorporate the

importance values measured in the analysis phase. Solving the first and sec-

ond subproblems, our IK solver tries to preserve the captured end-effector

positions when their importance values are high. Otherwise, the captured

joint angles are preserved. Here we need not to account for the relative posi-

tions of the limb segments, since those two steps adjust the global posture of

the character and unlikely affect the spatial relation between the segments.

In contrast, at the final limb posture computation we adjust the limb to pre-

serve the relative position of the limb segments as well as the end-effector

positions in accordance with their importance values. Thatis, we reproduce

the more important features in the resulting motion while sacrificing less

important ones. To generate realistic motions, our IK solver tries to keep

the captured joint angles of the limb, when none of those features are im-

portant enough to preserve the interaction with the other body parts or the

environment.

13

Chapter 3

Motion Filtering

In general, motion capture devices capable of providing real-time perfor-

mance are particularly susceptible to noise. Magnetic motion capture sys-

tems, which are widely used for real-time motion capture, suffer from the

interference of low-frequency current-generating devices such as a CRT-type

display. Thus, there always exists some level of jitter, that is, rapid random

changes in reported positions and orientations that do not correspond to ac-

tual movements [8]. Since computer puppetry requires a highquality input

motion as the reference of an output motion, filtering is an essential part.

In the context of computer puppetry filtering must be real-time, online, and

performed on orientations as well as positions.

For online filtering, Kalman filters [2, 9, 28] are often employed because

of their capability of prediction and correction, that is, predicting future in-

put data from their history and correcting them by incorporating actual input

data. In a standard(extended) Kalman filter, its state wouldcompletely de-

scribe the positions of a sensor and its velocity. However, because of the

nonlinearity of the orientation space, this scheme can hardly be applied di-

rectly to orientation data. Adopting the results in Azarbayejani and Pentland

14

[1] and Broida and Chellappa [6], Welch and Bishop [28] parameterize an

incremental orientation change with Euler angles which areregarded as a

three-vector to filter. The filtered Euler angles are transformed back to an in-

cremental orientation change in the nonlinear space to update the target ori-

entation at each time step. However, the conversion betweenan incremental

orientation change and its equivalent Euler angles is inefficient. Moreover,

recent motion capture devices measure orientations directly in unit quater-

nions. Therefore, differently from Welch and Bishop, we parameterize in-

cremental orientation changes with rotation vectors.

To facilitate this scheme, the target orientationqe is maintained exter-

nally to the Kalman filter together with the internal state vectorx. In partic-

ular,qe is represented by an unit quaternion:qe = (w (x y z));
wherew2 + x2 + y2 + z2 = 1. The internal statex consists of the positionp, the rotation vectorr, and their derivatives_p and _r:x = (pT _pT rT _rT)T : (3.1)

Here the rotation vectorr parameterizes the incremental orientation change

of the actual sensor inputq(t) at the current frame with respect to the target

orientationqe(t��t) at its previous frame. Therefore,r(t) can be measured

15

through the logarithm map [16]:r(t) = ln(q�1e (t��t)q(t)): (3.2)

At each filter update step,r(t) in the state is converted into its incremental

orientation change equivalenter(t) through the exponential map to update

the external target orientationqe and then reset to be zero. Therefore, incre-

mental orientations are linearized for the (extended) Kalman filter, centered

about zero.

The dynamic model predicts the current position and the rotation by first-

order approximations. Therefore, the predictionx̂�(t) of the state through

thestate transition matrix A can be described :

x̂�(t) = Ax̂(t��t) = 266666664 I3 �tI3 03 0303 I3 03 0303 03 I3 �tI303 03 03 I3
377777775 x̂(t��t); (3.3)

whereI3 and03 are, respectively,3�3 identity and zero matrices. Similarly,

theerror covariance matrix P(t) is predicted:P�(t) = AP(t��t)AT +Q: (3.4)

Here,P(t) = E h(x̂�(t)� x(t)) (x̂�(t)� x(t))Ti, which models estima-

tion uncertainty. Theprocess noise covariance matrix Q characterizes the

16

accuracy of the dynamic model. In our implementation, we simplify Q as:

Q = 266666664 q1I3 q2I3 03 03q3I3 q4I3 03 0303 03 q5I3 q6I303 03 q7I3 q8I3
377777775 : (3.5)

When the values ofqi’s are small, the filter tends to suppress the detail of

the captured motion. On the other hand, if they are large, it tends to preserve

the captured motion. Therefore,qi’s should be tuned interactively for a good

filter response.

In practice, we sample motion signals at a higher frame rate (120 Hz)

than that actually required for animation to avoid the overshooting which

occasionally occurs in constant velocity models, especially when the veloc-

ity changes suddenly. Our measurement consists of the position of a sen-

sor and its incremental orientation represented by a rotation vector; that is,=(pT rT)T which can be obtained from of the state vector directly. There-

fore, our measurement can be estimated from the predicted state:ẑ(t) = Hx̂�(t) = 264 I3 03 03 0303 03 I3 03 375 x̂�(t): (3.6)

Now, we are ready to compute the Kalman gainK(t):K(t) = P�(t)HT (HP�(t)HT +R)�1; (3.7)

17

whereR is themeasurement noise covariance matrix. That matrix is either

given from the device manufacturer or acquired by offline measurement. In

practice, we measure the noise while holding the sensor stationary to com-

pute its noise covariance matrixR.

The residual between the actual sensor measurementz(t) and the pre-

dicted measurementẑ(t) from Equation (3.6) is:�z(t) = z(t)� ẑ(t): (3.8)

Then, the predicted state and the error covariance matrix are corrected as

follows, x̂(t) = x̂�(t) +K(t)�z(t); andP(t) = (I�K(t)H)P�(t): (3.9)

We finish filtering at each frame by updating the external target orienta-

tion using the rotation vector̂r(t). Taking the exponential map of the rotation

vector and postmultiplying it with the external target orientationq̂e(t��t)
at the previous frame, we can find the final target orientationq̂e(t) at the

current frame: q̂e(t) = q̂e(t��t)er̂(t): (3.10)

The rotation vector̂r(t) is reset to zero for filtering at the next frame.

18

Chapter 4

Motion Analysis

When the performer and the target character do not have the same size and

shape, not all aspects of the original motion can be preserved. A system must

determine what aspects of the motion are important to preserve, so that other

less important aspects may be changed to preserve them.

For an articulated figure, differing segment lengths means that the joint

angles and end-effector position cannot be recreated simultaneously. More-

over, the difference in shape prevents the character from preserve the relative

position of segments to the other while keeping the joint angles. There are

five obvious choices of motion aspects to preserve:

1. the position of the root of the character,

2. the joint angles

3. the positions of the end-effectors,

4. the distance from the end-effector to its closest segments, and

5. the distance from the elbow/knee to its closest segments.

19

(a) (c)(b) (d)

Figure 4.1: Two different situations

There exist situation under which any of these five might be most important.

For example, observe the arm postures in Figure 4.1. Figure 4.1(a) shows

a captured arm posture from the performer that does not touchany object.

Retargeting this motion to a virtual character, we prefer the posture in the

Figure 4.1(b) that preserves the joint angles. However, theposition of a

hand needs to be preserved when it touches an object as shown in Figure

4.1(c) and (d). When the character is clapping, as shown in Figure 4.2(a),

the distance between the hands are the most important feature to preserve

to prevent the unnatural posture given in Figure 4.2(b). To avoid unwanted

penetration, the distance between the elbow and the body segment must be

kept especially when the character is fat.

The suggested system must choose which of the five choices above are

important in a dynamic online way. To make this decision, we employ a

number of heuristics.

20

(a) Captured Clapping Motion (b) Applying Joint Angles

Figure 4.2: Clapping motions

1. The position of the root is most likelynot important. This heuristic

comes from the observation that the choice of making the rootis ar-

bitrary: we could have just as easily chosen any point as the root. In

fact, preserving the root position may change some important param-

eters that characterize a posture itself. Because of this, the importance

of the root position is downplayed in many approaches that consider

importance. Like the proposed solver, described in Chapter5, Gle-

icher’s retargeting system [12] uses a heuristic that attempts to satisfy

21

the constraints (generally on the end-effectors) as much aspossible by

moving the root position.

