
Computer Puppetry: An Importance-Based
Approach

HYUN JOON SHIN, JEHEE LEE, and SUNG YONG SHIN
Korea Advanced Institute of Science & Technology
and
MICHAEL GLEICHER
University of Wisconsin—Madison

Computer puppetry maps the movements of a performer to an animated character in real-time. In
this article, we provide a comprehensive solution to the problem of transferring the observations of
the motion capture sensors to an animated character whose size and proportion may be different
from the performer’s. Our goal is to map as many of the important aspects of the motion to the
target character as possible, while meeting the online, real-time demands of computer puppetry. We
adopt a Kalman filter scheme that addresses motion capture noise issues in this setting. We provide
the notion of dynamic importance of an end-effector that allows us to determine what aspects of
the performance must be kept in the resulting motion. We introduce a novel inverse kinematics
solver that realizes these important aspects within tight real-time constraints. Our approach is
demonstrated by its application to broadcast television performances.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—animation

General Terms: Algorithm

Additional Key Words and Phrases: Human-figure animation, motion retargetting, performance-
based animation, real-time animation

1. INTRODUCTION

Computer puppetry [Sturman 1998] transforms the movements of a performer
to an animated character in real-time. The immediacy of computer puppetry
makes it useful for providing live performances and as a visualization tool for
traditional cinematic animation. However, this immediacy creates a number

The work of H. J. Shin, J. Lee, and S. Y. Shin was supported by the NRL (National Research Labo-
ratory) program of KISTEP (Korea Institute of Science and Technology Evaluation and Planning)
and KBS (Korean Broadcasting System).
The work of M. Gleicher was supported by National Science Foundation grant CCR-9984506,
Microsoft Research, and equipment donations from IBM and Intel.
Authors’ addresses: H. J. Shin, J. Lee, and S. Y. Shin, Division of Computer Science, Department
of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Tech-
nology, Taejon, Korea, e-mail: { joony,jehee,syshin}@jupiter.kaist.ac.kr; M. Gleicher, Department of
Computer Sciences, University of Wisconsin—Madison, Madison, WI, e-mail: gleicher@cs.wisc.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2001 ACM 0730-0301/01/0400–0067 $5.00

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001, Pages 67–94.

68 • H. J. Shin et al.

of challenges, as solutions to animation issues must be handled in an online
real-time manner. A computer puppetry system must capture the movements of
the performer, interpret the important aspects of this motion, and determine the
movements required to make the character reproduce these important aspects
of the performance.

The challenges of mapping a motion from the performer to the target char-
acter become more difficult when the target character is of a different size and
proportion than the performer [Badler et al. 1993; Bodenheimer et al. 1997; Choi
and Ko 2000, Gleicher 1998]. In such cases, the resulting motion of the charac-
ter cannot exactly duplicate the original performer’s. For example, we cannot
simultaneously match the original joint angles and end-effector positions. Gen-
erally, to preserve the important aspects of the original motion we must alter
the unimportant aspects of the motion. This process of adapting a motion for a
new character is called retargetting [Gleicher 1998; Lee and Shin 1999].

To date, solutions to computer puppetry issues have been limiting: either
restricting the range of puppets that can be used, or providing restrictive no-
tions of what is important in motions. The latter implicitly limits the range of
puppets since artifacts are introduced as the differences of the puppet from the
performer are increased.

In this article we provide techniques that address the challenges of com-
puter puppetry when the target character is different from the performer. The
following major animation issues are addressed in a manner that fits within
the online real-time nature of computer puppetry.

(1) The sensors used to capture the performer’s motion are often noisy. There-
fore, we provide a filtering technique that operates in an online manner
with the efficiency required to process whole body motions in real-time. We
apply a Kalman filter to rotation vectors, providing an orientation smooth-
ing technique that is more efficient than previous methods.

(2) The important aspects of the original performance must be determined such
that these details can be reproduced in the resulting motion. We provide
the notion of a dynamic importance measure that allows us to account for
changing situations even when the future is unknown.

(3) The resulting pose of the target character must be computed in a way that
recreates the important aspects of the original. We provide a fast inverse
kinematics solver that provides the necessary real-time performance and
predictability.

Our solutions have been used to realize a computer puppetry system that has
been used successfully to create animated television broadcasts.

We begin our discussion of computer puppetry by providing an overview of
our approach. We examine previous solutions with respect to the issues raised in
the overview. The components of our approach are then detailed in Sections 3
through 5. An analysis in Section 6 reviews why our approach avoids intro-
ducing unwanted artifacts such as temporal discontinuities. Our experimental
results are provided to support this approach. We conclude with a summary
and discussion of future directions.

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 69

Fig. 1. Overall structure.

2. OVERVIEW

Computer puppetry requires the captured movements of the performer to be
mapped to the target character in real-time. As shown in Figure 1, our approach
for online motion retargetting divides the task into phases. First, the filtering
phase “cleans” the sensor data to remove artifacts of the motion capture device.
The second phase examines this filtered motion and determines the importance
value of every end-effector in relation to its environment. The final phase com-
putes a pose for the target character that achieves as many of the important
aspects as possible. In this section, we provide an overview of these components
and survey their relationship to previous work.

2.1 Online Filtering of Orientations

In general, captured motion data are noisy. The real-time sensors required
for computer puppetry are particularly problematic in this regard. However,
because of the dense sampling rates and signal characteristics of motion capture
data, low-pass filtering is an effective tool to suppress noise in the captured data.
This is challenging for several reasons.

(1) Because computer puppetry is an online application, standard offline filters
cannot be employed.

(2) Because the orientation space is highly nonlinear, standard signal process-
ing methods cannot be applied directly.

(3) Because of the real-time demands, filtering should be performed on the
entire body very efficiently.

A Kalman filter predicts the future values and corrects them in accordance
with the actual input data to create a filtering scheme that operates in an
online manner. The technique is common in online applications, and was first
introduced to the graphics community by Friedman et al. [1991]. Such a filter
cannot be directly applied to rotation data without accounting for the nonlinear-
ity of the orientation space. To address this problem, Welch and Bishop [1997]
linearized the orientation space by locally parameterizing the incremental ori-
entation change with Euler angles, based on the result in Azarbayejani and
Pentland [1995] and Broida and Chellapa [1986]. Because they were interested
only in tracking the head motion, they were less concerned with efficiency than
we are and therefore addressed only issues 1 and 2 above. In Section 3 we
provide a modified Kalman filter. To achieve real-time performance, we locally

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

70 • H. J. Shin et al.

parameterize the incremental orientation changes with rotation vectors instead
of the Euler angles used in Welch and Bishop [1997].

2.2 Importance Determination

The goal of computer puppetry is to create the movements of a target character
based on the performer’s movements. If the target character is quite different
from the performer, there may not be a direct mapping. Indirect mappings are
common in traditional puppetry; for example, a marionette is controlled by
strings that pull on its end-effectors. Computer equivalents may create arbi-
trary mappings from sensor input to character parameters. For example, the
Alive system from Protozoa [1999] allows arbitrary Scheme1 functions [Hanson
2000] to be written to perform mapping.

