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Abstract

Computer puppetry maps the movements of a performer to an animated character in real time.
In this paper, we provide a comprehensive solution to the problem of transferring the observations
of the motion capture sensors to an animated character whose size and proportion may be different
than the performer. Our goal is to map as much of the importantaspects of the motion to the
target character as possible, while meeting the on-line, real-time demands of computer puppetry.
We adopt a Kalman filter scheme that addresses motion capture noise issues in this setting. We
provide the notion of dynamic importance of an end-effector that allows us to determine what
aspects of the performance must be kept in the resulting motion. We introduce a novel inverse
kinematics solver that realizes these important aspects within tight real-time constraints. Our
approach is demonstrated by its application to broadcast television performances.

1 Introduction

Computer puppetry [24] transforms the movements of a performer to an animated character in real
time. The immediacy of computer puppetry makes it useful for providing live performances and as
a visualization tool for traditional cinematic animation. However, this immediacy creates a number
of challenges as solutions to animation issues must be handled in an on-line, real-time manner. A
computer puppetry system must capture the movements of the performer, interpret the important as-
pects of this motion, and determine the movements required to make the character reproduce these
important aspects of the performance.

The challenges of mapping a motion from the performer to the target character become more
difficult when the target character is of a different size and proportion than the performer [3, 5, 7, 12].
In such cases, the resulting motion of the character cannot exactly duplicate the original performer’s.
For example, we cannot simultaneously match the original joint angles and end-effector positions.
Generally, to preserve the important aspects of the original motion, we must alter the unimportant
aspects of the motion. This process of adapting a motion for a new character is called retargetting[12,
17].

To date, solutions to computer puppetry issues have been limiting: Either restricting the range
of puppets that can be used, or providing restrictive notions of what is important in motions, which
implicitly limits the range of puppets since artifacts are introduced as the puppet’s differences from
the performer are increased.

In this paper, we provide techniques that address the challenges of computer puppetry when the
target character is different than the performer. Three major animation issues are addressed in a
manner that fits within the real-time, on-line nature of computer puppetry:

1. The sensors used to capture the performer’s motion are often noisy. Therefore, we provide
a filtering technique that operates on-line with the efficiency required to process whole body
motions in real-time. We apply a Kalman Filter to rotation vectors, providing an orientation
smoothing technique that is more efficient than previous methods.

1



Solver

Computation
Limb Posture

Computation
Body Posture

Estimation

Inverse Kinematics

Motion
Final

Analyzer

Posture
Motion

Captured

Center Position

Filter

Kalman

Figure 1: Overall structure

2. The important aspects of the original performance must be determined such that these details
can be reproduced in the resulting motion. We provide the notion of a dynamic importance
measure that allows us to account for changing situations even when the future is unknown.

3. The resulting pose of the target character must be computed in a way that recreates the important
aspects of the original. We provide a fast inverse kinematics solver that provides the necessary
real-time performance and predictability.

Our solutions have been used to realize a computer puppetry system that has been used successfully
to create animated television broadcasts.

We begin our discussion of computer puppetry by providing an overview of our approach. We
examine previous solutions with respect to the issues raised in the overview. The components of our
approach are then detailed in Sections 3, 4, and 5. An analysis in Section 6 reviews why our approach
avoids introducing unwanted artifacts such as temporal discontinuities. Our experimental results are
provided to support our approach. We conclude with a summary and discussion of future directions.

2 Overview

Computer puppetry requires the captured movements of the performer to be mapped to the target
character in real-time. As shown in Figure 1, our approach for on-line motion retargetting divides
the task into three phases. First, a filtering phase “cleans” the sensor data to remove artifacts of the
motion capture device. A second phase examines this filtered motion and determines the importance
value of every end-effector in relation to its environment. A final phase computes a pose for the target
character that achieves as much of the important aspects as possible. In this section, we provide an
overview of these components and survey their relationship to previous work.