2. If an end-effector is interacting with another object (such as the floor),

then its position is likely to be important. Therefore, proximity to ob-

jects in the environment should increase the importance of the absolute

position of an end-effector.

3. If an end-effector is close to another segment of the character, then its

relative displacement is likely to be important to duplicate a possible

self-interaction and to prevent self-penetration. Therefore, proximity

to the other segments of the body increases the importance ofan end-

effector’s distance from the nearest segment.

4. Similarly, if an elbow/knee is close to the another segment of the char-

acter, then their distance is likely to be important. Therefore, prox-

imity to the other segments should increase the importance of the dis-

tance from the elbow/knee to the nearest segment.

5. If an end-effector will be interacting with another object in the near

future, then its position is important (as it is likely to be getting ready

for the interaction). Therefore, we incorporate prediction of proximity

of an end-effector to an object in the measure of its importance.

6. If an end-effector has just finished interacting with another object and

is moving away from it, its position may not be as important asits

22

proximity suggests.

7. If the end-effector is not in proximity to another object,it is likely that

its position is unimportant.

In order to measure the interactivity of an end-effector with its environ-

ment and the self-interactivity of an end-effector or an elbow/knee, we in-

troduce the notion ofimportance of features, which can be determined by

analyzing the posture of the performer. In particular, the distance from the

end-effector to objects in the environment is a good measureof interaction

possibility of the end-effector. That is, the end-effectoris more likely to in-

teract with the environment when it is closer to objects in the environment.

Therefore, as the end-effector approaches an object, its importance value

should be increased to enforce the geometric constraints created by the ob-

ject. As the end-effector moves away from the object, the importance value

should be continuously decreased to preserve the captured posture of the cor-

responding limb. Moreover, it is desirable to develop the distance measure

to reflect the trajectory of an end-effector and its dynamic nature. Similarly,

the importance of the distance between an end-effector (or an elbow/knee)

its the closest segment can be used to measure self-interactivity as well as

the self-penetration possibility of the character. The remainder of this chap-

ter, we describe the way to measure importance values of features based on

those observations.

23

Figure 4.3: Trajectories of the left foot generated by varying importance
measure

4.1 Analysis of Interaction with Environment

Given end-effectorei of the performer and objectoj in the real space, letdij(t) be Euclidean distance between them at timet. oj has is its corre-

sponding object in virtual space. The new distance functiond+ij(t) is defined

as d+ij(t) = dij(t) + dij(t + ��t)2 (4.1)

for small positive� and�t. d+ij(t) represents the average of the current

distance and the predicted distance after��t time. For small�t, d+ij(t) can

24

be approximated asd+ij(t) � dij(t) + (dij(t) + ��t _dij(t))2= dij(t) + ��t2 _dij(t) = dij(t) + � _dij(t); (4.2)

where _dij(t) is the first derivative ofdij(t). d+ij(t) reflects both the distance

at t from ei to oj and its changing rate_dij(t). By varying� we can control

the degree of prediction ford+ij(t).
For example, Figure 4.3 exhibits a jumping motion adapted with � = 0

and� = 0:15. The legs of the character are shorter than the performer’s.For� = 0, the left foot trajectory of the character (dashed line) agrees with that

of the performer (thicker line) only near the floor. For� = 0:15, the former

follows the latter while approaching down to the floor (solidline). The foot

is moving off the captured trajectory to preserve the captured joint angles,

either near the peak (� = 0) or approaching to the peak (� = 0:15).

Let Dij denote the maximum distance within whichei is influenced byoj. Then, the normalized distance�dij is defined as�dij = d+ijDij : (4.3)

An animator assignsDij for the pair of end-effectorei and objectoj in the

environment in accordance with a given animation context. Awider range

of Dij shows a sensitive interaction of end-effectorei with objectoj. On

25

the other hand, a narrower range exhibits thatei moves independently ofoj
unlessei is close tooj.

The importance is zero when the normalized distance�dij is greater than

or equal to one, that is,ei is out of the influence ofoj. As the distance

decreases to zero, the importance increases to one. Thus, the importance

functionp of the normalized distance�dij can be designed with the condition

of p(1) = 0 andp(0) = 1. In addition, we set its derivatives there to be zero,

that is,p0(0) = 0 andp0(1) = 0, to reduce the rate of change of the functionp at both extreme points. Thus, the importance ofei with respect tooj is

represented by the cubic polynomial functionp satisfying those conditions.

That is, p(�dij) = 8>><>>:2 �d3ij � 3 �d2ij + 1; if �dij < 1,0; otherwise: (4.4)

The importance valuewi of end-effectorei over all external objects can be

defined as the maximum of them:wi = maxj (p(�dij)): (4.5)

It requires much time to compute the distance�dij from each end-effectorei of a virtual character to every objectoj in the environment, especially for a

complex surrounding environment. To achieve a real-time performance, we

need to minimize the number of possible objects that interact with each end-

effector in accordance with an animation context. An objectthat is hardly

26

touched during the animation may be eliminated in importance value compu-

tation. Moreover, objects may also be described approximately with simpler

geometry for easy distance computation.

4.2 Analysis of Self-interaction

To obtain realistic results, we need to preserve self-interactions among the

segments of the performer as well as its interaction with theenvironment

while preventing their self-interpenetrations. Most of self-interactions are

done by the limbs, which are the most active segments of a human body.

Therefore, we try to reproduce the captured self-interactions of the per-

former in the resulting motion by analyzing the importance values of the

self-interactions done by hands, feet, elbows, and knees and preserving them

in accordance with their importance values. For further reference, we call

those parts ‘general end-effectors’, since each of them is the endpoint of the

corresponding segment.

The importance of the self-interaction of each general end-effector is

measured based on its proximity to the other segments. When the general

end-effector is close to another segment of the performer’sbody, it is likely

to either interact with or penetrate into the segment. Therefore, the distance

of a general end-effector from the other segments gives a clue to determining

how much we need to preserve its relative position with respect to the closest

segments. In this section, we first discusses how to compute the proximities

of the general end-effectors and then how to analyze the importance values

27

Figure 4.4: Example of body point sampling

based on their proximities.

To measure the distance of a general end-effector from the other seg-

ments, we need to know the geometries of the performer. However, it is

time-consuming to capture the precise geometry of the performer and to

measure the exact distance between a pair of segments. We simplify dis-

tance computation by measuring the proximity of a general end-effector to

its closest sample point on another segment of the performer. A number

of points are sampled on the surface of the performer with motion capture

sensors. In practice, we sampled forty points regularly on each segment as il-

28

lustrated in Figure 4.4 by drawing eight closed curves on a segment aligned

with its skeleton and spaced evenly, and sampling five pointsalong each

curve regularly. With those sample points, the distance of ageneral end-

effector from a segment can be computed by measuring the proximity of the

general end-effector to its closest sample point on the segment.

Similarly to the importance value of the end-effector interaction with the

environment, we can measure the importance value of the self-interaction of

a general end-effector based on its distances from the othersegments. As

shown in Section 4.1, the importance value is inversely proportional to the

distance from another segment, since the closer the generalend-effector is to

the segment, the more it is likely interact with the segment.To compute the

importance value of the self-interaction with each segment, the first-order

prediction and normalization are applied to the distance ofthe general end-

effector from the segment of the performer through Equations (4.2) and (4.3),

respectively. Then, each importance value is obtained by the importance

function shown in Equation (4.4). Finally, the importance value of each

general end-effector over all segments of the performer canbe defined as

the maximum of them. Those importance values allow us to determine how

urgent the self-interaction among the segments is.

