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Abstract

Many popular motion editing methods do not take phys-
ical principles into account potentially producing implausi-
ble motions. This paper introduces an efficient method for
touching up edited motions to improve physical plausibil-
ity. We start by estimating a mass distribution consistent
with reference motions known to be physically correct. The
edited motion is then divided into ground and flight stages
and adjusted to enforce appropriate physical laws for, re-
spectively, zero moment point (ZMP) constraints and cor-
rect ballistic trajectory. Unlike previous methods, we do not
solve a nonlinear optimization to calculate the adjustment.
Instead, closed-form methods are used to construct a hier-
archical displacement map which sequentially refines user-
specified degrees of freedom at different scales. This is com-
bined with standard methods for kinematic constraint en-
forcement, yielding an efficient and scalable editing method
that allows users to model real human behaviors. The po-
tential of our approach is demonstrated in a number of ex-
amples.

Keywords: Motion Editing, Animation of Articulated Fig-
ures, Motion Control, Physically-based Animation.

1 Introduction

Many motion editing techniques, including warping,
filtering, and retargeting, do not explicitly incorporate
physics. Important physical properties may therefore be lost
in the editing process, making motions appear unrealistic.
For example, if simple displacement mapping methods are
used to alter a straight walk to follow a curving path [9], the
character will remain vertical, whereas a person would lean
toward the center of curvature to balance centripetal forces.
In spite of such difficulties, however, these editing methods
remain popular due to their simplicity, computational effi-
ciency, and ease of control. Moreover, the generated mo-
tions are oftenapproximatelyphysically correct, and so it
seems reasonable to simply adjust them so physical laws
are obeyed.

Unfortunately, enforcing physical properties can be a

difficult task. Since motion dynamics are governed by a
system of nonlinear differential equations, solution methods
are often computationally expensive. Moreover, there are
many ways to adjust a motion so physical laws are satisfied,
and yet only a subset yield natural-looking motions. Pre-
vious efforts have used the heuristic that aminimalchange
is the most natural and employed optimization techniques to
simultaneously adjust many or all of a character’s degrees of
freedom. While this is capable of producing striking results,
it comes at great computations expense, particularly since
the optimization typically spans the entire motion. Addi-
tionally, optimizing over a large number of DOFs at once
can make it difficult for an artist to take known human be-
haviors into account. For example, the artist may know a
priori that balance adjustment should be handled by the up-
per body rather than the lower body.

This paper explores a different approach that seeks to
retain the advantages of simplicity, efficiency, and control.
Our approach starts with a preprocessing step that estimates
the character’s mass distribution using reference motions
known to be physically plausible. The user may then edit
a particular motion with standard methods (e.g., filtering
to remove noise) and use our system to touch-up the re-
sults. Our system divides the edited motion into ground
and flight stages and enforces appropriate physical laws in
a multi-step process. At each step, the user specifies a por-
tion of the body to be adjusted and a time scale over which
changes should be introduced. Appropriate displacements
are then computed independently on each frame using effi-
cient closed-form methods, and the result is smoothed based
on the time scale. While physical constraints may still fail to
hold after a particular iteration, the motion is likely to beim-
proved, and remaining errors can be reduced in subsequent
iterations. Moreover, the computation is sufficiently fast
that a reasonably lengthy motion (e.g., hundreds of frames)
can be processed in its entirety at interactive rates, provid-
ing quick feedback to the user.

We note that even original, unedited motions are not nec-
essarily physically correct. While these motions are based
on observations of a real performer (who necessarily obeyed
the laws of physics), errors are introduced in the capture
process and in modelling the human as a rigid skeleton.
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Therefore the skeletal movements themselves may not obey
physical laws. However, it is reasonable to assume that at
least some of these unedited motionsappear to be physi-
cally plausible, and we therefore construct a physical model
for the character (i.e., a mass distribution) based on these
motions.