2.1 On-Line Filtering of Orientations

In general, captured motion data are noisy. The real-time sensors required for computer puppetry
are particularly problematic in this regard. However, because of the dense sampling rates and signal
characteristics of motion capture data, low-pass filtering is an effective tool to suppress noise in the
captured data. This is challenging for three reasons:

1. Because computer puppetry is an on-line application, standard off-line filters cannot be em-
ployed.

2. Because the orientation space is highly non-linear, standard signal processing methods cannot
be applied directly.
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3. Because of the real-time demands, filtering should be performed on the entire body very effi-
ciently.

A Kalman filter uses prediction of future values to create a filtering scheme that operates on-line.
The technique is common in on-line applications, and was first introduced to the graphics community
by Friedman et. al. [9]. Such a filter cannot be directly applied to rotation data without accounting
for the non-linearity of the rotation space. To address this problem, Welch and Bishop [26] lin-
earized the orientation space by locally parameterizing the incremental orientation change with Euler
angles, based on the result in [1, 6]. Because they were interested only in tracking the head, they
were less concerned with efficiency than we are, and therefore address only issues 1 and 2 above. In
Section 3, we provide an modified Kalman filter. To achieve real-time performance, we locally pa-
rameterize the incremental orientation with rotation vectors instead of the Euler angles used in Welch
and Bishop [26].

2.2 Importance Determination

The goal of computer puppetry is to create the movement of a target character based on the per-
former’s movements. If the target character is quite different from the performer, there may not be a
direct mapping. Indirect mappings are common in traditional puppetry, for example, a marionette is
controlled by strings that pull on its end-effectors. Computer equivalents may create arbitrary map-
pings from sensor input to character parameters. For example, the Alive system from Protozoa [22]
allows arbitrary “scheme” functions to be written to perform mapping.

Our interest is in recreating characters with human form, so the target character has equivalent
degrees of freedom as the model of the performer. In this paper we consider characters that are
articulated figures with identical connectivity. Despite this structural equivalence, the resulting motion
will not match the performer’s unless the character has identical size and proportion. One approach
to performance animation, described by Molet et al. [18, 19], models the character to be as similar as
possible to the performer. Bodenheimer et al. [5] presented how to determine the segment lengths of
a character that best fit the captured motion data. Restricting the size and proportion of the character
precludes the use of stylized cartoon characters, unless we can find similarly proportioned performers.

When the virtual character and performer have different sizes and proportions, not all aspects
of the motions can be preserved during mapping. At the lowest level, it is simply not possible to
mimic both the locations of the end-effectors and the joint angles. A system must make choices as to
which aspects of the motion should be preserved, and which should be allowed to change. We call an
approach to motion retargetting that makes this choice explicitly an importance-basedapproach.

Non-importance-based approaches make implicit choices as to what should be preserved during
retargetting. For example, the most naive implementation of retargetting simply transfers the param-
eter (joint angles and root position) values from performer to character. Such a scheme implicitly
selects the values of the parameters to be important and, therefore, the positions of the end-effectors
to be unimportant. This is a poor choice when the character must interact with other objects in the
world, such as the floor.

A common approach to motion retargetting matches the end-effector positions of the character to
those of the performer. Such an approach has the advantage that it preserves the interactions between
the character and its environment. Badler et al. [3] used only the position data of hands and feet to
adopt them to a virtual character with an inverse kinematics technique. Residual degrees of freedom
are fixed by exploiting bio-mechanical knowledge. Choi et al. [7] adopted the idea of inverse rate
control [27] to compute the changes in joint angles corresponding to those in end-effector positions
while imitating the captured joint angles by exploiting the kinematic redundancies.
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Figure 2: Artifacts of position-based approach

Implicit in end-effector schemes is the notion that the end-effector positions are more important
than the joint angles: that the joint angles should be changed to achieve the end-effector positioning
goals. While this prioritization is often preferable to the reverse, it is not without its flaws. Consider
the example of Figure 2. In this example, the importance of the foot positions are properly reflected,
while that of the hand positions are overstated.

The central observation of an importance-based approach is that what is important can only be
determined by the context of the motion. At each instant, a system must somehow select amongst the
many possible things which are important, so it can change the aspects that are not important.