29

Chapter 5

Real-time Inverse Kinematics Solver

The final step of motion retargeting is posing the character so that it pre-

serves the as many important features in the motion as possible. Given the

captured end-effector position with its importance, and the bounding 3-D

balls of the end-effector and elbow/knee, we adjust the captured joint an-

gle by introducing an inverse kinematics solver that is specialized for the

problem.

For computer puppetry, we must position the character such that the im-

portant aspects of a captured motion are preserved while providing real-time

performance. For the application, this demands computing the character’s

posture 30 times per second. Therefore, we need an IK solver that not only

can incorporate the importance measures of the previous chapter, but also

has real-time performance even in the worst case.

As discussed in Section 2.3, previous IK solution methods donot meet

the demands of computer puppetry. Analytic methods provideguaranteed

performance but cannot incorporate importance measures required for re-

targeting. Numerical solvers can include the importance metrics, but they

hardly guarantee real-time performance. To meet these two conflicting de-

mands, we have developed a hybrid solver.

30

In this chapter, we present a fast IK algorithm that is specialized for

human-like articulated characters. We divide the IK process into three sub-

problems: root position estimation, body posture computation, and limb-

posture computation. For each step, We give a method that is specialized

to achieve high-performance. This leads us to employ inexpensive, closed-

form solutions if applicable, and reserve numerical optimization for the case

in which it is absolutely required. Notice that we need not toinclude the

bounding 3-D spheres in the root position estimation, and the body posture

computation, since those steps manipulate the global position and posture of

the character.

5.1 Root Position Estimation

In order to position the end-effectors of a character, an IK solver may change

the root position of the character or adjust its joint angles. As mentioned in

Chapter 4, the root of the character has been arbitrarily chosen as the charac-

ter’s root, which is rarely the most important aspect to preserve. Therefore,

the solver first attempts to make the character satisfy the constraints as much

as possible by moving the root position. This strategy was demonstrated for

retargeting by Gleicher [12].

Beginning with the positional offset has an important advantage: unlike

angular changes that cause non-linear equations to compute, positional offset

computation is trivial and therefore efficient. Letpei represent the position

of the ith end-effector when the character is posed with the captured joint

31

angles, andpgi denote the goal position for that end-effector. The displace-

ment vectordi = pgi � pei measures how much the solver must move an

end-effector to reach its goal. If there were only one end-effector with a

specified goal position, this constraint could be met by simply moving the

character’s root position by the displacement vector, where the joint angles

would not need to be changed.

In the event that multiple end-effectors are to be positioned, we com-

pute the weighted average of the displacements to find an initial offsetd as

follows: d = Pni widiPni wi ; (5.1)

wherewi is the importance of theith end-effector. In the (unlikely) event that

all end-effectors require the same displacement, this displacement will solve

all of the constraints. More likely, the joint angles will need to be adjusted

so that all of the end-effector goals can be met.

While the weighted averaging attempts to position the root to meet all of

the goals simultaneously, it does not necessarily guarantee that all goals can

be met. Once the root position is fixed, the character can meetits goals by

straightening its joints. Therefore, the root position must be chosen such that

all end-effector goals are “reachable,” that is, close enough that straightening

limbs will be sufficient. The root position estimate are further refined such

that it guarantees reachability if possible. We relocate the root such that it is

within the reachability limits to the goals while being as close to the initial

32

pc

pc

ds

ds

ds

ds

Figure 5.1: Range 3-D balls: range of hand, shoulder, and root position

estimate as possible.

As shown in the left column of Figure 5.1, the reachable rangeof the

hand can be represented as the 3-D ball centered at the shoulder, and its

radius is the length of the arm. Here, a 3-D ball consists of a sphere and the

set of all points bounded by it. The middle of Figure 5.1 showsthat the same

3-D ball centered at the goal position represents the range of the shoulder

joint position. Finally, with the orientations of the pelvis and the waist fixed

as in the captured posture, the range of the root position is computed as

illustrated on the right of Figure 5.1. Letds denote the vector from the

shoulder to the root position. The translation of the 3-D ball at the goal

positionp
 by the vectords yields the 3-D ball that gives the range of the

33

root position. If the root is in this 3-D ball, the character can reach the goal

position by stretching the limb only.

When the importance value of an end-effector is low, the rootposition

does not need to be modified to make this end-effector reachable at its goal.

Therefore, the range corresponding to this end-effector may be larger than

the actual reachable range. To avoid an unnecessary offset of the root posi-

tion, we enlarge the size of the 3-D ball, so that its size is inversely propor-

tional to the importance value. The increased radiusri corresponding to theith limb is given as ri(li; wi) = liwi ; (5.2)

whereli is the length of theith limb andwi is its importance value.

Since the virtual character has four end-effectors, we havefour 3-D balls.

The common intersection of these 3-D balls is the range of theroot position

that makes all of the end-effectors reachable to their goal positions. As an

initial guess for the root position, we choose the closest point from the offset

root position to this intersection to preserve the posture of the performer as

much as possible. Thus, the root position estimation is formulated as the

problem of finding the closest point from a given position to the common

intersection of four 3-D balls.

The intersection of 3-D balls consists of four surface elements as shown

in Figure 5.2: spherical regions, circular edges, and vertices. A spherical

region is a part of a sphere bounded by a sequence of sphericalarcs. A

34

(a) On a sphere (b) On a circle (c) At a vertex

Figure 5.2: Closest points

circular edge is a part of a circle that is the intersection oftwo spheres. A

vertex is determined by the common intersection of three spheres.

There are two cases depending on the offset root position with respect

to the intersection. If this point is contained in the interior of the intersec-

tion, then the point itself is the closest point to the intersection. Suppose

that it is not contained in the interior. Then the closest point must lie on

the boundary of the intersection. Therefore, we may enumerate all possible

surface elements due to the intersection of the four spherescorresponding to

the bounding surfaces of the balls, respectively.

Three spheres determine at most two vertices. Since there are four ways

of choosing a triple out of four spheres, we have a maximum of eight ver-

tices. Every pair of vertices can possibly admit a sphericaledge, and thus we

have at most 24 edges. However, these are completely included in a maxi-

mum of six circles. Moreover, each spherical face is completely contained

in one of four spheres. Instead of enumerating all surfaces elements, we

35

equivalently check those spheres, circles and vertices.

We first compute the closest point to each sphere from the offset root

position. Among these points, if any, we choose the point that is contained

in the intersection and the closest to the root position. If such a point does

not exist, then we compute the set of points, each of them is the closest from

the root position to each circle. Out of them, we choose the one that is closest

to the root position and in the intersection. Suppose that there does not exist

such a point. Then one of vertices may be the solution. We choose the one

closest to the root position among those contained in the intersection. For

more details in computing the initial root position, refer to the Appendix.

If there does not exist a common intersection of the balls, wediscard the

spheres that do not intersect the one whose corresponding end-effector has

the largest importance value and repeat this process for theremaining balls.

5.2 Body Posture Computation

If the initial root position estimate does not allow all limbs to be reachable to

the goal positions, we need to adjust the body posture consisting of the root

position, the root orientation, and the posture of the upperbody. Since those

segments are tightly coupled, a numerical method is adoptedto find their

configurations. Numerical methods hardly guarantee a real-time response

for computing the inverse kinematics of an entire human figure, while it is

practical to solve only a small part of the IK problem numerically, and to

employ analytic methods for the rest of the task. Such a hybrid solver was

36

demonstrated in [19].

We formulate a restricted version of the IK problem for determining the

posture of the body posture separately from the problem of computing the

posture of the limbs. The body posture of a character can be written asv =(p0;q0;q1; � � � ;qn), wherep0 andq0 are the position and the orientation of

the root, respectively.q j; 1 � j � n, are the orientations of body segments

such as the waist and the upper body. When the character has a rigid torso,v is simply reduced to(p0;q0;q1), sincen = 1.