The remainder of the paper is organized as follows. First,
Section 2 reviews related work. We then present our frame-
work for physical touch-up in Section 3 and present some
experimental results in Section 4. Finally, we conclude in
Section 5 with a discussion of some of the advantages and
limitations of our approach.

2 Related Work

One way to produce physically plausible motions is to
generate them directly from physical simulation. Hodgins
et al. [10] handcrafted controllers based on finite state ma-
chines and proportional-derivative servos to produce run-
ning, bicycling, and vaulting motions. Using similar meth-
ods, Wooten and Hodgins [26] simulated gymnastics mo-
tions such as flipping and tumbling, and Faloutsos et al. [6]
simulated motions to preserve balance and recover from a
fall. Bruderlin and Calvert combined physical simulation
with empirically-motivated kinematic methods to generate
walking [2] and running [3] motions. Liu and Popovic [15]
demonstrated that motions dominated by dynamics, such as
leaping or flipping, can be synthesized almost entirely from
conservation laws, without computing joint torques explic-
itly. Fang and Pollard [7] improved the efficiency of this ap-
proach by differentiating aggregate force and torque in lin-
ear time. While these methods have been successful at pro-
ducing certain kinds of motions (e.g., ballistic actions like
diving), many other motions are beyond their reach. More-
over, a motion that is physically plausible may nonetheless
appear unnaturally stiff and robotic, and it is difficult to en-
code stylistic attributes into physical simulation.

Motion capture, in contrast, can produce a rich variety of
highly realistic motions. However, by itself motion capture
offers no control over the motion, and so much effort has
been invested in developing editing methods. Some of these
have not explicitly taken physics into account, instead us-
ing signal processing methods [4, 25] or the enforcement of
kinematic constraints [8, 13]. Our technique complements
these methods, allowing one to touch-up an edited motion
that breaks physical laws.

Other motion editing methods have been based around
physical principles. Rose et al [21] generated realistic tran-
sitions by minimizing joint torques. Ko and Badler [11] and
Dasgupta and Nakamura [5] attempted to preserve the dy-
namic validity of a motion by requiring a character’s zero
moment point to remain inside its support polygon. Ya-
mane and Nakamura [27] and Pollard and Reitsma [18]

used physical simulation to produce motions that tracked
a reference motion while adhering to constraints on joint
torque and environmental contacts. These efforts all relied
on expensive numerical solution methods methods, whereas
we sacrifice optimality and some physical rigor for greatly
improved efficiency. To reduce the cost of optimization,
Popovíc and Witkin [19] extracted a low-DOF character
model capturing essential dynamical features and then op-
timized this simpler construct to satisfy user-specified con-
straints. Pollard [17] adopted a similar approach, but used
a simpler editing method to achieve interactive rates. We
maintain computational efficiency while operating directly
on the human character. Zordan and Hodgins [28] used mo-
tion capture data to drive physical simulations in which a
character can strike to specific locations and maintain bal-
ance while subject to impulsive forces.

The most similar work to our own is that of Tak et
al. [22], who used an iterative algorithm based on Kalman
filters to enforce kinematic constraints, dynamic balance,
and joint strength limits. As with our work, they computed
adjustments on a per-frame basis and filtered the results,
allowing interactive motion editing. Also, joint strength
limits could be used to control the form of the output mo-
tion. While we believe their system could be adapted to re-
produce our results, our approach is significantly different:
rather than numerically optimizing over all DOFs simulta-
neously, we compute closed-form adjustments to individual
DOFs to improve efficiency and controllability.

To determine a character’s mass distribution, previous
editing methods have either used average distributions from
the biomechanics literature or explicitly altered masses to
achieve certain effects [10, 19, 15, 11, 22]. To our knowl-
edge, our work is the first attempt to calculate the mass dis-
tribution of a captured motion for animation purposes.