Our interest is in recreating characters with human form, so the target char-
acter has equivalent degrees of freedom as a simplified model of a human per-
former. In this article, we consider characters that are articulated figures with
identical connectivity, so that it is possible to transfer the captured joint angles
directly to the target character. Despite this structural equivalence, the result-
ing motion will not match the performer’s unless the character has an identical
size and proportion. There will be some level of mismatching even for charac-
ters that have the same size and proportion as the performer, since we simplify
the real human by a hierarchy of rigid bodies. One approach to performance
animation, described by Molet et al. [1996, 1999], models the character to be
as similar to the performer as possible. Bodenheimer et al. [1997] presented a
way to determine the segment lengths of a character that best fit the captured
motion data while discarding outliers in these data by a robust estimation tech-
nique. If the segment proportions of the character are kept the same as those of
the performer, a motion adaptation can often be achieved by scaling the position
data according to the size difference and then by translating the character glob-
ally. Restricting the proportions of the character precludes the use of stylized
cartoon characters, unless we can find similarly proportioned performers.

When the virtual character and performer have different sizes and propor-
tions, not all aspects of the motions can be preserved during mapping. At the
lowest level, it is simply not possible to mimic both the locations of the end-
effectors and the joint angles. A system must make choices as to which aspects
of the motion should be preserved and which should be allowed to change. We
call an approach to motion retargetting that makes this choice explicitly an
importance-based approach.

Nonimportance-based approaches make implicit choices as to what should
be preserved during retargetting. For example, the most naive implementation
of retargetting simply transfers the parameter (joint angles and root position)
values from the performer to the target character. Such a scheme implicitly
selects the values of the parameters to be important and, therefore, the positions
of the end-effectors to be unimportant. This is a poor choice when the character
must interact with other objects in the world, such as the floor.

1Scheme is a statically scoped and properly tail-recursive dialect of the Lisp programming language
invented by Guy Lewis Steele, Jr. and Gerald Jay Sussman.

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 71

Fig. 2. Artifacts of position-based approach.

A common approach to motion retargetting matches the end-effector posi-
tions of the character to those of the performer. Such an approach has the
advantage that it preserves the interactions between the character and its en-
vironment. Badler et al. [1993] used only the position data of hands and feet
to adopt them to a virtual character with an inverse kinematics technique.
Residual degrees of freedom are fixed by exploiting biomechanical knowledge.
Choi et al. [2000] adopted the idea of inverse rate control [Whitney 1969] to
compute the changes in joint angles corresponding to those in end-effector po-
sitions while imitating the captured joint angles by exploiting the kinematic
redundancy.

Implicit in end-effector schemes is the notion that end-effector positions are
more important than joint angles; that is, joint angles should be changed to
achieve end-effector positioning goals. While this prioritization is often prefer-
able to the reverse, it is not without its flaws. Consider the example of Figure 2.
In this example, the importance of the foot positions is properly reflected, while
that of the hand positions is overstated.

The central observation of an importance-based approach is that what is
important can only be determined by the context of the motion. At each in-
stant, a system must somehow select among the many possible things that are
important, so it can change the aspects that are not important.

Constraint-based approaches to motion adaptation explicitly represent de-
tails of the motion that are important as geometric constraints. The space-
time motion editing and retargetting system of Gleicher [1997, 1998] proposed
the notion of preserving the important qualities of the motion by changing
unimportant ones, where the important qualities were defined by constraints.
Lee and Shin’s [1999] hierarchical motion editing provided similar results us-
ing a different underlying implementation. Popovic and Witkin [1999] demon-
strated results that made the kinetic aspects of the original motion important to
preserve.

The methods mentioned in the previous paragraph are all offline in that they
examine the entire motion simultaneously in processing. This offline nature is
also implicit in the problem formulation, as well as in the solution method. All
of the methods require the constraints to be identified before the motion can be
processed. The decisions as to what is important in a motion must be known be-
fore processing can occur in these previous constraint-based approaches. This is
infeasible in online applications. Bindiganavale and Badler [1998] introduced

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

72 • H. J. Shin et al.

a scheme to generate constraints automatically. However, their motion adap-
tation is done in an offline manner.

For computer puppetry, we must decide what is important in a given motion
in an online manner. We analyze the importance of each end-effector position
based on several factors discussed in Section 4. For example, the proximity of an
end-effector position to its surrounding environment can be used as a predictor
of its importance. The importance of an end-effector is inversely proportional
to its distance to the nearest object in the environment. A key notion of this
work is that the power of an importance-based approach, already demonstrated
in offline constraint-based systems, can be brought to the online domain of
computer puppetry.

2.3 Inverse Kinematics

We employ an inverse kinematics (IK) solver to compute the pose of the target
character. IK has become a standard technique in animation systems to control
the pose of a character based on the positions of its end-effectors.

IK solvers can be divided into two categories: analytic and numerical solvers.
Most industrial robot manipulators are designed to have analytic solutions for
efficient and robust control. Paden [1986] divided an IK problem into a se-
ries of simpler subproblems each of which has closed-form solutions. Korein
and Badler [1982] showed that the IK problem of a human limb allows an
analytic solution, and Tolani et al. [2000] derived their actual solutions. A nu-
merical method relies on an iterative process to obtain a solution. Girard and
Maciejewski [1985] generated the locomotion of a legged figure using a pseu-
doinverse of a Jacobian matrix. Based on neurophysiology, Koga et al. [1994]
produced an experimentally good initial guess for a numerical procedure.
Gullapalli et al. [1996] reduced the dimensionality of the redundant control
system using synergies as a basis control set. Zhao and Badler [1994] formu-
lated the IK problem as a constrained nonlinear optimization problem. Rose
et al. [1996] extended this formulation to cover constraints that hold over an
interval. To prevent the figure from making unnatural motions and reduce the
redundancy of the IK problem, Badler et al. [1993] incorporated biomechanical
information.

For computer puppetry, we make a number of demands on IK that require
the development of a novel solver. First, we must achieve real-time performance
on the entire body of the character. Second, we need the solver to provide pre-
dictably consistent solutions: small changes to the problems should provide
similar answers. Finally, the solver must be able to account for the importances
of the end-effectors that are determined dynamically in our system.

Our IK solver is discussed in Section 5. To solve an IK problem in real-time,
we divide it into three subproblems: root position estimation, body posture
computation, and limb posture computation. First, the root position of a virtual
character is computed to provide a good initial guess for the body posture com-
putation. If needed, we then adopt numerical optimization to refine the body
posture, which consists of the root position, the root orientation, and the pos-
ture of the upper body. Finally, we use an analytic IK solver to compute the

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 73

limb postures and blend them with the captured limb postures. Our solution
for each of these subproblems is designed to incorporate the importance value
of each end-effector so that it tries to preserve the end-effector position when
its importance value is high, while trying to preserve the captured joint angles
of the corresponding limb, otherwise.

3. MOTION FILTERING

In general, motion capture devices capable of providing real-time performance
are particularly susceptible to noise. Magnetic motion capture systems, which
are widely used for real-time motion capture, suffer from the interference of
low-frequency current-generating devices such as a CRT-type display. Thus,
there always exists some level of jitter, that is, rapid random changes in re-
ported positions and orientations that do not correspond to actual movements
[Ascension Technology 1996]. Since online motion retargetting requires a high
quality input motion as the reference of an output motion, filtering is an es-
sential part. In the context of computer puppetry, filtering must be real-time,
online, and performed on orientations as well as positions.