The objective function consists of two terms:E = Eg + �Ep; (5.3)

where the first termEg is for making the end-effectors reachable to their

goals and the last termEp is to preserve the captured posture. We will ex-

plain those two terms in detail.Eg is the sum ofEi’s, each of which is a function of the distance from

the ith end-effectorei to its goal position. Provided with the shoulder (or

the coxa) positionpsi of the ith limb and its goal positionpgi , Ei is given as

follows: Ei = 8>><>>:0; if jjpsi � pgi jj < li;(jjpsi � pgi jj � li)2 ; otherwise,

(5.4)

whereli is the length of theith limb when it is maximally stretched.Ei is

zero when the end-effectorei is able to reach its goal position. For this case,

37

we prefer to lengthen or shorten the corresponding limb thanto adjust the

body posture. Recall that an end-effector of a low importance value has no

need to preserve its captured position. Thus, to relax the constraint on this

end-effector we enlarge the range of the shoulder. By substituting the lengthli of each limb with the new radiusri = liwi as mentioned in Section 5.1, we

have Ei = 8>><>>:0 , if jjpsi � pgi jj < ri;(jjpsi � pgi jj � ri)2 , otherwise.

Note that with the importance valuewi of one,Ei plays a role of pulling

the end-effector to reach the goal position exactly. On the other hand, as

importance valuewi approaches zero, theith end-effector keeps the original

posture by preserving the joint angles.

Letting q�j andp�0 be the captured orientation of thejth segment and

the estimated position of the root, respectively,Ep is a weighted sum of the

squared geodesic distances betweenqj andq�j for all 0 � j � n, and the

squared distance betweenp0 andp�0:Ep = nXj=0 �jjj ln(q�1j q�j)jj2 +
jjp0 � p�0jj2: (5.5)

Minimizing Ep, we preserve the captured motion as much as possible. We

find the optimal solution that minimizes the objective function by employ-

ing the conjugate gradient method. Here, we use the capturedjoint angles

and the root position computed in Section 5.1 as the initial guess for the

38

Figure 5.3: Ranges given for a limb

optimization.

5.3 Limb Postures Computation

Given the root position and the body posture, we finally adjusts the limb

postures of the target character to preserve the important features in the cap-

tured motion to reproduce both the interaction with the environment and the

self-interactions among the segments. Here, we have three possibly impor-

tant features for a limb: the interaction of the end-effector with the envi-

ronment, and the self-interactions of two kind of general end-effectors such

39

as hands/feet and elbows/knees. We represent each of those geometric con-

straints for preserving the interactions by the range 3-D ball as drawn in

Figure 5.3. The target character can reproduce the interactions by locating

each general end-effector inside of the corresponding ball. To provide an an-

alytic solution for this problem, we first solve the joint angle of the shoulder

to locate the elbow position and then calculate the joint angle of the elbow

from the fixed elbow position to locate the end-effector. Finally, the joint

angle of the wrist is adjusted to satisfy the captured hand orientation. The

configuration of a leg is computed similarly by fixing the hip joint angle first,

and adjusting the knee and the ankle in order.

5.3.1 Range for Preserving Self-interactions

We first determine the range of a general end-effector of the target character

in which the character can preserve its self-interactions with the other seg-

ments while avoiding the self-interpenetrations. For illustration, the range of

a hand and that of an elbow are drawn with the dotted and the dashed circles

in Figure 5.3, respectively. If the importance value of the self-interaction of a

general end-effector is low, the corresponding range should be wide enough

not to alter the captured joint angle unnecessarily. Otherwise, the position of

the general end-effector needs to be bounded tightly by the range 3-D ball

to preserve its self-interaction. In both cases, the 3-D ball should effectively

prevent the self-interpenetration.

The radius of the 3-D ball must be defined, so that it can prevent the

40

vjk pk rjvjk
j
mink(kvjkk)

Figure 5.4: Range of an elbow to preserve its relative position

self-interpenetration of the corresponding general end-effector. Therefore, it

should be smaller than or equal to the distance from the closest sample point,

that is,mink (kvjkk), wherevjk is the vector from thekth sample point to

the joint position corresponding to thejth 3-D ball as shown in Figure 5.4.

Moreover, the 3-D ball needs to gradually tighten up the target position as

the importance value increases. Therefore, we define the radiusrj of thejth
range 3-D ball as: rj = wj mink (kvjkk) (5.6)

This 3-D ball can limit the position of the general end-effector to preserve the

41

self-interaction and prevent the self-penetration when itis likely to interact

with the other segment, while growing enough to allow the captured joint

angles being preserved.

The center of the 3-D ball should be determined so that the distance

from the closest segment is preserved. We choose the center of the ball as a

weight average of the displacement from the three closest sample points as

shown in Figure 5.4. To reduce the influence of farther points, their weight

should be smaller than nearer ones. The weight of a point is computed by the

importance function, which gives a lower value when the distance gets larger.

Therefore, the resulting center position reflects the displacement from the

closest point while moving smoothly due to the influence of nearby points.

To compute the center position
j of thejth end-effector (or elbow/knee), letvjk be the displace of thejth end-effector to thekth sample point measured

from the performer. Then,
j is
j = Pk (wjk(vjk + pk))Pk wjk ; (5.7)

wherewjk is the weight of thekth sample point computed through the im-

portance function, andpk is the position ofkth sample point of the character.

However, when both of the general end-effector and the closest segment

are included the limbs, their positions are adjusted by limbposture com-

putation. Therefore, the range ball cannot make the generalend-effector

preserve the self-interaction. For example, suppose that the hands of the per-

42

Figure 5.5: Target position when the closest segment is moved.

former are very close to each other in the captured posture asillustrated in

the right column of Figure 5.5. Applying the captured joint angle gives the

posture of the target character in which the end-effector are far from each

other as show in right column of Figure 5.5. In such a case, thethe center
j of the ball obtained as above is the position of the other hand. How-

ever, the more desirable target position is their midpoint as drawn with the

crossed circle in the right column of Figure 5.5. In general,when the closest

segment to thejth general end-effector is a part of limbs, the center of the

corresponding ball should located at the midpoint of the initial position of

the general end-effector and the center position
j computed as above. To

address this situation, the center of the ball needs furtherrefining. We begin

43

with rewriting Equation (5.7) into an equivalent form:
j = Pk �wjk(vjk + pk � pej)�Pk wjk + pej; (5.8)

wherepej is the initial position of thejth end-effector (or elbow/knee) which

is obtained by applying the captured joint angle. The refinedcenter position

is
j = Pk wjkv0jkPk wjk + pej andv0jk = 8>><>>:vjk+pk�pej2 ; wherek 2 S;vjk + pk � pej ; otherwise.

(5.9)

HereS is the set of points sampled on the segments which are to be moved

by IK, that is the limb segments.

5.3.2 Range for Preserving Interaction with Environment

As drawn with the solid circle in Figure 5.3, we can similarlydetermine the

range of the end-effector of the target character to preserve the interaction

with the environment. When the importance value of the interaction with

the environment is low, the end-effector needs not to be exactly located at its

captured position. Otherwise, we have to preserve the captured end-effector

position. Those requirements can be achieved by bounding the end-effector

position in the 3-D ball of which the center is located at the goal position and

its radius is inversely proportional to its importance. Therefore, its center is

44

simply the captured position of the end-effector and the radius must be zero

when its importance value is one, and increased as the importance decreases.

We define the radiusri of the 3-D ball of theith end-effector asri = rmaxi (1� wi); (5.10)

wherewi is the importance value of the interaction of theith end-effector

with the environment.rmaxi is the maximum radius of the end-effector range,

which is defined as the radius of the maximum influence range ofthe end-

effector with respect to its closest object in the environment.

In shoulder joint computation, we have to apply the range 3-Dballs of a

hand together with the range balls of the corresponding elbow. Otherwise we

may be unable to find the solution in the following hand position adjustment.

We have two range balls of the hand, one is due to the interaction with the

environment and the other is for preserving the self-interaction. Therefore,

we need to compute the ranges of the elbow corresponding to those range

3-D balls of the hand.