3 A Framework for Physical Touch-up

3.1 Overview

Depending on whether the body is airborne or in con-
tact with the ground, it is subject to different external forces
and hence different physical laws apply. We address these
flight and ground stages separately. To determine whether
or not the character is airborne on a particular frame, we
assume the motion is labelled with kinematic constraints
specifying joint contact with the ground. We ensure that
these constraints are enforced along with the physical con-
straints (e.g, footplants are maintained after physical touch-
up). Since the physical laws for flight frames and ground
frames are quite different, accurate labelling of the kine-
matic constraints is quite important. We employ automated
methods [1] and manually adjust the results.
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Figure 1. An example of link grouping: the
lower body is fixed, the stomach and chest
are to be rotated, and the head and arms keep
their global orientations.

When the body is airborne, the only external force acting
on it is gravity, and hence its center of mass must follow a
parabolic trajectory and its total angular momentum must
be conserved. Mathematically, these constraints may be re-
spectively expressed as

cM (t) =

∑

i miri(t)
∑

i mi

= C1t
2 + C2t + C3, and (1)

hCM =
∑

i

mi (ri − cM ) × ṙi = D, (2)

wherecM is the center of mass,hCM is the angular mo-
mentum,mi andri are respectively the mass and the posi-
tion of the center of mass for theith link, andC1, C2, C3,
andD are constants.

When the body is in contact with the ground, in addition
to gravity it is also subject to ground reaction forces, i.e.,
normal forces and friction. There must be a pointZ in the
convex hull of the contact region (called thesupport poly-
gon) where the net torque due to these ground forces is zero.
This point is called thezero moment point(ZMP) [23]. At
the ZMP the sum of the torques for each body link equals
the total torque due to gravity:

∑

i

mi(ri − Z) × r̈i =
∑

i

(ri − Z) × mig, (3)

whereg is the gravity vector. Assuming the floor plane is
y = 0, the ZMP can be given explicitly by

Zx =

∑

i mi(r̈iy
− gy)rix

−
∑

i mi(r̈ix
− gx)riy

∑

i mi(r̈iy
− gy)

,

Zy = 0, and

Zz =

∑

i mi(r̈iy
− gy)riz

−
∑

i mi(r̈iz
− gz)riy

∑

i mi(r̈iy
− gy)

.

(4)
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Figure 2. A schematic of a single iteration.
Adjustments are calculated independently on
each frame, scaled, and filtered.

The accelerations terms in this equation must be computed
with some care, as any noise in the motion will be magnified
considerably through differentiation. In our experiments,
we first applied a gaussian filter of width 5 to the motion
and then used finite differences.

When the ZMP is outside of the support polygon, the
resulting physical inconsistency often manifests itself as a
lack of balance, and correcting the ZMP tends to place the
character back into balance. For example, say we start with
a straight walking motion and use a displacement map to
make it follow a curving path, as described in [9]. En-
forcing the ZMP constraint makes the character lean toward
the center of curvature, as would happen in real life. Sim-
ilarly, if a transition between walking and running is cre-
ated via simple blending methods, then enforcing the ZMP
constraint will make the character lean forward during the
transition, which is also what happens in reality. This isnot
to suggest, however, that satisfying the ZMP constraint is
identical to being in balance. Indeed, if a real person trips
and falls, their ZMP still remains inside the support poly-
gon.

Since the human body has many degrees of freedom and
only a small number of physical constraints exist on any
particular frame, there are many ways to adjust the body
so these constraints are satisfied. We provide the user with
three types of high-level control over the form of the adjust-
ment:

1. Body shape (S1, S2, andS3). The skeleton is divided
into three sets of connected links (Figure 1): those
which are not to be altered (S1), those which may have
their position and orientation changed (S2), and those
which may be translated but must retain the original
global orientation (S3). The boundary betweenS1 and
S2 and boundary betweenS2 andS3 both consist of a
single joint, andS1 andS3 are disconnected. This di-
vision into link sets allows a user to operate on logical
units.

2. Adjustment time scale (σ). To control the frequency
content of the adjustment, the user specifies a time



scaleσ over which changes are to be introduced. This
allows the user to model, for example, a sway versus a
lean.