Constraint-based approaches to motion explicitly represent details of the motion that are important
as geometric constraints. Gleicher’s space-time motion editing [11] and retargetting system [12] pro-
posed the notion of preserving the important qualities of the motion by changing unimportant ones,
where the important qualities were define by constraints. Lee and Shin’s hierarchical motion edit-
ing [17] provided similar results using a different underlying implementation. Popovic and Witkin
demonstrated results that made the kinetic aspects of the original motion important to preserve [21].

The methods mentioned in the previous paragraph are all off-line in that they examine the en-
tire motion simultaneously in processing. However, this off-line nature is implicit in the problem
formulation, as well as in the solution method. All of the methods require the constraints to be iden-
tified before the motion can be processed. The decisions as to what is important in a motion must be
known before processing can occur in these previous constraint-based approaches. This is infeasible
in on-line applications. Bindiganavale and Badler [4] introduced a constraint determination scheme
to generate constraints automatically. However, the their motion adaptation is done in an off-line
manner.

For computer puppetry, we must make the decisions as to what is important in a given motion
on-line in real-time. We analyze the importance of each end-effector position, based on several fac-
tors discussed in Section 4. For example, the proximity of an end-effector position to its surrounding
environment can be used as a predictor of its importance. The importance of an end-effector is in-
versely proportional to its distance to the nearest object in the environment. A key notion of this work
is that the power of an importance-based approach, already demonstrated in off-line constraint-based
systems, can be brought to the on-line domain of computer puppetry.

2.3 Inverse Kinematics

We employ an inverse kinematics (IK) solver to compute the pose of the target character. IK has
become a standard technique in animation systems to control the pose of a character based on the
positions of its end-effectors.

IK solvers can be divided into two categories: analytic and numerical solvers. Most industrial
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robot manipulators are designed to have analytic solutions for efficient and robust control. Kahan [13]
and Paden [20] divided an IK problem into a series of simpler subproblems each of which has closed-
form solutions. Korein and Badler [16] showed that the IK problem of a human arm and leg allows an
analytic solution, and Tolani and Badler [25] derived their actual solutions. A numerical method relies
on an iterative process to obtain a solution. Girard and Maciejewski [10] generated the locomotion of
a legged figure using pseudo inverse of Jacobian matrix. Based on neurophysiology, Koga et al. [15]
produced an experimentally good initial guess for a numerical procedure. Zhao and Badler [28]
formulated the IK problem as a constrained non-linear optimization problem. Rose et al. [23] extended
this formulation to cover constraints that hold over an interval.

For computer puppetry, we make a number of demands on IK that required the development of a
novel solver. First, we must achieve real-time performance on the entire body of the character. Sec-
ondly, we need the solver to provide predictably consistent solutions: small changes to the problems
should provide similar answers. Finally, the solver must be able to account for the importances that
are determined dynamically in our system.

Our IK solver is discussed in Section 5. To solve an IK problem in real-time, we divide it into three
subproblems: center position estimation, body posture computation, and limb posture computation.
First, the center position of a virtual character is computed to provide a good initial guess for the body
posture computation. Through numerical optimization, we then refine the body posture, if needed,
consisting of the center position, the orientation of the pelvis, and that of the upper body. Finally, we
use an analytical IK solver to fix the limb postures with the given body posture. Our solution for each
of these subproblems is designed to incorporate the importance values of the end-effectors so that it
tries to preserve end-effector positions when their importance values are high, while trying to preserve
the captured joint angles of the corresponding limb, otherwise.

3 Motion Filtering

In general, motion capture devices capable of providing real-time performance are particularly sus-
ceptible to noise. Especially a magnetic motion capture systems, which are widely used for real-time
motion capture, suffer from the interference of low-frequency current-generating devices such as a
CRT-type display. Thus, there always exists some level of jitter, that is, rapid random changes in re-
ported positions and orientations that do not correspond to actual movement [8]. Since on-line motion
retargetting requires a high quality input motion as the reference of an output motion, filtering is an
essential part. In the context of computer puppetry, filtering must be real-time, on-line, and performed
on orientations.