Suppose that the end-effector is located at the boundary of a3-D ball, and

the lower arm is directed outward. Then as drawn with the larger solid sphere

in Figure 5.6, the elbow lies on the sphere of which the radiuscoincides with

the 3-D ball and its radius isli + rm, whereli andrm is the length of theith forearm and the radius of the 3-D ball bounding the hand, respectively.

In contrast, the lower arm passes through the center of the ball, the position

45

rm rmli rm
Figure 5.6: Range of elbow corresponding range of hand

of the elbow is on the sphere centered at the same as the ball and of which

the radius isli � rm as shown with the smaller solid circle in Figure 5.6.

Therefore, if the hand is placed in the 3-D ball, the elbow is located inside of

the larger sphere and outside of the smaller one. Moreover, when the elbow

is in this range, we are able to make the end-effector reachable to the 3-D

ball. With this fact, we can represent the range of the elbow for preserving

each interaction of the end-effector by two 3-D balls.

46

Figure 5.7: Range balls of elbow and its range sphere

5.3.3 Posture Computation

The target elbow position is selected in the common intersection of the range

3-D balls representing its geometric constraints. As drawnwith the solid and

dotted circle in in Figure 5.7, we have five range balls, one bounding ball

from the range for keeping the self-interaction of the elbow, two from the

range of the hand for preserving the interaction with the environment, and

two for preserving the self-interaction of the hand. Those five balls are drawn

with the solid and dotted circle in Figure 5.7. When the elbowis located

in the common intersection, the elbow position preserves its distance from

47

the closest segment in accordance with the corresponding importance value

while guaranteeing the reachability of the hand to its bounding range. From

the fixed position of the shoulder, the elbow lies on the sphere of which the

center is the position of the shoulder and its radius is the length of the upper

arm (See the dashed circle in Figure 5.7.) On this sphere, we find the closest

point included in the common intersection from the initial elbow position

which is obtained by keeping the captured joint angles of theshoulder to

preserve the original posture as much as possible. The closest point to the

common intersection of the 3-D balls from the sphere can be found with the

algorithm described in Section 5.1.

Given the target position of the elbow, the joint angleqi0 of the shoulder

is computed as follows: Let the position of the shoulder isp�s and the initial

and the target elbow positions arep�e andpe, respectively. Then, as shown

in Figure 5.8, the vectorsv�u andvu representing the captured and the target

directions of the upperarm arev�u = p�e�p�s andvu = pe�p�s, respectively.

The quaternion which rotatesv�u to vu isqru = en�=2; (5.11)

wheren is the rotation axis and the angle� betweenv�u andvu are given asn = vu � v�ukvu � v�uk
48

np�s
pe v�up�e

vu �

Figure 5.8: Adjusting Shoulder Joint Angle

and � =
os�1(vu � v�u);
respectively. The shoulder joint angleqi0 can be achieved by premultiplying

it to the the captured shoulder joint angleq�i0:qi0 = qruq�i0: (5.12)

Provided with the fixed position of the elbow, its joint angleis computed

49

Figure 5.9: Range of hand

similarly to the shoulder joint angle. For the position of the hand, we have

two bounding balls (the solid circles in Figure 5.9) for preserving its interac-

tion and the self-interaction, and one sphere representingthe reachable range

of the hand from the fixed elbow position (the dashed circle inFigure 5.9).

We find the closest point on the common intersection of them from the initial

hand position which is obtained by applying the captured elbow joint angle

to preserve the original posture while reproducing the external interaction of

the hand and its self-interaction.

When the target position of the hand is determined, the jointangle of the

elbow can also be computed similarly to the shoulder joint angle. We are

50

given the fixed elbow positionpe, the initial positionp�h of the hand and its

target positionph. The vectorsv�l andvl representing the captured and the

target forearm directions can be obtained asv�l = p�h�pe andvl = ph�pe,
respectively. The quaternionqrl representing the rotation from the initial

forearm direction to the target direction isqrl = en0�0=2; (5.13)

wheren0 is the rotation axis and the angle�0 betweenv�l andvl are given asn0 = vl � v�lkvl � v�l k
and �0 =
os�1(vl � v�l);
respectively. Premultiplyingqrl with the initial elbow joint angle yield the

elbow joint angle which places the hand in the bounding 3-D balls. Finally,

the joint angle of the wrist can be calculated so that it preserves the hand

orientation.

Now, with both the captured and the computed limb postures available,

we blend them together to obtain a realistic motion. For thispurpose, we per-

form spherical linear interpolation between each capturedjoint orientation of

a limb with its corresponding IK solution. Letqik andq�ik be the orientation

of the kth joint in the ith limb obtained from the IK solver and that from

51

the captured posture. Then the blended joint angleq0ik can be described by

spherical linear interpolation as follows:q0ik = slerp(q�ik;qik; wik)= ewik ln(qikq��1ik)q�ik; (5.14)

wherewik is the maximum importance value of thekth joint of theith limb.

That is, for a shoulder/hip joint,wik is the maximum among the importance

values of the end-effector interaction to the environment,and those of the

self-interaction of the general end-effectors. For blending the elbow/knee

joint angle, the larger between the importance value of the end-effector in-

teraction and that of its self-interaction is used as the weightwik. As a result,

the limb preserves the captured joint angle when the importance values of

the interaction with the environment and the self-interaction are low. Other-

wise, the target character is able to reproduce the capturedinteraction with

the environment and the self-interaction in accordance with their importance

values.

The non-penetration condition may be violated since the posture is blended

regardless of the constraints. Thus the blended posture hasto be adjusted ex-

plicitly to prevent unwanted penetration. Provided with the predefined exter-

nal objects for each end-effector, this violation can be detected easily. Before

penetrating an object, the end-effector touches the boundary of the object.

Thus, the preferable position of the end-effector is the intersection point of

the object boundary and the ray from the shoulder to the end-effector during

52

penetration. This position moves continuously on the object in accordance

with the end-effector movement. The penetration problem can be effectively

eliminated by adjusting the limb posture using the IK solverfor limbs.

53

Chapter 6

Analysis of Temporal Constraints

In retargeting motions, we must preserve important temporal aspects of the

motion along with spatial aspects. Gleicher [12] emphasizes the importance

of avoiding the introduction of high-frequencies during adaptation. Both this

work and the work of Lee and Shin [19] provide approaches for avoiding the

addition of discontinuities during adaptation. Unfortunately, both schemes

rely on examining durations of motions and therefore can only be applied

in offline applications. In this chapter, we show that the approach presented

in this thesis does not introduce unwanted discontinuitiesinto the resulting

motion.

To begin, we must assume that the initial motion is free of unwanted

discontinuities. This assumption is not restrictive because the movement of

the performer is continuous. Discontinuities may be introduced by noise in

the capture process, but these are generally removed by the filtering pro-

cess described in Chapter 3. The continuity of the initial motion applies to

the captured joint angles, end-effector positions, distance of the end-effector

from other segments, and distance of the elbow/knee.

Provided with smooth trajectories of segments and motion features, the

proposed analysis method yields continuous output. For anycontinuous dis-

54

tance function, the suggested importance function gives continuous impor-

tance values as described in Chapter 4. In other words, the importance values

are consistently changed to reflect the temporal proximity of end-effectors

to the environment. Therefore, the importance values have inter-frame co-

herence. For example, as an end-effector is approaching an object in the

environment, its distance from the object is monotonicallydecreasing. Sim-

ilarly, the distance is monotonically increasing as the end-effector is depart-

ing from the object. When the end-effector touches (or passes by) the object,

the monotonicity changes but the distance function is stillcontinuous at that

instance. The similar analogy can be also applied the importance of fea-

tures due to the self-interaction. Moreover, the trajectories of the bounding

3-D balls are smooth, since both end-effector (or elbow/knee) and the other

segments move smoothly.