3. Adjustment damping factor (ρ). Instead of satisfy-
ing the constraints completely, the user may choose to
only use a portionρ of a calculated adjustment and
leave the remaining error for subsequent adjustments.
This allows different movements to be layered on top
of each other.

Thus, to alter the motion the user specifies a rough divi-
sion of the skeleton into groups that should change coher-
ently, plus two numbers that roughly correspond to mean-
ingful quantities (namely, the frequency at which adjust-
ment should occur and the fraction of physical error that
should be removed at this step).

Our algorithm proceeds by building two sequences of
displacement maps, one for ground stages and one for flight
stages, that adjust the motion to better satisfy the appropri-
ate physical laws. A single displacement map is constructed
as follows (Figure 2). First, based on the user’s choice of
S1, S2, andS3, an adjustment is computed independently
on each frame to satisfy the constraints as much as possible.
These adjustments are then scaled according toρ. Finally,
to make these adjustments coherent, they are filtered using a
smoothing kernel whose width is determined byσ. To filter
orientation data, we use the method proposed by Lee and
Shin [14].

The rest of this section presents the details of our ap-
proach. In Section 3.2, we explain how the character’s mass
distribution is determined. In Sections 3.3 and 3.4, we de-
scribe how adjustments are calculated for ground frames
and flight frames, respectively.

3.2 Mass Distribution Estimation

The physical laws we are concerned with involve quan-
tities like the center of mass, angular momentum, and the
ZMP, all of which depend upon the mass distribution of the
character. However, the motion data itself contains no mass
information. We can nonetheless leverage this data by using
original, unedited motions to fit a mass distribution to the
character such that the relevant physical laws are satisfied.
Using this calculated mass distribution has the advantage
that applying our touch-up method to an unedited motion
will produce little to no change, as one would expect intu-
itively1. In modelling the mass distribution of the character,
we assume all the mass of a link is concentrated at its center
of mass. In practice, we have found that this simplification

1Note that anaveragemass distribution, such as one would find in the
biomechanics literature, may not have this property. In particular, there is
no reason to believe that the performer is of average build.

does not introduce a significant a error in comparison to us-
ing a larger set of mass points; see Section 5.

Since motions typically have many more ground frames
than flight frames, we use the ZMP constraints to determine
the mass distribution. We find values for themi’s such that,
to the extent possible, the ZMP is inside the support polygon
when the character is in contact with the ground. Specifi-
cally, if f(m, t) is the distance of the ZMP from the support
polygon on framet, we compute

min
m

∑

t∈FG

f(m, t), (5)

whereFG is the set of ground frames. This is a nonlinear
optimization, and so an iterative numerical procedure is re-
quired. We use the conjugate gradient method [20], with the
initial guess for the masses based on measured average val-
ues [24]. This computation is done as a preprocess, so there
are no speed penalties incurred when the user interacts with
the system.

3.3 Enforcing Ground Frame Constraints

To determine if a particular ground frame is physically
plausible, we first need to calculate its ZMP. Because the
ZMP equation involves acceleration terms, in general ad-
justments to one frame influence the ZMP on other frames.
However, since the per-frame displacements are filtered, we
ultimately generate a smooth displacement map, and hence
the magnitude of the acceleration will in general be small
relative to the overall amplitude of the displacement. For
this reason, we assume that the change in acceleration is
small enough to ignore, allowing us to satisfy the ZMP con-
straint on a frame-by-frame basis. Moreover, since the mo-
tion is touched-up through several iterations, the error atan
iteration due to this assumption can be compensated by the
next iteration.

To adjust a particular frame, we first apply a rotation to
the links inS2 andS3. The global orientation of the links
in S3 are then maintained by applying the inverse of this
rotation to the joint forming the boundary betweenS2 and
S3. This process requires the following parameters to be de-
termined: the center of rotation for the initial rotation, the
axis of this rotation, and the rotation angle. IfS1 contains
joints that are to remain fixed on the ground, then the cen-
ter of rotation is coincident with the joint borderingS1 and
S2. Otherwise, to preserve kinematic constraints we place
the center of rotation closer to the ground, namely, at the
projection of the ZMP onto the support polygon.