For online filtering, Kalman filters [Azuma and Bishop 1994; Friedmann
et al. 1991; Welch and Bishop 1997] are often employed because of their capa-
bility of prediction and correction, that is, predicting future input data from
their history and correcting them by incorporating actual input data. In a stan-
dard (extended) Kalman filter, its state would completely describe the posi-
tion of a sensor and its velocity. However, because of the nonlinearity of the
orientation space, this scheme can hardly be applied directly to orientation
data. Adopting the results in Azarbayejani and Pentland [1995] and Broida
and Chellappa [1986], Welch and Bishop [1997] parameterize an incremental
orientation change with Euler angles which are regarded as a three-vector to
filter. The filtered Euler angles are transformed back to an incremental orienta-
tion change in the nonlinear space to update the target orientation at each time
step. However, the conversion between an incremental orientation change and
its equivalent Euler angles is inefficient. Moreover, recent motion capture de-
vices measure orientations directly in unit quaternions. Therefore, differently
from Welch and Bishop, we parameterize incremental orientation changes with
rotation vectors.

To facilitate our scheme, we maintain the target orientation qe externally to
the Kalman filter together with the internal state vector x. In particular, qe is
represented by an unit quaternion:

qe= (w (x y z)),

where w2+ x2+ y2+ z2= 1. The internal state x consists of the position p, the
rotation vector r, and their derivatives ṗ and ṙ:

x= (pT ṗT rT ṙT)T . (1)

Here the rotation vector r parameterizes the incremental orientation change
of the actual sensor input q(t) at the current frame with respect to the target
orientation qe(t − 1t) at its previous frame. Therefore, r (t) can be measured

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

74 • H. J. Shin et al.

through the logarithmic map [Kim et al. 1995]:

r (t) = ln
(
q−1

e (t−1t)q(t)
)
. (2)

At each filter update step, r(t) in the state is converted into its incremental
orientation change equivalent er(t) through the exponential map to update the
external target orientation qe and then reset to zero. Therefore, incremental
orientation changes are linearized for our (extended) Kalman filter, centered
about zero.

Our dynamic model predicts the current position and the rotation by
first-order approximations. Therefore, the prediction x̂−(t) of the state through
the state transition matrix A can be described:

x̂−(t)=A x̂ (t −1t)=

I3 1tI3 03 03

03 I3 03 03

03 03 I3 1tI3

03 03 03 I3

 x̂(t−1t), (3)

where I3 and 03 are, respectively, 3× 3 identity and zero matrices. Similarly,
the error covariance matrix P(t) is predicted:

P−(t) = AP(t −1t)AT +Q. (4)

Here, P(t) = E[(x̂−(t) − x(t))(x̂−(t) − x(t))T], which models estimation uncer-
tainty. The process noise covariance matrix Q characterizes the accuracy of the
dynamic model. In our implementation, we simplify Q as

Q =

q1I3 q2I3 03 03

q3I3 q4I3 03 03

03 03 q5I3 q6I3

03 03 q7I3 q8I3

. (5)

When the values of qis are small, the filter tends to suppress the details of the
captured motion. On the other hand, if they are large, it tends to preserve the
captured motion. Therefore, qis should be tuned interactively for a good filter
response.

In practice, we sample motion signals at a higher frame rate (120 Hz) than
that actually required for animation to avoid the overshooting which occasion-
ally occurs in constant velocity models, especially when the velocity changes
suddenly. Our measurement consists of the position of a sensor and its incre-
mental orientation change represented by a rotation vector; that is, z = (pT rT)T

which can be obtained from the state vector directly. Therefore, our measure-
ment can be estimated from the predicted state:

ẑ(t) = Hx̂−(t) =
[

I3 03 03 03

03 03 I3 03

]
x̂−(t). (6)

Now, we are ready to compute the Kalman gain K(t):

K(t) = P−(t)HT (HP−(t)HT +R)−1, (7)

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 75

Fig. 3. Two different situations.

where R is the measurement noise covariance matrix. That matrix is either
given from the device manufacturer or acquired by offline measurement. In
practice, we measure the noise while holding the sensor stationary to compute
its noise covariance matrix R.

The residual between the actual sensor measurement z(t) and its estimation
ẑ(t) from Eq. (6) is:

1z(t)= z(t)− ẑ(t). (8)

Then, the predicted state and the error covariance matrix are corrected as
follows,

x̂(t) = x̂−(t)+K(t)1z(t),

and (9)P(t) = (I−K(t)H)P−(t).

We finish filtering at each frame by updating the external target orientation
using the rotation vector r̂(t). Taking the exponential map of the rotation vector
and postmultiplying it with the external target orientation q̂e(t − 1t) at the
previous frame, we can find the final target orientation q̂e(t) at the current
frame:

q̂e(t) = q̂e(t −1t)er̂(t). (9)

The rotation vector r̂(t) is reset to zero for filtering at the next frame.

4. IMPORTANCE ANALYSIS

When the performer and the target character do not have the same size and
proportion, not all aspects of the original motion can be preserved. A system
must determine which aspects of the motion are important to preserve, so that
other less important aspects may be changed to preserve them.

For an articulated figure, differing segment lengths means that the joint
angles and end-effector positions cannot be recreated simultaneously. There
are three obvious choices of motion aspects to preserve:

(1) the position of the root of the character,
(2) the joint angles, and
(3) the positions of the end-effectors.

There exist situations under which any of these three might be most important.
For example, observe the arm postures in Figure 3. Figure 3(a) shows a captured
arm posture from the performer that does not touch any object. Retargetting

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

76 • H. J. Shin et al.

this motion to a virtual character, we prefer the posture in Figure 3(b) that
preserves the joint angles. However, the position of a hand needs to be preserved
when it touches an object as shown in Figures 3(c) and 3(d).

Our system must choose which of the three choices above is most important in
a dynamic online way. To make this decision, we employ a number of heuristics.

(1) The position of the root is most likely not important. This heuristic comes
from the observation that the choice of making the root is arbitrary: we
could have just as easily chosen any point as the root. In fact, preserving
the root position may change some important parameters that character-
ize a posture itself. Because of this, the importance of the root position
is downplayed in many approaches that consider importance. As with our
solver, described in Section 5, the retargetting system of Gleicher [1998]
uses a heuristic that attempts to satisfy the constraints (generally on the
end-effectors) as much as possible by moving the root position.

(2) If an end-effector is interacting with another object (such as the floor), then
its position is likely to be important. Therefore, proximity to objects in the
environment should increase the importance of an end-effector.

(3) If an end-effector will be interacting with another object in the near future,
then its position is important (as it is likely to be getting ready for the
interaction). Therefore, we incorporate the predicted proximity of an end-
effector to an object in the measure of its importance.

(4) If an end-effector has just finished interacting with another object and is
moving away from it, its position may not be as important as its proximity
suggests.

(5) If the end-effector is not in proximity to another object, it is likely that its
position is unimportant.

In order to measure the interactivity of an end-effector with its environment,
we introduce the notion of importance of an end-effector, which can be deter-
mined by analyzing the posture of the character in relation to the environment.
In particular, the distance from the end-effector to objects in the environment is
a good measure of interaction possibility. That is, the end-effector is more likely
to interact with the environment when it is closer to objects in the environment.
Therefore, as the end-effector approaches an object, its importance value should
be increased continuously to enforce the geometric constraints created by the
object. As the end-effector moves away from the object, the importance value
should be decreased continuously to preserve the captured posture of the cor-
responding limb. Moreover, it is desirable to develop the distance measure to
reflect the trajectory of an end-effector and its dynamic nature.