For the proposed IK solver, the kinematic constraints are the positions of

end-effectors, and the bounding 3-D balls. These constraints are specified at

every frame as temporal constraints as shown above. Given continuous paths

for the segments of the performer, the IK solver will providecontinuous

trajectories for the parameters. Achieving this requires the solver to make

consistent changes. That is, similar inputs to the solver must provide similar

outputs. To guarantee this consistency, the IK solver triesto find the solution

in an online manner so that it is close to the filtered input posture, while

satisfying the kinematic constraints.

Since the IK solver utilizes as input the reference motion data and the

55

importance values, we can exclude unexpected motion artifacts such as un-

wanted jerkiness. That is, enforced to minimize the change from the refer-

ence motion, the suggested IK solver tries to find an intendedmotion. More-

over, guided by the importance values for interaction with the environment,

it also predicts the future temporal constraints and continuously pays atten-

tion to them for motion coherence.

56

Chapter 7

Experimental Results

For puppetry performance we use a MotionStar Wireless motion capture de-

vice from Ascension Tech, Inc. with 14 sensors and two extended range

transmitters. Each of sensors detects the magnetic field emitted by a trans-

mitter to report its position and orientation up to 144 timesper second.

The prototype system has been deployed for production and used suc-

cessfully to create a virtual character for a children’s television program as

well as a virtual news reporter. Both have been shown on Korean national

television, called KBS. The frog-like creature shown in Figure 7.1(a) (‘Pang-

Pang’) who regularly appears in a daily TV show for children to demonstrate

his comic performance. Thanks to the capability of the system for synthe-

sizing realistic motion in real-time, Pang-Pang and a real actor can interact

with each other. Figure 7.1(b) shows a virtual character (‘Aliang’) who has

performed the role of a news reporter for the election of Korea National As-

sembly. Even in a time-critical situation such as reportinginterim election

results, Aliang can accomplish his role successfully.

The skeleton used in the system has fifty-one degrees of freedom includ-

ing fifteen revolute joints of three degrees of freedom and the position of the

57

(a) Pang-Pang

(b) Aliang

Figure 7.1: Virtual characters on air controlled by the prototype system

58

Table 7.1: The number of iterations in numerical solver withand without
root position estimation

the number of iterations
motion #frames without with

Blubby Sally Blubby Sally
Walk 39 47 0 0 0

Throw 157 244 0 0 0
Jump 88 111 0 0 0

Handstand 211 266 38 0 0
Dance 591 1253 0 1 0

Total (61 Clips) 9692 15634 429 8 0

root and its orientation. The floor is modelled as a plane for all of the uses

of the system to date.

To test the system’s performance, we created two puppets specifically

designed to provide challenging retargeting problems. Thecharacter named

long tall Sally has long arms and legs, while a ball-shaped man calledBlubby

with extremely short legs. To perform experiments, 61 prerecorded motion

clips were used as the input for motion retargeting.

Table 7.1 shows the number of iterations in numerical optimization with

and without initial root position estimation. Statistics for five selected mo-

tion clips are given in the first five rows of the table. The total figures for

61 clips are shown in the last row. Since Sally has long arms and legs, she

can reach the captured end-effector positions without moving its root posi-

tion. Thus, the number of iterations for Sally is small even without initial

root position estimation. However, with estimated initialroot positions, the

59

Table 7.2: Timing data

Blubby Sally
motion #frames elapsed per elapsed per

time frame time frame
(msec) (msec) (msec) (msec)

Walk 39 61.3 1.613 53.4 1.406
Throw 157 246.9 1.583 218.6 1.401
Jump 88 148.5 1.707 122.3 1.417

Handstand 211 359.4 1.711 296.1 1.410
Dance 591 960.4 1.628 838.1 1.421

Total (61 Clips) 9692 16.286 1.680 1366.6 1.410

number of iterations decreases to zero for the test motion clips. The effect of

initial root position estimation is more apparent for Blubby with short legs.

In most cases, the suggested estimation algorithm finds the root position that

makes the end-effectors reachable to their goal positions without any help of

the numerical solver given in Section 5.2.

Table 7.2 gives an overall performance of the proposed online motion

retargeting algorithm excluding rendering time. Timing information was ob-

tained on a IBM compatible PC with an Intelr Pentiumr 4 1700MHz pro-

cessor and 512Mb memory. The execution time for each examplemainly

depends on the number of iterations in numeric optimization. The tables

show real-time performance for each examples.

In Figure 7.2, a captured walking motion is applied to a character with

various methods. The upper images of Figure 7.2 reveal artifacts due to

the geometric inconsistency between the performer and the puppet. Since

60

the positions of the feet are not incorporated into the motion retargeting,

the supporting foot is sliding. In contrast, the middle motion preserves the

positions well. However, the motions of the arms look unrealistic, since

the joint angles of the arms are overadjusted to preserve thepositions of

the hands. The bottom figure is generated by the motion retargeting. The

supporting foot is fixed at the proper position without sliding, and the joint

angles of the arms are preserved as the original ones.

With conventional approaches based on joint angle preservation, there

would also exist foot-sliding artifacts when the characterhas longer limbs,

as given in the top of Figure 7.3. The middle image exhibits unintended

bending of legs due to position preservation and an ill-selected initial root

position. By assigning low importance values to the hands and offsetting the

root position, we have a better result in which the legs are not bent as shown

in the bottom figure.

More examples are given in Figures 7.4 through 7.6. In particular, Fig-

ure 7.5 shows the motions such as crawling and picking up a which exhibit

interaction of hands with objects in addition to that of feet. In Figure 7.6,

motions including self-interaction are illustrated. We draw a selected frame

from each movie clip to show the resulting posture clearly.

61

(a) the captured joint angles only

(b) a conventional IK solution with kinematic constraints on end-effectors

(c) Proposed algorithm combining the captured joint anglesand the IK solution

Figure 7.2: Walking motion ofBlubby

62

(a) the captured joint angles only

(b) a conventional IK solution with kinematic constraints on end-effectors

(c) Proposed algorithm combining the captured joint anglesand the IK solution

Figure 7.3: Walking motion ofSally

63

(a) Throwing

(b) Jumping

(c) Handstand

Figure 7.4: Example motions ofBlubby andSally

64

(a) Crawling

(b) Back-flipping

(c) Picking a box up

Figure 7.5: Example motions with interaction of hands

65

(a) Smoking

(b) Hands on waist

(c) Clapping hands

Figure 7.6: Example motions with self-interaction

66

Chapter 8

Conclusion

We have presented a new approach for online motion retargeting that trans-

forms motions of a performer to a virtual character of a different size and

shape. Introducing the notion of the importances to determine which aspects

of the motion must be kept, we have been able to generate realistic motion

for a character in real-time while preserving the characteristics of captured

motions as much as possible.

The proposed motion analysis automatically computes the importance

values of the captured end-effector positions and the relative positions of

the limb segments with respect to the other segments, to preserve more im-

portant ones among them while altering the others. Based on anumber of

heuristics, we measure the interactivity of the character with its surround-

ing environment and the self-interactivity among its segments to compute

the importance values of the captured end-effector positions and the relative

positions of the limb segments, respectively. By includingsuch interactions

and transferring important features, we can dramatically broaden the types of

characters as well as the repertoire of the motions which canbe reproduced

realistically.

67

Moreover, the notion of importance gives reasonable lookahead capabil-

ity useful for avoiding jerkiness in motion, even when we do not know the

future data. However, unlike full-scale space-time optimization [12] which

observe the whole motion clip at once and adopt time consuming optimiza-

tion techniques, the proposed approach has limited lookback capability im-

plicitly achieved by the Kalman filter, and allows only a limited repertoire of

constraints.

In this thesis, we proposed a novel inverse kinematics solver which solves

a number of geometric constraints simultaneously. By dividing the problem

into subsproblems, we can guarantee a real-time performance of the solver.

However, the suggested inverse kinematics solver is specialized for human-

like characters to insure real-time performance, althoughit can be easily

adapted to other types of creatures with limbs.