For on-line filtering, Kalman filters [2, 9, 26] are often employed because of their capability of
prediction and correction, that is, predicting future input data from their history and correcting them
by incorporating the actual input data.

In a standard (extended) Kalman filter, its state would completely describe the position of a sensor
and its orientation. However, because of the non-linearity of the orientation space, this scheme can
hardly be applied directly to orientation data. Adopting the results in [1, 6], Welch and Bishop [26]
parameterized an incremental orientation change with Euler angles, that is regarded as a 3-vector to
filter. The filtered Euler angles are transformed back to an incremental orientation change in the non-
linear space to update the target orientation at each time step. However, the conversion between an
incremental orientation change and its equivalent Euler angles is inefficient. Moreover, recent motion
capture devices measure orientations directly in unit quaternions. Therefore, differently from Welch
and Bishop, we parameterize incremental orientation changes with rotation vectors.
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To facilitate our scheme, we maintain the target orientation qe externally to the Kalman filter
together with the internal state vector x. In particular, qe is represented by an unit quaternion:

qe = (w, (x,y, z)),

where w2 + x2 + y2 + z2 = 1. The internal state x consists of the position p, the rotation vector r,
and their derivatives ṗ and ṙ:

x = (pT ṗT rT ṙT)T. (1)

Here, the rotation vector r parameterizes the incremental orientation change of the actual sensor input
q(t) at the current frame with respect to the target orientation qe(t − ∆t) at its previous frame.
Therefore, r(t) can be measured through the logarithmic map [14]:

r(t) = ln(q−1
e (t − ∆t)q(t)). (2)

At each filter update step, r(t) in the state is converted into its incremental orientation change equiv-
alent er(t) through the exponential map to update the external target orientation qe and then reset to
be zero. Therefore, incremental orientations are linearized for our (extended) Kalman filter, centered
about zero.

Our dynamic model predicts the current position and the rotation by first-order approximations.
Therefore, the prediction x̂−(t) of the state can be described as:

x̂−(t) = Ax̂(t − ∆t) =




I3 ∆tI3 03 03

03 I3 03 03

03 03 I3 ∆tI3
03 03 03 I3


 x̂(t − ∆t), (3)

where I3 and 03 are, respectively, the identity and the zero matrices in the 3×3 dimension. Similarly,
the prediction P−(t) of the error covariance is given:

P−(t) = AP(t − ∆t)AT + Q, (4)

Here, P(t) = E
[
(x̂−(t) − x(t)) (x̂−(t) − x(t))T

]
, which models estimation uncertainty. The pro-

cess noise covariance matrixQ characterizes the accuracy of the dynamic model. In our implemen-
tation, we simplify Q as follows:

Q =




q1I3 q2I3 03 03

q3I3 q4I3 03 03

03 03 q5I3 q6I3
03 03 q7I3 q8I3


 . (5)

When the values of qi’s are small, the filter tends to suppress the detail of the captured motion. On the
other hand, if they are large, it tends to preserve the captured motion. Therefore, qi’s should be tuned
properly for a good filter response.

We sample motion signals at a higher frame rate than that actually required for animation to avoid
overshooting which occasionally occurs in constant velocity models, especially when the velocity
changes suddenly. Our measurement consists of the position of a sensor and its incremental orientation
represented by a rotation vector, that is, z = (pT rT)T which can be obtained from of the state vector
directly. Therefore, our measurement can be predicted from the predicted state:

ẑ(t) = Hx̂−(t) =
[

I3 03 03 03

03 03 I3 03

]
x̂−(t). (6)
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(a) (c)(b) (d)

Figure 3: Two different situations

Now, we are ready to compute the Kalman gain K(t):

K(t) = P−(t)HT(HP−(t)HT + R)−1, (7)

where R is the measurement noise covariance matrix. That matrix is either given from the device
manufacturer or acquired by off-line measurement. In practice, we measure the noise while holding
the sensor stationary to compute its noise covariance matrix R.