Given end-effector ei of the performer and object oj in the real space, let dij(t)
be Euclidean distance between them at time t.oj has its corresponding object
in the virtual space. The new distance function d+ij (t) is defined as

d+ij (t) = dij(t)+ dij(t + κ1t)
2

(11)

for small positive κ and 1t.d+ij (t) represents the average of the current

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 77

Fig. 4. Trajectories of the left foot generated by varying importance measure.

distance and the predicted distance after κ1t time. For small 1t, d+ij (t) can
be approximated as

d+ij (t) ≈ dij(t)+ (dij(t)+ κ1t
.

dij(t))
2

= dij(t)+ κ1t
2

.
dij(t) = dij(t)+ λ .

dij(t), (12)

where
.

dij(t) is the first derivative of dij(t). d+ij (t) reflects both the distance at t
from ei to oj and its changing rate

.
dij(t). By varying λwe can control the degree

of prediction for d+ij (t).
For an example, Figure 4 exhibits a jumping motion adapted with λ = 0 and

λ = 0.15. The legs of the character are shorter than the performer’s. For λ = 0,
the left foot trajectory of the character (dashed line) agrees with that of the
performer (thicker line) only near the floor. For λ = 0.15, the former follows the
latter while approaching down to the floor (solid line). The foot is moving off
the captured trajectory to preserve the captured joint angles, either near the
peak (λ = 0) or approaching to the peak (λ = 0.15).

Let Dij denote the maximum distance within which ei is influenced by oj .
Then, the normalized distance d̄ ij is defined as

d̄ ij =
d+ij
Dij
. (13)

An animator assigns Dij for the pair of end-effector ei and object oj in the
environment in accordance with a given animation context. A wider range of
Dij shows a sensitive interaction of end-effector ei with object oj . On the other
hand, a narrower range exhibits that ei moves independently of oj unless ei is
close to oj .

The importance is zero when the normalized distance d̄ ij is greater than or
equal to one; that is, ei is out of the influence of oj . As the distance decreases
to zero, the importance increases to one. Thus, the importance function p of
the normalized distance d̄ ij can be designed with the condition of p(1) = 0 and
p(0) = 1. In addition, we set its derivatives there to be zero, that is, p′(0) = 0
and p′(1) = 0, to reduce the rate of change of the function p at both extreme
points. Thus, the importance of ei with respect to oj is represented by the cubic

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

78 • H. J. Shin et al.

polynomial function p satisfying those conditions. That is,

p(d̄ ij) =
{

2d̄3
ij − 3d̄2

ij + 1, if d̄ ij < 1,

0, otherwise.
(14)

The importance value wi of end-effector ei over all external objects can be de-
fined as the maximum of them:

wi = max
j

(p(d̄ ij)). (15)

It requires much time to compute the distance d̄ ij from each end-effector ei of
a virtual character to every object oj in the environment, in particular, for a com-
plex surrounding environment. To achieve a real-time performance, we need to
minimize the number of possible objects that interact with each end-effector in
accordance with an animation context. An object that is hardly touched during
the animation may be eliminated in importance value computation. Moreover,
objects may also be described approximately with simpler geometry for easy
distance computation.

5. REAL-TIME INVERSE KINEMATICS SOLVER

For computer puppetry, we must position the character such that the important
aspects of a captured motion are preserved while providing real-time perfor-
mance. For our application, this demands computing the character’s posture 30
times per second. Therefore, we need an IK solver that not only can incorpo-
rate the importance measures of the previous section, but also has real-time
performance even in the worst case.

As discussed in Section 2.3, previous IK solution methods do not meet the
demands of computer puppetry. Analytic methods provide guaranteed perfor-
mance but cannot incorporate importance measures required for retargetting.
Numerical solvers can include the importance metrics, but they hardly guar-
antee real-time performance. To meet these two conflicting demands, we have
developed a hybrid solver.

In this section, we present a fast IK algorithm that is specialized for
humanlike articulated characters. We divide the IK process into three subprob-
lems: root position estimation, body posture computation, and limb posture
computation. For each step, we give a method that is specialized to achieve
high performance. This leads us to employ inexpensive closed-form solutions
if applicable, and reserve numerical optimization for the case in which it is
absolutely required.

5.1 Root Position Estimation

In order to position the end-effectors of a character, an IK solver may change
the root position of the character or adjust its joint angles. As mentioned in
Section 4, the root of the character has been arbitrarily chosen, and thus is
rarely the most important aspect to preserve. Therefore, our solver first at-
tempts to make the character satisfy the constraints as much as possible by
moving the root position. This strategy was demonstrated for retargetting by
Gleicher [1998].

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 79

Fig. 5. Reachable ranges: range of hand, shoulder, and root position.

Beginning with the positional offset has an important advantage: unlike
angular changes that cause nonlinear equations to compute, positional offset
computation is trivial and therefore efficient. Let pe

i represent the position of
the ith end-effector when the character is posed with the captured joint angles,
and pg

i denote the goal position for that end-effector. The displacement vector
di = pg

i −pe
i measures how much the solver must move an end-effector to reach

its goal. If there were only one end-effector with a specified goal position, this
constraint could be met by simply moving the character’s root position by the
displacement vector, where the joint angles would not need to be changed.

In the event that multiple end-effectors are to be positioned, we compute the
weighted average of the displacements to find an initial offset d as follows:

d =
∑n

i widi∑n
i wi

, (16)

where wi is the importance of the ith end-effector. In the (unlikely) event that
all end-effectors require the same displacement, this displacement will solve
all of the constraints. More likely, the joint angles will need to be adjusted so
that all of the end-effector goals can be met.

While the weighted averaging attempts to position the root to meet all of the
goals simultaneously, it does not necessarily guarantee that all goals can be
met. Once the root position is fixed, the character will try to meet the goals by
straightening its joints. Therefore, the root position must be chosen such that
all end-effector goals are “reachable,” that is, close enough that straightening
limbs will be sufficient, while being as close to the initial estimate as possible.

As shown in the left column of Figure 5, the reachable range of the hand
can be represented as a 3-D ball centered at the shoulder, and its radius is
the length of the arm. The middle column of Figure 5 shows that the same
ball centered at the goal position represents the range of the shoulder joint
position. Finally, with the orientations of the pelvis and the waist fixed as in
the captured posture, we compute the range of the root position as illustrated
in the right column of Figure 5. Let ds denote the vector from the shoulder to

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

80 • H. J. Shin et al.

Fig. 6. Closest points: (a) on a sphere; (b) on a circle; (c) at a vertex.

the root position. The translation of the ball at the goal position pc by the vector
ds yields the ball that gives the range of the root position. If the root is in this
ball, the character can reach the goal position by stretching the arm only.

When the importance value of an end-effector is low, the root position does not
need to be modified to make this end-effector reachable at its goal. Therefore,
the range corresponding to this end-effector may be larger than the actual
reachable range. To avoid an unnecessary offset of the root position, we enlarge
the size of the ball, so that its size is inversely proportional to the importance
value. The increased radius ri corresponding to the ith limb is given as

ri(li, wi)= li

wi
, (17)

where li is the length of the ith limb and wi is its importance value.
Since the virtual character has four end-effectors, we have four corresponding

3-D balls. The common intersection of these balls is the range of the root position
that makes all of the end-effectors reachable to their goal positions. As an initial
guess for the root position, we choose the closest point from the offset root
position to this intersection to preserve the posture of the performer as much
as possible. Thus, the root position estimation is formulated as the problem of
finding the closest point from a given position to the common intersection of
four 3-D balls.