KBS (Korean Broadcasting System), the largest public television broad-

casting company in Korea, has been adopting a part of the suggested com-

puter puppetry algorithm to control the virtual character,Pang Pang in a daily

TV show for children. This show has become one of the favorites among

children partly due to Pang Pang’s successful performance.KBS also suc-

cessfully showed the performance of a virtual reporter, Aliang for the real

election using this algorithm.

In addition to such onair broadcasting, the computer puppetry algorithm

is useful to the applications which require real-time motion adaptation. Those

applications include the previewing motion capture data, controlling avatars

68

in virtual reality applications, and animating the characters in video games.

Furthermore, this algorithm can be adopted as a real-time motion refining

tool for the emerging researches on motion synthesis from prescribed mo-

tion.

In this approach, we focus on handling only the geometric discrepancy

between a performer and a puppet. To generate more realisticmotions, com-

puter puppetry should also incorporate the characteristics of the puppet. An-

thropomorphized animals such as cartoon-like birds and monkeys have their

unique characteristics of motions. Those motions can hardly be captured

directly from a human performer, and thus give an additionalbarrier to over-

come.

69

Appendix A

Finding the Closest Point on the

Intersection of Spheres

As given in Section 5.1, there are three types of surface elements: spheres,

circles, and vertices. We describe how we find the closest point on each type

of element to a given pointp. It is trivial to find the closest point on a sphere

to the given point. Therefore, we proceed directly to the other cases.

Now, consider the closest point on a circle top. We start with how to

construct the circleC, which is the common intersection of the two spheresS1 andS2. The radiusr
 of C can be computed with Pythagorean theorem.

Let
si andrsi for i = 1; 2; 3 be the center of the sphereSi and its radius,

respectively. The radiusr
 of C satisfies the following equations:r2
 + x2 = r2s1, and (A.1)r2
 + (jjdjj � x)2 = r2s2; (A.2)

wherex is the distance between the center

 of C and that ofS1, andd is

70

r

s1rs1 rs1
s1x

Figure A.1: Intersection of two spheres

the vector froms1 to s2. Solving those equations, we getr2
 = r2s1 � (r2s1 � r2s2 + jjdjj2)24jjdjj2 : (A.3)

HereS1 andS2 intersect unlessr2
 is negative. From Equations (A.1) and

(A.2), x = r2s1 � r2s2 + jjdjj22jjdjj : (A.4)

Thus,

 = r2s1 � r2s2 + jjdjj22jjdjj � djjdjj +
s1 : (A.5)

Let n be the normal vector of the plane where the circle lies. Then,n = djjdjj : (A.6)

71

 � p p

 p
l l̂ p̂h

Figure A.2: Closest point from a point to a circle

We are ready to find the closest point on the circleC to the given pointp. Let h be the projection of the vector

 � p onto the normal vectorn of

the plane, that is,h = [n � (

�p)℄n. Then, the closest pointp
 onC top isp
 =

 + p̂�

jjp̂�

jjr
: (A.7)

wherep̂ = p + h, that is,p̂ is the projection ofp onto the plane containingC. As shown in Figure A.2, the distancel from p to p
 is
qjjhjj2 + l̂2,

wherel̂ is the distance from̂p to p
, that is,l̂ = jjp̂�

jj � r
.
Finally, we show how to find the closest among vertices, if any, to the

given pointp. Given those vertices, it is trivial to find the closest. Thus, we

focus on explaining how to compute the vertices lying at the corners of the

common intersection of three spheres,S1, S2 andS3. We first calculate the

intersection circleC1 of two spheresS1 andS2. Cutting the sphereS3 with

the plane containingC1, we have the circleC2. Provided with the center

72

2 nh
s3

1
Figure A.3: Intersection of a sphere and a plane

point

1 of C1 and the normal vectorn of the plain containing the circleC1, the center point

2 of C2 is the projection of the center point
s3 of the

sphereS3 onto the plane. Thus,

2 =
s3 + h; (A.8)

whereh is the vector from
s3 to

2 on the plane, that is,h = [n � (

1 �
s3)℄n.

The radiusr
2 of C2 is given as follows:r2
2 = r2s3 � jjhjj2; (A.9)

wherers3 is the radius of the sphereS3. The sphereS3 does not touch the

plane ifr2
2 has a negative value. Two vertices determined by three spheres

are the intersection of the circlesC1 andC2. To compute the intersection

73

d

2
v1
v2

1 rvu
v
Figure A.4: Intersection of two circles

of C1 andC2, we evaluate the mid-point
v of the verticesv1 andv2 (see

Figure A.4.) Similarly to the sphere-sphere intersection,the mid-point
v
and the distancerv from each of vertices to
 are given as follows:r2v = r2
1 � (r2
1 � r2
2 + jjdjj2)24jjdjj2 , and (A.10)
v = r2
1 � r2
2 + jjdjj22jjdjj � djjdjj +

1; (A.11)

where thed is the vector from the

1 to

2. The normalized direction

vectoru from
v tov1 is obtained from the cross product ofn andd, that is,u = n�djjn�djj . Hence, we have the verticesv1 =
v + rvu andv2 =
v � rvu.

74

³À»È�%K�z�́r�çß�1lx������+þAx9��/{9��̀�0A��Ç×�æ¹̄�̧ l�ìøÍ℄X���H
�:r�7Hë�H\�"f��Hz�́℄j���l���_Æ1lx����̀�z�́r�çß�Ü¼�����©�H�aË:'�\��/{9�
�l�0A��Çl�ZO��̀���ê�r��.:£¤y�,���©�H�aË:'�_Æß¼l���+þAI���z�́℄j���l���ü<��ǑÉr�â
Äº\�1lx��Ì�í��Ì�©�q�\��:�xK�%3�#Q���z�́℄j���l���_Æ1lx���&ñ
��\�� ���©� H�aË:'�\� &h�½+Ë
��̧2�¤ &h�℄X�y� ���+þA
�#� �����Û¼�Qî�r 1lx����̀�%3�l� 0A��ÇK����Õþ��̀�℄jr���Ç��.B� í�Hçß�{9�§4�÷&��Hz�́℄j���l���_Æ1lx����̀�ì�r$3�
�#�1lx���\�"f×�æ¹̄��Ç:£¤fç
�̀�óøÍéß�
���s�\��þj�/��ÇÄ»t�
�>��<ÊÜ¼��+������Û¼�Qî�r1lx����̀�z�́r�çß�Ü¼��Òqt$í
��Ç��.ºú�ëß��9�'�\��&h�6 x
�#�1lx����í��Ìõ�&ñ
\�"f��������H ú̧�6£§�̀�℄j��
���z�́℄j��|��_Æü�ÂÒ Óüt�̂ü<_Æ �©� ñ���6 xs��� ���� �©� ñ���6 x\� l�ìøÍ
�#� þj7áx&h���� ���©�H�aË:'�_Æ1lx���\�ìøÍ×¼r�ìøÍ%ò
÷&#Q��
���H×�æ¹̄��Ç:£¤fç
�̀�ì�r$3�
���Hl�ZO��̀�℄jîß���Ç��.Õªo���×�æ¹̄��Ç:£¤fç
�̀����>r
���Hþj7áx1lx����̀�z�́r�çß�Ü¼��Òqt$í

�l�0AK�"f ò́Ö��&h����%i�î�r1lx�<Æl�ZO��̀��è>h��Ç��.�:r�7Hë�H\�"f℄jîß�
���Hz�́r�çß�1lx������+þAx9��/{9�l�ZO��Érz�́℄j~½Ó5Åx\���6 x÷&#Q$í
0px�̀�{9�7£x��Ç��e����.

75

References

[1] Ali Azarbayejani and Alex P. Pentland. Recursive estimation of motion

structure, and focal length.IEEE Transactions on Pattern Analysis and

Machine Intelligence, 17(6):562 – 575, 1995.

[2] Ronald Azuma and Gary Bishop. Improving static and dynamic regis-

tration in an optical see-through hmd. InProceedings of SIGGRAPH

94, pages 197–204, 1994.