The residual between the actual sensor measurement z(t) and the predicted measurement ẑ(t)
from Equation (6) is:

∆z(t) = z(t) − ẑ(t). (8)

Then, the predicted state and the error covariance matrix are corrected as follows:

x̂(t) = x̂−(t) + K(t)∆z(t), and

P(t) = (I − K(t)H)P−(t).
(9)

We finish filtering at each frame by updating the external target orientation using the rotation
vector r̂(t). Taking the exponential map of the rotation vector and post-multiplying it with the external
target orientation q̂e(t−∆t) at the previous frame, we can find the final target orientation q̂e(t) at the
current frame:

q̂e(t) = q̂e(t − ∆t)er̂(t). (10)

The rotation vector r̂(t) is reset to zero for filtering at the next frame.

4 Importance Analysis

When the performer and the target character do not have the same size and proportion, all aspects of
of the original motion cannot be preserved in the resulting motion. A system must determine which
aspects of the motion are important to preserve, so that other less important aspects are changed in
order to preserve them.

For an articulated figure, differing segment lengths means that both the joint angles and end-
effector positions cannot be simultaneously be recreated. There are three obvious choices of motion
aspects to preserve:

1. The position of the root of the character.

2. The joint angles.

3. The positions of the end effector.
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There exist situations under which any of these three might be most important. For example, observe
the arm postures in Figure 3. Figure 3(a) shows a captured arm posture from the performer. Retar-
getting this motion to a virtual character that does not touch any object, we prefer the posture in the
Figure 3(b) that preserves the joint angles. However, the position of a hand needs to be preserved
when it touches an object as shown in Figure 3(c) and (d).

Our system must choose which of the three choices above is most important in a dynamic and
on-line way. To make this decision, we employ a number of heuristics:

1. The position of the center is most likely not to be important. This heuristic comes from the
observation that the choice of making the center a parameter is arbitrary: we could have just
as easily chosen any point as the “root.” In fact, preserving the center position may change
some important parameters that characterize a posture itself. Because of this, the importance
of the center position is downplayed in many approaches that consider importance. Like our
solver, described in Section 5, Gleicher’s retargetting system [12] uses a heuristic that attempts
to satisfy the constraints (generally on the end-effectors) as much as possible by moving the
root position (generally the center, for motion capture data).

2. If an end-effector is interacting with another object (such as the floor), then its position is likely
to be important. Therefore, proximity to objects in the environment should increase importance
of an end effector.

3. If an end-effector will be interacting with another object in the near future, then its position
is important (as it is likely to be getting ready for the interaction). Therefore, we incorporate
prediction of proximity of an end effector to an object in the measure of its importance.

4. If an end-effector has just finished interacting with another object and is moving away from it,
its position may not be as important as its proximity suggests.

5. If the end-effector is not in proximity to another object, it is likely that its position is unimpor-
tant.

In order to measure the interaction of an end-effector with its environment, we introduce the notion
of importanceof an end-effector, which can be determined by analyzing the posture of the character
in relation to the environment. In particular, the distance from the end-effector to the environment is
a good measure of interaction possibility. That is, the end-effector is more likely to interact with the
environment when it is closer to the environment. Therefore, as the end-effector approaches an object
in the environment, its importance value should be continuously increased to enforce the geometric
constraints created by the object. As the end-effector moves away from the object, the importance
value should be continuously decrease to preserve the captured posture of the corresponding limb. We
wish to develop the distance measure to reflect the trajectory of end-effector and its dynamic nature.

Given end-effector ei of a character and object oi, let dij(t) be the Euclidean distance between
them at the time t. The new distance function d+

ij(t) is defined as

d+
ij(t) =

dij(t) + dij(t + κ∆t)
2

(11)

for some positive κ and ∆t. d+
ij(t) represents the average of the current distance and the predicted
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(a) λ = 0 (b) λ = 0.15

Figure 4: Motions generated by varying importance measure

distance after κ∆t time. For small ∆t, d+
ij(t) can be approximated as follows:

d+
ij(t) ≈ dij(t) + (dij(t) + κ∆t ḋij(t))