The intersection of 3-D balls consists of three surface elements as shown in
Figure 6: spherical regions, circular edges, and vertices. A spherical region is a
part of a sphere bounded by a sequence of spherical arcs. A circular edge is a
part of a circle that is the intersection of two spheres. A vertex is determined
by the common intersection of three spheres.

There are two cases depending on the offset root position with respect to the
intersection. If this position is contained in the interior of the intersection, then
the position itself is the closest point to the intersection. Suppose that it is not
contained in the interior. Then the closest point must lie on the boundary of the
intersection. Therefore, we may enumerate all possible surface elements due
to the intersection of the four spheres corresponding to the bounding surfaces
of the balls, respectively.

Three spheres determine at most two vertices. Since there are four ways of
choosing a triple out of four spheres, we have a maximum of eight vertices.
Every pair of vertices can possibly admit a spherical edge, and thus we have
at most 24 edges. However, these are completely included in a maximum of
six circles. Moreover, each spherical face is completely contained in one of four
spheres. Instead of enumerating all surface elements, we equivalently check
those spheres, circles, and vertices.

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 81

We first compute the closest point to each sphere from the offset root posi-
tion. Among these points, if any, we choose the point that is contained in the
intersection and the closest to the root position. If such a point does not exist,
then we compute the set of points; each is the closest from the root position to
each circle. Out of them, we choose the one that is closest to the root position
and in the intersection. Suppose that such a point does not exist. Then one
of vertices may be the solution. We choose the one closest to the root position
among those contained in the intersection. For more details in estimating the
initial root position, refer to the Appendix. If no common intersection of the
balls exists, we discard the spheres that do not intersect the one whose corre-
sponding end-effector has the largest importance value and repeat this process
for the remaining balls.

5.2 Body Posture Computation

If the initial root position estimate does not allow all limbs to be reachable to the
goal positions, we need to adjust the body posture consisting of the root position,
the root orientation, and the posture of the upper body. Since those segments
are tightly coupled, a numerical method is adopted to find their configurations.
Numerical methods hardly guarantee a real-time response for computing an
inverse kinematics solution of an entire human figure, while it is practical to
solve only a small part of the IK problem numerically, and to employ analytic
methods for the rest of the task. Such a hybrid solver was demonstrated in Lee
and Shin [1999].

We formulate a restricted version of the IK problem for determining the pos-
ture of the body separately from the problem of computing the postures of the
limbs. The body posture of a character can be written as v = (p0, q0, q1, . . . , qn),
where p0 and q0 are the position and the orientation of the root, respectively.
q j , 1≤ j ≤n, are the orientations of body segments such as the waist and
the upper body. When the character has a rigid torso, v is simply reduced to
(p0, q0, q1), since n= 1.

The objective function consists of two terms:

E = Eg +αEp, (18)

where the first term Eg is for making the end-effectors reachable to their goals
and the last term Ep is to preserve the captured posture. We explain those two
terms in detail.

Eg is the sum of Eis, each of which is a function of the distance from the
ith end-effector ei to its goal position. Provided with the shoulder (or the coxa)
position ps

i of the ith limb and its goal position pg
i , Ei is given as

Ei =
{

0, if
∥∥ps

i − pg
i

∥∥ < li,(∥∥ps
i − pg

i

∥∥− li
)2, otherwise,

(19)

where li is the length of the ith limb when it is maximally stretched. Ei is zero
when the end-effector ei is able to reach its goal position. Recall that an end-
effector of a low importance value has no need to preserve its captured position.
Thus, to relax the constraint on such an end-effector we enlarge the range of

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

82 • H. J. Shin et al.

Fig. 7. Residual degree of freedom of shoulder.

the shoulder. By substituting the length li of each limb with the new radius
ri = li/wi as mentioned in Section 6.1, we have

Ei =
{

0, if
∥∥ps

i − pg
i

∥∥ < ri,(∥∥ps
i − pg

i

∥∥− ri
)2, otherwise.

Note that with the importance value wi of one, Ei plays a role of pulling the
end-effector to reach the goal position exactly. On the other hand, as importance
value wi approaches zero, the ith end-effector keeps the original posture by
preserving the joint angles.

Letting q∗j and p∗0 be the captured orientation of the j th segment and the
estimated position of the root, respectively, Ep is a weighted sum of the squared
geodesic distances between q j and q∗j for all 0 ≤ j ≤ n, and the squared distance
between p0 and p∗0:

Ep =
n∑

j=0

β j
∥∥ ln

(
q−1

j q∗j
)∥∥2 + γ∥∥p0 − p∗0

∥∥2
. (20)

Minimizing Ep preserves the captured motion as much as possible. We find
a solution that minimizes the objective function by employing the conjugate
gradient method. Here, we use the captured joint angles and the root position
estimated in Section 5.1 as the initial guess for our optimization.

5.3 Limb Postures Computation

Given the position of a shoulder and that of the goal together with a hand
orientation, we present the way our IK solver computes the configuration of
an arm. The configuration of a leg can be computed similarly from the hip
position, foot position, and orientation. As pointed out by Tolani et al. [1996] and
Lee et al. [1999], the angle between the brachium of the arm and its forearm can
be computed uniquely from the distance between the shoulder and the goal. We
adjust the shoulder joint to locate the wrist at the goal position. Even with the
wrist position fixed at the goal position, the shoulder joint still has one residual
degree of freedom that rotates the elbow about the axis passing through the
shoulder and the wrist. Korein and Badler [1982] have parameterized that
degree of freedom by the swivel angle θ . As illustrated in Figure 7, the elbow
traces a circle called the elbow circle as θ varies. Once θ is chosen, the shoulder
joint is uniquely determined, and the joint angle of the wrist is also fixed to
satisfy the given hand orientation.

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 83

This swivel angle θ can be described with a unit quaternion formulation. The
unit quaternion q(θ) representing the rotation by θ about the axis n is eθn/2 for
−π < θ ≤ π , where θ is measured from an arbitrarily chosen reference point
on the circle. Denoting this point by a unit quaternion q0, we have

q(θ) = eθn/2q0. (21)

Unlike Lee and Shin [1999], who determine θ by a numerical optimization, we
solve for θ analytically so that the arm posture deviates as little as possible from
the captured posture. Thus, we choose θ that minimizes the geodesic distance φ
in [0, π] from the captured shoulder joint orientation q∗ to q(θ). Note that both
q∗ and −q∗ represent the same orientation, due to the antipodal equivalence
of the unit quaternion space. Therefore, we need to find θ that minimizes the
function φ(θ):

φ(θ) = min(arccos(q∗ · q(θ)), arccos(−q∗ · q(θ))) = arccos(|q∗ · q(θ)|). (22)

φ(θ) is minimized when |q∗ ·q(θ)| is maximized. By definition, eθn/2= (cos θ/2,
n sin θ/2). Let q∗ = (w∗, v∗) and q0 = (w0, v0). Then, the absolute value of their
inner product is given as∣∣q∗ · q(θ)

∣∣ = ∣∣∣∣(w∗, v∗) ·
{(

cos
θ

2
, n sin

θ

2

)
(w0, v0)

}∣∣∣∣
=
∣∣∣∣a cos

θ

2
+ bsin

θ

2

∣∣∣∣
=
√

a2 + b2

∣∣∣∣ sin
(
θ

2
+ α

)∣∣∣∣, (23)

where

α = tan−1 a
b

a = w∗w0 + v∗ · v0

b = w0n · v∗ −w∗n · v0 + v∗ · (n× v0) .