We now must determine the rotation axis and angle. Re-
fer to Figure 3. If we temporarily assume that the axis of
rotation is thez-axis, then a rotation byθ yields a new ZMP
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Figure 3. Adjusting a single frame to satisfy
the ZMP constraint. Note that the axis of rota-
tion is perpendicular to the line from the ZMP
to its projection onto the support polygon.

Z′ as follows:

Z ′
x = a1 cos θ − a2 sin θ + a3, and

Z ′
z = a4 cos θ + a5 sin θ + a6,

(6)

wherea1, · · · , a6 are coefficients (given in the Appendix)
determined bymi, ri, r̈i and the rotation centers. The
change in theZz is sufficiently smaller than the change in
Zx that it may be neglected (see Appendix). Using this
approximation, it is clear that the rotation axis should be
pointed perpendicular to the direction we would like the
ZMP to move. Hence the rotation axis is set parallel to the
ground plane and orthogonal to the line connecting the cur-
rent ZMP position to its projection onto the support poly-
gon. Once the rotation axis is chosen, we first transform the
coordinate frame to align the rotation axis intoz-axis. The
rotation angle is then easily computed from Equation (6):

arctan

(

±
√

a2

1
+ a2

2
− (Z ′

x − a3)2

Z ′
x − a3

)

− arctan

(

a2

a1

)

,

(7)
whereZ′ is now the projection of the ZMP onto the support
polygon. Of the two solutions, we choose the one with the
smaller absolute value, and to placeθ in the correct quad-
rant we compute the inverse tangent with theatan2 func-
tion in the C standard library. If the value in the square root
is negative, then the constraint cannot be satisfied exactly;
physically, this means that there is no rotation placing the
ZMP exactly atZ′. In this case we set the square root to
zero, which has the effect of placing the ZMP as close as
possible to its projection. We then transform the aligned
coordinate frame back to its initial coordinate frame.

Kinematic constraints such as footplants may be violated
as a result of adding the displacement map. To make sure

Flight GroundGround

Figure 4. For ground frames near a flight
stage, adjustments are computed as for the
flight frames and blended to zero.

they are once again satisfied, we employ the method of [12],
because of its efficiency. While this change may cause the
ZMP constraints to be broken (and they may be broken any-
way, due to scaling and filtering of the per-frame adjust-
ments), the motion is likely to still be improved overall, and
additional iterations can be used to remove remaining er-
rors.

3.4 Enforcing Flight Frame Constraints

We touch-up flight frames through two sequential ad-
justments, the first to enforce angular momentum conser-
vation and the second to make the center of mass follow a
parabolic trajectory. To facilitate simple, closed-form so-
lutions, the link setS3 is assumed empty. Also, to make
ground and flight stages connect more smoothly, we have
found it useful to adjust small neighborhoods of nearby
ground frames as if they were part of the flight stage. The
adjustments on these ground frames are smoothly blended
to zero as depicted in Figure 4. In our experiments we used
15 frames (1

2
second), although this value may be changed

by the user. Altering these ground frames may violate kine-
matic constraints; they are once again enforced using the
method in [12].

3.4.1 Conservation of Angular Momentum

We adjust each flight frame so its angular momentum is
the average angular momentumhCM over the surrounding
block of flight frames. The adjustment is achieved by rotat-
ing the links inS2. We denote the center of rotation asprot.
If S1 is empty,prot is the center of mass of the entire body.
Otherwise,prot is coincident with the joint at the boundary
of S1 andS2.

Let rc = prot − cM . Then the angular momentumhprot

aboutprot may be expressed in terms ofhCM and the linear
momentump as follows:

hprot
= hCM − rc × p.