2

= dij(t) +
κ∆t

2
ḋij(t) = dij(t) + λḋij(t), (12)

where ḋij(t) is the first derivative of dij(t). d+
ij(t) reflects both the distance at t from ei to oi and its

changing rate ḋij(t). By varying λ, we can control the degree of prediction for d+ij(t).
For an example, Figure 4 exhibits a jumping motion adapted with λ = 0 and λ = 0.15, respec-

tively. The legs of the character are shorter than the performer’s. For λ = 0, the left foot trajectory
of the character(solid line) agrees with that of the performer (dashed line) only near the floor (see
Figure 4(a)). For λ = 0.15, the former follows the latter while approaching down to the floor (see
Figure 4(b)). The foot is moving off the captured trajectory to preserve the captured joint angles,
either near the peak (λ = 0) or approaching to the peak (λ = 0.15).

Let Dij denotes the maximum distance within which ei is influenced by oj . Then, the normalized
distance d̄ij is defined as

d̄ij =
d+

ij

Dij
. (13)

An animator assigns Dij for the pair of end-effector ei and object oj in the environment in accordance
with a given animation context. A wider range of Dij shows a sensitive interaction of end-effector ei
with object oj . On the other hand, a narrower range exhibits that ei moves independently of oj unless
ei is close to oj .

The importance is zero when the normalized distance d̄ij is greater than or equal to one, that is,
ei is out of the influence of oj . As the distance decreases to zero, the importance increases to one.
Thus, the importance function p of the normalized distance d̄ij can be designed with the condition of
p(1) = 0 and p(0) = 1. In addition, we set its derivatives there to be zero, that is, p′(0) = 0 and
p′(1) = 0, to reduce the rate of change of the function p at both extreme points. Thus, the importance
of ei with respect to oj is represented by the cubic polynomial function p satisfying those conditions.
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That is,

p(d̄ij) =

{
2d̄3

ij − 3d̄2
ij + 1, if d̄ij < 1,

0, otherwise.
(14)

The importance value wi of end-effector ei over all external objects can be defined as the maximum
of them:

wi = max
j

(p(d̄ij)). (15)

It requires much time to compute the distance d̄ij from each end-effector ei of a virtual character
to every object oj in the environment, especially for a complex surrounding environment. To achieve
a real-time performance, we need to minimize the number of possible objects to interact with each
end-effector in accordance with an animation context. An object that is hardly touched during the ani-
mation may be eliminated in importance value computation. Moreover, objects may also be described
approximately with simpler geometric entities for easy distance computation.

5 Real-time Inverse Kinematics Solver

For computer puppetry, we must position the character such that the important aspects of a captured
motion are preserved, while providing real-time performance. For our application, this demands
computing the character’s posture 30 times per second, every second. Therefore, we need an IK
solver that not only can incorporate the importance measures of the previous section, but also have
real-time performance even in the worst-case.

As discussed in Section 2.3, previous IK solution methods do not meet the demands of com-
puter puppetry. Analytic methods provide guaranteed performance, but cannot incorporate impor-
tance measures required for retargetting. Numerical solvers can achieve the importance metrics, but
hardly guarantee real-time performance. To meet these two conflicting demands, we have developed
a hybrid solver.

In this section, we present a fast IK algorithm which is specialized for human-like articulated
characters. We divide the IK process into three sub-problems: body center position estimation, body
posture computation, and limb-posture computation. For each step, we apply a method that is spe-
cialized to achieve high-performance. This leads us to employ inexpensive, closed-form solutions if
applicable, and reserve numerical optimization for the case in which it is absolutely required.

5.1 Body Center Position Estimation

In order to position the end-effectors of a character, an IK solver may change the position of the root
of the character or adjust its joint angles. As mentioned in Section 4, the root of the character has
been arbitrarily chosen as the character’s center, which is rarely the most important aspect to preserve.
Therefore, our solver first attempts to solve the constraints as much as possible by moving the body
center position. This strategy was demonstrated for retargetting by Gleicher [12].