The absolute value of the sine function has the maximum at π/2 and −π/2.
Thus, |q∗ · q(θ)| is maximized either at q(−2α + π) or at q(−2α − π). Since the
distance of two points in the unit quaternion space is inversely proportional
to their dot product, q(−2α + π) is the closest from q∗ if q∗ ·q(−2α + π) >
q∗ ·q(−2α − π); otherwise, q(−2α − π) is the closest.

Now, with both captured and computed limb postures available, we blend
them to obtain a realistic motion. For this purpose, we perform spherical linear
interpolation between each captured joint orientation of a limb with its corre-
sponding IK solution. Let qik and q∗ik be the orientation of the kth joint in the
ith limb obtained from the IK solver and that from the captured posture. Then,
the blended joint angle q′ik can be described by spherical linear interpolation as

q′ik = slerp(q∗ik, qik, wi)

= ewi ln
(

qikq∗−1
ik

)
q∗ik, (24)

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

84 • H. J. Shin et al.

where wi is the importance value of the ith end-effector. That is, the limb with
a high importance value can preserve the end-effector position, and that with
a low importance value can preserve the captured joint angles.

The nonpenetration condition may be violated since the posture is blended
regardless of the constraints. Thus the blended posture has to be adjusted ex-
plicitly to prevent unwanted penetration. Provided with the predefined external
objects for each end-effector, this violation can be detected easily. Before pen-
etrating an object, the end-effector touches the boundary of the object. Thus,
the preferable position of the end-effector is the intersection point of the object
boundary and the ray from the shoulder to the end-effector during penetration.
This position moves continuously on the object in accordance with the end-
effector movement. The penetration problem can be effectively eliminated by
adjusting the limb posture using the IK solver for limbs.

6. ANALYSIS OF TEMPORAL CONSTRAINTS

In retargetting motions, we must preserve important temporal aspects of the
motions along with spatial aspects. Gleicher [1998] emphasizes the importance
of avoiding the introduction of high frequencies during adaptation. Both this
work and the work of Lee and Shin [1999] provide approaches for avoiding the
addition of discontinuities during adaptation. Unfortunately, both schemes rely
on examining durations of motions and therefore can only be applied in offline
applications. In this section, we show that the approach presented in this article
does not introduce unwanted discontinuities into the resulting motion.

To begin, we must assume that the initial motion is free of unwanted dis-
continuities. This assumption is not restrictive because the movement of the
performer is continuous. Discontinuities may be introduced by noise in the cap-
ture process, but these are generally removed by the filtering process described
in Section 3. The continuity of the initial motion applies to both the captured
joint angles and the end-effector positions.

Given continuous paths for the end-effectors, our IK solver will provide con-
tinuous trajectories for the parameters. Achieving this requires the solver to
make consistent changes. That is, similar inputs to the solver must provide
similar outputs. To guarantee this consistency, our IK solver tries to find the
solution in an online manner so that it is close to the filtered input posture,
while satisfying the kinematic constraints.

For our IK solver, the only kinematic constraints are the positions of end-
effectors. These constraints are specified at every frame as temporal con-
straints. As an end-effector is approaching an object in the environment, its
distance to the object is monotonically decreasing. Similarly, the distance is
monotonically increasing as the end-effector is departing from the object. When
the end-effector touches (or passes by) the object, the monotonicity changes but
the distance function is still continuous at that instance.

For any continuous distance function, our importance function gives contin-
uous importance values as described in Section 4. In other words, the impor-
tance values are consistently changed to reflect the temporal proximity of end-
effectors to the environment. Therefore, the importance values have interframe

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 85

(a) (b)

Fig. 8. Virtual characters on air controlled by our prototype system: (a) Pang-Pang; (b) A liang.

coherence. Since our IK solver utilizes as input the reference motion data and
the importance values, we can exclude unexpected motion artifacts such as un-
wanted jerkiness. That is, enforced to minimize the change from the reference
motion, our IK solver tries to find an intended motion. Moreover, guided by
the importance values for interaction with the environment, it also predicts
the future temporal constraints and continuously pays attention to them for
motion coherence.

7. EXPERIMENTAL RESULTS

For puppetry performance, we have used a MotionStar Wireless motion capture
device from Ascension Tech, Inc. with 14 sensors and 2 extended range trans-
mitters. Each of sensors detects the magnetic field emitted by a transmitter to
report its position and orientation up to 144 times per second.

Our prototype system has been deployed for production and used success-
fully to create a virtual character for a children’s television program as well
as a virtual news reporter. Both have been shown on Korean national televi-
sion, called KBS. The froglike creature (‘Pang-Pang’) given in Figure 8(a) has
demonstrated his comic performance in a daily TV show for children. Thanks
to the capability of our system for synthesizing realistic motion in real-time,
Pang-Pang and a real actor can interact with each other. Figure 8(b) shows
a virtual character (‘Aliang’) who has performed the role of a news reporter
for the election of the Korea National Assembly. Even in a time-critical situa-
tion such as reporting interim election results, Aliang can accomplish his role
successfully.

The skeleton used in our system has 43 degrees of freedom including
11 revolute joints of 3 degrees of freedom, 4 hinges on elbows and knees, and
the position of the root and its orientation. The floor is modeled as a plane for
all of the uses of our system to date.

To test our system’s performance, we have created two puppets specifically
designed to provide challenging retargetting problems. The character named
long tall Sally has long arms and legs, while a ball-shaped man called Blubby
has extremely short legs. To perform experiments, 61 prerecorded motion clips
were used as the input for motion retargetting.

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

86 • H. J. Shin et al.

Table I. Number of Iterations in Numerical Solver With and Without Root Position Estimation

Number of Iterations
Without With

Motion # Frames Blubby Sally Blubby Sally
Walk 39 47 0 0 0
Throw 157 244 0 0 0
Jump 88 111 0 0 0
Handstand 211 266 38 0 0
Dance 591 1253 0 1 0
Total (61 Clips) 9692 15634 429 8 0

Table II. Performance Data

Blubby Sally
Elapsed Per Elapsed Per
Time Frame Time Frame

Motion # Frames (msec) (msec) (msec) (msec)
Walk 39 203 5.2 206 5.3
Throw 157 864 5.5 876 5.6
Jump 88 466 5.3 474 5.4
Handstand 211 1135 5.4 1139 5.4
Dance 591 3188 5.4 3201 5.4
Total (61 Clips) 9692 52543 5.4 52732 5.4

Table I shows the number of iterations in numerical optimization with and
without initial root position estimation. Statistics for five selected motion clips
are given in the first five rows of the table. The total figures for 61 clips are
shown in the last row. Since Sally has long arms and legs, she can reach the
captured end-effector positions without moving its root position. Thus, the num-
ber of iterations for Sally is small even without initial root position estimation.
However, with estimated initial root positions, the number of iterations de-
creases to zero for our test motion clips. The effect of initial root position esti-
mation is more apparent for Blubby with short legs. In most cases, our estima-
tion algorithm finds the root position that makes the end-effectors reachable
to their goal positions without any help from the numerical solver given in
Section 5.2.