[3] N. Badler, M. J. Hollick, and J. P. Granieri. Real-time control of a

virtual human using mininal sensors.PRESENCE, 2(1):82–86, 1993.

[4] Rama Bindiganavale and Normal I. Badler. Motion abstraction and

mapping with spatial constraints. InProceedings of International

Workshop, CAPTECH’98, pages 70–82, 1998.

[5] Boddy Bodenheimer, Charles Rose, Seth Rosenthal, and John Pella.

The process of motion capture: Dealing with the data. InProceedings

of the Eurographics Workshop on Computer Animation and Simulation

’97, 1997.

[6] Ted J. Broida and Rama Chellappa. Estimation of object motion pa-

rameters from noisy images.IEEE Transactions on Pattern Analysis

and Machine Intelligence, 8(1):90–99, 1986.

76

[7] Kwang-Jin Choi and Hyeong-Seok Ko. On-line motion retargetting.

Journal of Visualization and Computer Animation, 11:223–243, 2000.

[8] Ascension Technology Corporation.Motion Star Installation and Op-

eration Guide. Ascension Technology Corporation, 1996.

[9] Martin Friedmann, Thad Starner, and Alex Pentland. Synchronization

in virtual realities.PRESENCE, 1(1):139–144, 1991.

[10] Michael Girard and Anthony A. Maciejewski. Computational model-

ing for the computer animation of legged figures. InProceedings of

SIGGRAPH 85, pages 263–270, 1985.

[11] Michael Gleicher. Motion editing with spacetime constraints. InPro-

ceedings of 1997 Symposium on Interactive 3D Graphics, pages 139–

148, 1997.

[12] Michael Gleicher. Retargeting motion to new characters. In Proceed-

ings of SIGGRAPH 98, pages 33–42, 1998.

[13] Vijaykumar Gullapalli, Jack J. Gelfand, Stephen H. Lane, and Wade W.

Wilson. Synergy-based learning of hybrid position/force control for re-

dundant manipulators. InProceedings of the 1996 IEEE International

Conference on Robotics and Automation, 1996.

[14] Chris Hanson. MIT scheme reference manual. Technical Report AITR-

1281, 1991.

77

[15] Soonki Jung and Kwangyun Wohn. Tracking and motion estimation of

the articulated object: a hierarchical kalman filter approach. Journal of

Real-Time Imaging, 3(6), 1997.

[16] Myoung-Jun Kim, Sung Yong Shin, and Myung-Soo Kim. A general

construction scheme for unit quaternion curves with simplehigh order

derivatives. InProceedings of SIGGRAPH 95, pages 369–376, 1995.

[17] Y. Koga, K. Kondo, J. Kuffer, and J. Latombe. Planning motions with

intentions. InProceedings of SIGGRAPH 94, pages 395–408, 1994.

[18] J. U. Korein and N. I. Badler. Techniques for generatingthe goal-

directed motion of articulated structures.IEEE Computer Graphics &

Application, 2:71–81, 1982.

[19] Jehee Lee and Sung Yong Shin. A hierarchical approach tointeractive

motion editing for human-like figures. InProceedings of SIGGRAPH

99, pages 39–48, 1999.

[20] T. Molet, R. Boulic, and D. Thalmann. A real-time anotomical con-

verter for human motion capture. InProceedings of 7th Eurographics

Workshop on Animation and Simulation, 1996.

[21] T. Molet, R. Boulic, and D. Thalmann. Human motion capture driven

by orientation measurements.PRESENCE, 8(2):187–203, 1999.

[22] B. Paden.Kinematics and Control Robot Manipulators. PhD thesis,

University of California, Berkeley, 1986.

78

[23] Zoran Popovic and Andrew Witkin. Physically based motion transfor-

mation. InProceedings of SIGGRAPH 99, pages 11–20, 1999.

[24] Protozoa. Technology information.http://www.protozoa.com/ Page 2

/info index.html, 1999.

[25] Charles F. Rose, Brian Guenter, Bobby Bodenheimer, andMichael F.

Cohen. Efficient generation of motion transitions using spacetime con-

straints. InProceedings of SIGGRAPH 96, pages 147–154, 1996.

[26] D.J. Sturman. Computer puppetry.IEEE Computer Graphics & Appli-

cations, 18(1):38–45, 1998.

[27] D. Tolani, A. Goswami, and N. Badler. Real-time inversekinematics

techniques for anthropomorphic limbs.Graphical Models, 62(5), 2000.

[28] Greg Welch and Gary Bishop. Scaat: Incremental tracking with incom-

plete information. InProceedings of SIGGRAPH 97, pages 333–344,

1997.

[29] D. J. Whitney. Resolved motion rate control of manipulators and hu-

man prostheses.IEEE Transactions on Man-Machine System, pages

47–53, 1969.

[30] J. Zhao and N. I. Badler. Inverse kinematics positioning using nonlin-

ear programming for highly articulated figures.ACM Transactions on

Graphics, 13(4):313–336, 1994.

79

ḈÔ���+K±Ó�7Hë�Hs� ¢-a$í
÷&l�Æ�t� Óütd�� �ª����Ü¼�� �̧ü<ÅÒ��� #��Qì�r[þta� y����\�� ×¼wn�m���. 7Æ̧�çß�s���ÂÒ7á¤��Ç$�\��t��̧K�ÅÒr����7Hë�H_Æ��t�}����Ç��Æ�t�=�K=�Ky�t��̧K�ÅÒ������$í
6 x�§�º_��a�y����×¼wn�m���.�<ÆÂÒõ�&ñ
ÂÒ'��½Ó�©�$�\��t�'9ú<ÅÒr��� ÂÒ7á¤��Ç&h��̀� L:Äº5gÅÒ���ýa�â
2 x�§�º_��,"é¶F�g����§�º_��a�y����×¼wn�m���.��åÔ���{9�&ñ
×�æ\��̧$�_Æ�7Hë�H�̀�d����K�ÅÒr���t��̧ü<Ø�æ��\����z�t�·ú§Ü¼��� �̧%ò
8̈�, �̂�<�ª�̧ �§�º_��a�y����×¼wn�m���. ¢̧��Ç$�_Æ���½̈\�� �̧ü<ÅÒr����7Hë�H���$í
õ��º&ñ
\��̧¹¡§�̀�ÅÒ���
Michael Gleicher�§�ºü< s�℄j�B ���C�\�>� y����×¼wn�m���.Õªo��� þj��H�ºÆ̧�çß�&ñ
���&h�Ü¼�� ú́§�Ér �̧¹¡§�̀���z�t�·ú§Ü¼���&ñ
Ä»&ñ
_��a��̧U�·�Éry����×¼wn�m���.��>pw��Ç1lx«ÑE���$�_Æ���½̈z�́ Òqt�Ö̧�̀� �̧ü<ÅÒ��� ú́§�Ér���ÊêC�_��[þta��̧d��d����Çy����\��×¼wn�m���.��t�}��Ü¼��Õªçß�$�\��v�0>ÅÒr��� ��Ç\O���H ��|½ÓÜ¼�� ��¶ú�(RÅÒ��� #Q Q_��õ� YO�o�"f t�&�ú<ÅÒz�́ ��!Q_��a�y����×¼wn�m���.

80

l��℄�"�$í
 "î
 : ����&³ï�rÒqt Æ̧��Z4{9� : 1973̧Æ� 8�Z4 27{9�Ø�� Òqt t� : "fÖ��:£¤Z>�r��:r &h� : "fÖ��:£¤Z>�r�Áþ��℄�
1991.3–1995.2 ��Ç²DGõ��<Æl�Õüt"é¶���íß��<Æõ� (B.S.)

1995.3–1997.2 ��Ç²DGõ��<Æl�Õüt"é¶���íß��<Æõ� (M.S.)

1997.3–2002.2 ��Ç²DGõ��<Æl�Õüt"é¶���íß��<Æõ� (Ph.D.)