The target angular momentumh∗
prot

about the center of ro-
tation is then given byh∗

prot
= hCM − rc × p. Using the

same reasoning as in Section 3.3, we assume the velocities
ṙi are approximately unchanged by the adjustment. Under
this assumption,p is unchanged, and hence the right hand
side is entirely calculable from known quantities. To com-
pute the rotation that should be applied to the links inS2,
we use the fact that

h∗
prot

= hS1
+ IS2

ω∗
S2

,

wherehS1
is the contribution of the links inS1 to the angu-

lar momentum,IS2
is the moment of inertia of the links in

S2
2, andω∗

S2
is the desired angular velocity. Assuming that

the necessary adjustment to the frame is reasonably small,
IS2

will remain approximately constant, and so we have

ω∗
S2

= IS2

−1
(

h∗
prot

− hS1

)

. (8)

If the time between frames is∆t, the current orientation of
S2 is q, and the orientation on the previous frame wasq′,
then we have the relationship

q = exp (ωS2
∆t/2)q′,

and hence the rotation applied toS2 is

∆q = exp
(

ω∗
S2

∆t/2
)

exp (−ωS2
∆t/2) , (9)

where we computeωS2
asI−1

S2
hS2

.

3.4.2 Parabolic Center of Mass Trajectory

Within a block of flight frames, the center of mass must fol-
low a parabolic path. We indirectly determine this parabola
using the durationT of the flight stage and the total dis-
placementd of the center of mass. The initial velocity at
the start of the flight stage is

v0 =
d

T
−

gT

2
,

and the desired trajectoryc∗M (t) of the center of mass is

c∗M (t) = cM (t0) + v0 · (t − t0) +
1

2
g · (t − t0)

2,

wheret0 is the time when the flight stage begins.
If S1 is empty, then we simply translate the root so the

center of mass is at the appropriate point. Otherwise we
rotateS2 about the joint borderingS1 andS2. We can write
the center of mass as

cM (t) =
1

∑

i mi

(

cM1
(t)
∑

i∈S1

mi + cM2
(t)
∑

i∈S2

mi

)

,

(10)
2The moment of inertia of a set of mass pointsS is computed based on

their configuration:IS =

∑

i∈S
mirir

T

i
, whereri is the vector from the

rotation center toith point mass.
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Figure 5. Rotating S2 to correct its center of
mass.

wherecM1
(t) andcM2

(t) are the centers of mass ofS1 and
S2, respectively. The goal positionc∗M2

of the center of
mass ofS2 is

c∗M2
(t) =

1
∑

i∈S2
mi

(

c∗M (t)
∑

i

mi − cM1
(t)
∑

i∈S1

mi

)

.

S2 is rotated socM2
(t) is as close as possible toc∗M2

, as
depicted in Figure 5.

4 Experimental Results

4.1 Parameter Settings

One of the advantages of our approach is that a user can
explicitly model human behavior using a small number of
parameters, and the method’s computational efficiency pro-
vides a quick feedback loop for tuning. Moreover, partic-
ular sets of parameters can be reused for different motions.
We primarily used two sets of default parameters, one for
ground frames and the other for flight frames. For ground
frames, parameters were based on the heuristic that overall
balancing is accomplished by tilting the whole body while
keeping the upper body relatively straight, with secondary
balancing actions in the torso and a final fine-tuning per-
formed with the arms. This translated into a sequence of
three adjustments. Our first adjustment placed the lower
body inS2 and the upper body inS3, and smoothing was
done with a filter kernel 40 frames wide to mimic smooth
behavior of lower body. The second adjustment placed the
lower body inS1 and the upper body inS2, and it used a
filter kernel 20 frames wide. Finally, the third adjustment
placed the arms inS2 and the rest of the body inS1, and it
used a 10-frame kernel since the arm should be able to in-
troduce more rapid acceleration. Theρ’s were respectively
set to 0.5, 0.3, and 0.2.
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Figure 6. Transition from walking to jogging:
(a) original, (b) touched up, and (c) captured.