Table II gives an overall performance of our online motion retargetting al-
gorithm excluding rendering time. Timing information has been obtained on
a SGI Indigo2 workstation with an R10000 195 MHz processor and 128 Mb
memory. The execution time for each example mainly depends on the number
of iterations in numerical optimization. The table shows real-time performance
for each example.

In Figure 13, a captured walking motion is applied to Blubby with various
methods. The upper figure (Figure 13(a)) reveals artifacts due to the geometric
inconsistency between the performer and the puppet. Since the positions of the
feet are not incorporated into the motion retargetting, the supporting foot is
sliding. In contrast, the middle figure (Figure 13(b)) preserves the positions
well. However, the motions of the arms look unrealistic, since the joint angles
of the arms are overadjusted to preserve the positions of the hands. The bottom

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 87

figure (Figure 13(c)) is generated by our motion retargetting. The supporting
foot is fixed at the proper position without sliding, and the joint angles of the
arms are preserved as the original ones.

With conventional approaches based on joint angle preservation, there would
also exist foot-sliding artifacts when the character has longer limbs, as given
in the top figure (Figure 14(a)). The middle image (Figure 14(b)) exhibits un-
intended bending of legs due to position preservation and an ill-selected initial
root position. By assigning low importance values to the hands and offsetting
the root position, we have a better result in which the legs are not bent as shown
in the bottom figure (Figure 14(c)). More examples are given in Figures 15
and 16. In particular, Figure 16 shows the motions such as crawling and pick-
ing up which exhibit interaction of hands with objects in addition to that of
feet.

8. CONCLUSIONS AND FUTURE WORK

We have presented a new approach for online motion retargetting that trans-
forms motions of a performer to a virtual character of a different size and
proportion. Introducing the notion of the importance of an end-effector, we
have been able to generate realistic motion for a character in real-time while
preserving the characteristics of captured motions as much as possible. KBS
(Korean Broadcasting System), the largest public television broadcasting com-
pany in Korea, has been adopting our online motion retargetting algorithm to
control the virtual character Pang Pang in a daily TV show for children. This
show has become a children’s favorite partly due to Pang Pang’s successful per-
formance. KBS also successfully showed the performance of the virtual reporter
Aliang for a real election using this algorithm.

Our inverse kinematics solver is specialized for humanlike characters to
ensure real-time performance, although it can be easily adapted to other types
of creatures with limbs. The notion of importance gives reasonable lookahead
capability useful for avoiding jerkiness in motion. However, unlike full-scale
space–time optimization [Gleicher 1998], our approach has a limited lookback
capability implicitly achieved by the Kalman filter, and allows only a restricted
repertoire of constraints for real-time performance.

Our approach addresses only the interaction between the end-effectors of a
character and objects in the environment. However, there may also be inter-
action among the segments of a character. For example, due to the geometric
difference between the character and the performer, an end-effector of the char-
acter may penetrate its body, and also it is difficult for its hands to touch each
other for clapping without interpenetration. Thus, to resolve these artifacts,
the IK solver should be enhanced to efficiently handle self-interactions.

We focus on handling only the geometric discrepancy between a performer
and a puppet. To generate more realistic motions, retargetting should also in-
corporate the characteristics of the puppet. Anthropomorphized animals such
as cartoonlike birds and monkeys have their unique motion characteristics.
Those motions can hardly be captured directly from a human performer, and
thus give an additional barrier to overcome.

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

88 • H. J. Shin et al.

Fig. 9. Intersection of two spheres.

Fig. 10. Closest point from a point to a circle.

Fig. 11. Intersection of a sphere and a plane.

Fig. 12. Intersection of two circles.

APPENDIX

A. FINDING THE CLOSEST POINT ON THE INTERSECTION OF SPHERES

As given in Section 5.1, there are three types of surface elements: spheres,
circles, and vertices. We describe how we find the closest point on each type of
element to a given point p. It is trivial to find the closest point on a sphere to
the given point. Therefore, we proceed directly to the other cases.

Now, consider the closest point on a circle to p. We start with construct-
ing the circle C, which is the common intersection of the two spheres S1 and
S2 (see Figure 9). The radius rc of C can be computed with the Pythagorean
theorem. Let csi and rsi for i= 1, 2, 3 be the center of the sphere Si and its radius,
respectively. The radius rc of C satisfies the equations:

r2
c + x2 = r2

s1
, (25)

and
r2

c + (‖d‖ − x)2 = r2
s2

, (26)

where x is the distance between the center cc of C and that of S1, and d is the
vector from cs1 to cs2 . Solving those equations for r2

c , we get

r2
c = r2

s1
−
(
r2

s1
− r2

s2
+ ‖d‖2)2

4‖d‖2 . (27)

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 89

Fig. 13. Walking motion of Blubby: (a) captured joint angles only; (b) conventional IK solution with
Kinematic constraints on end-effectors; (c) proposed algorithm combining captured joint angles and
IK solution.

Here S1 and S2 intersect unless r2
c is negative. From Eqs. (25) and (26),

x = r2
s1
− r2

s2
+ ‖d‖2

2‖d‖ . (28)

Thus,

cc =
r2

s1
− r2

s2
+ ‖d‖2

2‖d‖ · d
‖d‖ + cs1 . (29)

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

90 • H. J. Shin et al.

Fig. 14. Walking motion of Sally: (a) captured joint angles only; (b) conventional IK solution with
Kinematic constraints on end-effectors; (c) proposed algorithm combining captured joint angles and
IK solution.

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 91

Fig. 15. Example motions of Blubby and Sally: (a) throwing; (b) jumping; (c) handstand.

Let n be the normal vector of the plane where the circle lies. Then,

n = d
‖d‖ . (30)

We are ready to find the closest point on the circle C to the given point p. Let
h be the projection of the vector cc − p onto the normal vector n of the plane;

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

92 • H. J. Shin et al.

Fig. 16. Example motions with interaction of hands: (a) crawling; (b) backflipping; (c) picking up.

that is, h = [n · (cc − p)]n. Then, the closest point pc on C to p is

pc = cc + p̂− cc

‖p̂− cc‖rc, (31)

where p̂ = p + h; that is, p̂ is the projection of p onto the plane containing C.
As shown in Figure 10, the distance l from p to pc is

√
‖h‖2 + l̂2, where l̂ is the

distance from p̂ to pc; that is, l̂ = ‖p̂− cc‖ − rc.
Finally, we show how to find the closest vertex, if any, to the given point p.

Given those vertices, it is trivial to find the closest. Thus, we focus on explaining
how to compute the vertices lying at the corners of the common intersection of
three spheres, S1, S2, and S3. We first calculate the intersection circle C1 of two
spheres S1 and S2. Cutting the sphere S3 with the plane containing C1, we have
the circle C2. Provided with the center point cc1 of C1 and the normal vector n
of the plane containing the circle C1, the center point cc2 of C2 is the projection

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

Computer Puppetry • 93

of the center point cs3 of the sphere S3 onto the plane (see Figure 11). Thus,

cc2 = cs3 + h, (32)

where h is the vector from cs3 to cc2 on the plane; that is, h = [n · (cc1 − cs3)
]

n.
The radius rc2 of C2 is given as follows:

r2
c2
= r2

s3
− ‖h‖2, (33)

where rs3 is the radius of the sphere S3. The sphere S3 does not touch the plane
if r2

c2
has a negative value.