During flight stages, we attempted to model tucking ac-
tions by separately modifying the lower body and the upper
body. That is, firstS2 had the lower body andS1 had the
upper body, and then we swapped the link sets. A final ad-
justment was then made with all links inS2. We set the first
two ρ’s to 0.3 and the finalρ to 1. While the ground stage
required relatively lengthy filtering windows to smooth over
noise in the ZMP calculations, we were able to use smaller
filtering windows for the flight stage: 10, 10, and 5, respec-
tively.

Of course, a user can always tweak a set of default pa-
rameters to obtain specific behaviors. While the default
parameters above worked well in our first, second, and
fourth experiments, in the third experiment (Section 4.4)
we wanted more of the adjustment in the upper body. We
achieved this simply by swapping the order of the first two
adjustments. The small number of parameters used by our
system, combined with our grouping scheme, facilitates this
sort of control. Moreover, since our system adjusts one
DOF at a time, the user can reproduce a particular behavior
in top-down manner; that is, one can first model the global
behavior and then add smaller details. In our experiments,
we used a PC with an Intel(R) Xeon 2.0 GHz processor and
1 GB memory.

4.2 Transition from Walking to Jogging

Our first experiment used a transition between walking
and jogging created with standard signal-blending meth-
ods [16]. In real life, a person would lean forward during
the transition so as not to be tipped backwards as they ac-
celerate. However, since no physical principles were used
when generating the transition, the character remains up-
right. Our method produced the expected lean. Figure 6
shows the result and compares it with a captured motion of
a live performer transitioning from walking to jogging. This
motion has 98 frames and it took 0.108 seconds to process
this motion.

4.3 Path-Edited Walking

In our second experiment, we adjusted a straight walk-
ing motion to follow a curved path using the method of [9].

a cb

Figure 7. Curved walking: (a) original, (b)
touched up, and (c) captured.
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Figure 8. Distance of the ZMP from the sup-
porting polygon before and after the touch-
up.

The resulting motion is largely correct, except the character
does not lean toward the center of curvature. In reality, cen-
tripetal forces would knock the character over. Our method
adds the expected inward tilting (Figure 7) and produces
a swing pattern in the upper body that compares favorably
with a captured motion of a person walking in a curve. For
this particular example, our method spent 0.172 seconds to
process 111 frames.

Figure 8 illustrates the distance between the ZMP and
the supporting polygon at each frame of both the initial mo-
tion and the touched-up motion. Here the character has been
scaled so its height is 10 units. Figure 9 shows the average
distance of ZMP from the supporting polygon at each iter-
ation. We adjusted the lower body with five iterations, and
iterated the touch-up for the upper body five times followed
by two iterations for the arms. Then plot shows that the
error gradually converges to zero.

4.4 Walking Uphill

Figure 10 shows a straight walking motion rotated so as
to travel uphill. The motion is clearly physically implausi-
ble; the character is out of balance. We used our method to
add a natural-looking forward lean to the walk. 0.211 sec-
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Figure 9. Average distance at each iteration.
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Figure 10. Climbing uphill: (a) original, and
(b) touched up.

onds were required to touch-up this motion, which has 166
frames.

4.5 Curved Jumping

For our final experiment, we used path editing to change
a straight jumping motion to one that followed a curved
trajectory. Such a trajectory is clearly infeasible; see Fig-
ure 11. Our editing algorithm produced a new motion that
started and ended in the same place but looked more real-
istic. Not only was the ballistic component of the motion
plausible, but the landing stage exhibited a balancing action
that one would expect from a human. For this experiment,
our system spent 0.14 sec to process 91 frames.

5 Discussion

This paper has presented a method for touching up an
edited motion to satisfy physical constraints. To control the
process, the user specifies a sequence of adjustments that
operate on different parts of the body and at different time
scales, allowing explicit modelling of human movement.
The algorithm itself is quite efficient, only requiring sim-
ple closed-form calculations, and our per-frame approach is
suitable for online applications.