Two vertices determined by three spheres are the intersection of the circles
C1 and C2. To compute the intersection of C1 and C2, we evaluate the midpoint
cv of the vertices v1 and v2 (see Figure 12). Similarly to the sphere–sphere
intersection, the midpoint cv, and the distance rv from each of vertices to c are
given as follows:

r2
v = r2

c1
−
(
r2

c1
− r2

c2
+ ‖d‖2)2

4‖d‖2 , (34)

and

cv =
r2

c1
− r2

c2
+ ‖d‖2

2‖d‖ · d
‖d‖ + cc1 , (35)

where the d is the vector from the cc1 to cc2 . The unit direction vector u from cv
to v1 is obtained from the cross-product of n and d; that is, u= (n×d)/‖n×d‖.
Hence, we have the vertices v1= cv+ rvu and v2= cv− rvu.

ACKNOWLEDGMENTS

The authors would like to thank House of Moves Studios for providing sam-
ple motion data and Min G. Choi and Lucas Kovar for their help with paper
production.

REFERENCES

Ascension Technology Corp. 1996. Motion Star Installation and Operation Guide. Ascension
Technology Corporation, Burlington, Vt.

AZARBAYEJANI, A. AND PENTLAND, A. P. 1995. Recursive estimation of motion structure, and focal
length. IEEE Trans. Pattern Anal. Mach. Intell. 17, 6, 562–575.

AZUMA, R. AND BISHOP, G. 1994. Improving static and dynamic registration in an optical see-
through hmd. In Proceedings of SIGGRAPH’94. ACM, New York, pp. 197–204.

BADLER, N., HOLLICK, M. J., AND GRANIERI, J. P. 1993. Real-time control of a virtual human using
mininal sensors. Presence 2, 1, 82–86.

BINDIGANAVALE, R. AND BADLER, N. I. 1998. Motion abstraction and mapping with spatial con-
straints. In Proceedings of International Workshop, CAPTECH’98. Springer-Verlag, Wein,
Austria, pp. 70–82.

BODENHEIMER, B., ROSE, C., ROSENTHAL, S., AND PELLA, J. 1997. The process of motion capture:
Dealing with the data. In Proceedings of the Eurographics Workshop on Computer Animation
and Simulation’97. Springer-Verlag, Wein, Austria.

BROIDA, T. J. AND CHELLAPPA, R. 1986. Estimation of object motion parameters from noisy images.
IEEE Trans. Pattern Anal. Machine Intell. 8, 1, 90–99.

CHOI, K.-J. AND KO, H.-S. 2000. On-line motion retargetting. J. Visual. Comput. Animation 11,
223–243.

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

94 • H. J. Shin et al.

FRIEDMANN, M., STARNER, T., AND PENTLAND, A. 1991. Synchronization in virtual realities. Presence
1, 1, 139–144.

GIRARD, M. AND MACIEJEWSKI, A. A. 1985. Computational modeling for the computer animation of
legged figures. In Proceedings of SIGGRAPH 85. ACM, New York, pp. 263–270.

GLEICHER, M. 1997. Motion editing with spacetime constraints. In Proceedings of 1997 Sympo-
sium on Interactive 3D Graphics. ACM, New York, pp. 139–148.

GLEICHER, M. 1998. Retargeting motion to new characters. In Proceedings of SIGGRAPH 98.
ACM, New York, pp. 33–42.

GULLAPALLI, V., GELFAND, J. J., LANE, S. H., AND WILSON, W. W. 1996. Synergy-based learning of
hybrid position/force control for redundant manipulators. In Proceedings of the 1996 IEEE Inter-
national Conference on Robotics and Automation. IEEE Computer Society Press, Los Alamitos,
Calif.

HANSON, C. 2000. Scheme. http://www-swiss.ai.mit.edu/projects/scheme/.
KIM, M.-J., SHIN, S. Y., AND KIM, M.-S. 1995. A general construction scheme for unit quaternion

curves with simple high order derivatives. In Proceedings of SIGGRAPH’95. ACM, New York,
pp. 369–376.

KOGA, Y., KONDO, K., KUFFER, J., AND LATOMBE, J. 1994. Planning motions with intentions.
In Proceedings of SIGGRAPH’94. ACM, New York, pp. 395–408.

KOREIN, J. U. AND BADLER, N. I. 1982. Techniques for generating the goal-directed motion of artic-
ulated structures. IEEE Comput. Graph. Appl. 2, 71–81.

LEE, J. AND SHIN, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like
figures. In Proceedings of SIGGRAPH’99. ACM, New York, pp. 39–48.

MOLET, T., BOULIC, R., AND THALMANN, D. 1996. A real-time anatomical converter for human motion
capture. In Proceedings of the Seventh Eurographics Workshop on Animation and Simulation.
Springer-Verlag, Wein, Austria.

MOLET, T., BOULIC, R., AND THALMANN, D. 1999. Human motion capture driven by orientation mea-
surements. Presence 8, 2, 187–203.

PADEN, B. 1986. Kinematics and control robot manipulators. Ph.D dissertation, University of
California, Berkeley, Berkeley, Calif.

POPOVIC, Z. AND WITKIN, A. 1999. Physically based motion transformation. In Proceedings of
SIGGRAPH’99. ACM, New York, pp. 11–20.

Protozoa. 1999. Technology information. http://www.protozoa.com/Page 2/info index.html.
ROSE, C. F., GUENTER, B., BODENHEIMER, B., AND COHEN, M. F. 1996. Efficient generation of motion

transitions using spacetime constraints. In Proceedings of SIGGRAPH’96. ACM, New York,
pp. 147–154.

STURMAN, D. J. 1998. Computer puppetry. IEEE Comput. Graph. Appl. 18, 1, 38–45.
TOLANI, D. AND BADLER, N. I. 1996. Real-time inverse kinematics of the human arm. Presence 5,

4, 393–401.
TOLANI, D., GOSWAMI, A., AND BADLER, N. 2000. Real-time inverse kinematics techniques for

anthropomorphic limbs. Graph. Models 62, 5.
WELCH, G. AND BISHOP, G. 1995. An introduction to the Kalman filter. Tech. Rep. TR95-041.

Department of Computer Science. University of North Carolina at Chapel Hill, Chapel Hill,
NC.

WELCH, G. AND BISHOP, G. 1997. Scaat: Incremental tracking with incomplete information. In
Proceedings of SIGGRAPH’97. ACM, New York, pp. 333–344.

WHITNEY, D. J. 1969. Resolved motion rate control of manipulators and human prostheses. IEEE
Trans. Man-Mach. Syst. 47–53.

ZHAO, J. AND BADLER, N. I. 1994. Inverse kinematics positioning using nonlinear programming for
highly articulated figures. ACM Trans. Graph. 13, 4, 313–336.

Received November 2000; revised March 2001; accepted June 2001

ACM Transactions on Graphics, Vol. 20, No. 2, April 2001.