It should be emphasized that our system is not intended
for demanding physics-based synthesis applications, such

a b

Figure 11. Curved jumping: (a) original, and
(b) touched up.

as the one discussed in [15]. The simplicity and speed of
our approach is made possible through approximations that
assume the total necessary adjustment is reasonably small.
Our system is geared primarily toward the addition of nu-
ances like balance-preserving leans, which are of small am-
plitude compared to the overall motion, tedious to keyframe
directly, and readily noticeable when absent.

We have represented each link of the character as a point
mass located at the center of the link. More accurate rep-
resentations may be desired. For example, it would be a
straightforward extension to represent links as either larger
clouds of points or solid geometric models. However, we
have performed some experiments that suggest this will not
yield qualitatively different results. We tried modellingeach
link as a box with a hundred points uniformly distributed in
its interior, where each point had the same mass and the total
mass was determined by the method of Section 3.2. For the
motions used in our experiments, the differences between
the angular momentum of the point-mass model and the box
model were less than 2%, and the maximum difference in
the computed ZMP position were less than 1% of the height
of the character.

To produce realistic results, we have found it critical that
the kinematic constraints be labelled accurately. Since the
support polygon is determined by which joints are on the
ground, mislabelling joint-ground contact states can yield
significant inaccuracies in the ZMP projection. Also, the
physical laws are very different for ground versus flight
frames. For example, Equation (4) is technically undefined
when the character is in flight — the force on the center
of mass in the vertical direction is identical to gravity, and
hence the denominators are zero. For motions with rela-
tively clear changes in contact state (e.g., locomotion), we
have found it to be straightforward for a human to accu-
rately identify the kinematic constraints. For motions that
are both highly dynamic and involve rapid changes in con-
tact state (say, breakdancing), it is less clear how our ap-
proach would fare.
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Appendix

The coefficients in Equation 6 are as follows:

σa1 =
∑

i∈S2

(αik2i
− βik1i

) +
∑

i∈S3

(αik4i
− βik3i

)

σa2 = −

∑

i∈S2

(αik1i
+ βik2i

) +
∑

i∈S3

(αik3i
+ βik4i

)

σa3 =
∑

i∈S1

(αixi − βiyi) +
∑

i∈S2

(αic
2

x − βic
2

y)

+
∑

i∈S3

(αi(xi − k4i
) − βi(yi − k3i

))

σa4 = −

∑

i∈S2

(γi(yi − c2

y)) +
∑

i∈S3

(γi(c
3

iy
− c2

y))

σa5 = −

∑

i∈S2

(γi(xi − c2

x)) +
∑

i∈S3

(γi(c
3

ix
− c2

x))

σa6 =
∑

i

αizi −

∑

i∈S1

(γiyi) −
∑

i∈S2

(γic
2

y)

−

∑

i∈S3

(βi(yi − k31
)),

where

k1i
= yi − c2

y,

k2i
= xi − c2

x,

k3i
= c3

iy
− c2

y,

k4i
= c3

ix
− c2

x,

σ =
∑

i

αi,

αi = mi(ÿi − gy),

βi = mi(ẍi − gx), and

γi = mi(z̈i − gz).

Herec3

i is the rotation center ofith link in S3 andc2 is that
of S2.

The differential change ofZx andZz is

σ∆Zx =
∑

i

(αi∆xi) −
∑

i

(βi∆yi)

σ∆Zz = −

∑

i

(γi∆yi).

Note that when the overall acceleration of the character is
small, α is significantly larger thanγ due to itsgy term.
Also, for motions where the character is mostly upright
(which is typically the case),∆xi is significantly greater

than∆yi since the center of the rotation for the adjustment
is aligned roughly vertically with the center of mass. Hence
in typical situations the dominant change in the ZMP is due
to ∆Zx, and∆Zz may be neglected. In practice, we have
found that even for uncommon motions such as flipping, it
is safe to ignore∆Zz.