Beginning with the positional offset has an important advantage: Unlike angular changes that
causes non-linear equations to compute, positional offset computation is trivial and therefore efficient.
Let pe

i represent the position of the i-th end-effector when the character is posed with the captured
joint angles, and pg

i denote the goal position for that end-effector. The displacement vector di =
pg

i − pe
i measures how much the solver must move an end-effector to reach its goal. If there were

only one end-effector with a specified goal position, this constraint could be met by simply moving
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Figure 5: Range 3D disks: range of hand, shoulder, and body center position

the character’s root position by the displacement vector, where the joint angles would not need to be
changed.

In the event that multiple end-effectors are to be positioned, we compute the weighted average of
the displacements to find an initial offset d as follows:

d =
∑n

i widi∑n
i wi

, (16)

where wi is the importance of the i-th end-effector. In the (unlikely) event that all end-effectors require
the same displacement, this displacement will solve all of the constraints. More likely, the joint angles
will need to be adjusted so that all of the end-effector goals can be met.

While the weighted averaging attempts to position the body center to meet all of the goals simul-
taneously, it does not necessarily guarantee that all goals can be met. Once the body center position is
fixed, the character can meet its goals by straightening its joints. Therefore, the center position must be
chosen such that all end-effector goals are “reachable,” that is, close enough that straightening limbs
will be sufficient. We refine our body center position estimate such that it guarantees reachability if
possible. We relocate the body center such that it is as close to the initial estimate as possible, yet still
is within the reachability limits to the goals.

As shown in the left of Figure 5, the reachable space of the hand can be represented as the 3D disk
centered at the shoulder, and its radius is the length of the arm. Here, a 3D disk consists of a sphere
and its interior. The same 3D disk but located at the goal position represents the range of the shoulder
joint position as given the middle of Figure 5. Finally, with the orientations of the pelvis and the waist
fixed as in the captured posture, we compute the range of the body center as illustrated on the right
of Figure 5. Let ds denote the vector from the shoulder to the body center. The translation of the 3D
disk at the goal position pc by the vector ds yields the 3D disk that gives the range of the body center
position. If the body center is in this 3D disk, the character can reach the goal position by stretching
the limb only.
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(a) On a sphere (b) On a circle (c) At a vertex

Figure 6: Closest points

When the importance value of an end-effector is low, the position of the body center does not need
to be modified to make this end-effector reachable at its goal. Therefore, the ranges corresponding
to those end-effectors may be larger than the actual reachable ranges. To avoid unnecessary offset of
the body center, we enlarge the size of the 3D disk, so that its size is inversely proportional to the
importance value. The increased radius ri corresponding to the i-th limb is given as follows:

ri(li, wi) =
li
wi

, (17)

where li is the length of the i-th limb and wi is its importance value.
Since the virtual character has four end-effectors, we have four 3D disks. The common inter-

section of these 3D disks is the range of the body center position that makes all of the end-effectors
reachable to their goal positions. As an initial guess for the body center, we choose the closest point
from the offset body center to this intersection to preserve the posture of the performer as much as
possible. Thus, the body center position estimation is formulated as the problem of finding the closest
point from a given position to the common intersection of four 3D disks.

The intersection of 3D disks consists of four surface elements as show in Figure 6: spherical
regions, circular edges, and vertices. A spherical region is a part of a sphere bounded by a sequence
of spherical arcs. A circular edge is a part of a circle that is the intersection of two spheres. A vertex
is determined by the common intersection of three spheres.

There are two cases depending on the position of the offset center position with respect to the
intersection. If this point is contained in the interior of the intersection, then the point itself is the
closest point to the intersection. Suppose that it is not contained in the interior. Then, the closest
point must lie on the boundary of the intersection. Therefore, we enumerate all possible surface
elements due to the intersection of the four spheres corresponding to the bounding surfaces of the
disks, respectively.

Three spheres determine two or less vertices. Since there are four ways of choosing a triple out
of four spheres, we have a maximum of eight vertices. Every pair of vertices can possibly admits
a spherical edge, and thus we have at most 24 edges. However, these are completely included in
a maximum of six circles. Moreover, each spherical face is completely contained in one of four
spheres. Instead of enumerating all surfaces elements, we equivalently check those spheres, circles
and vertices.

We first compute the closest point to each sphere from the offset body center. Among these points,
if any, we choose the point that is contained in the intersection and the closest to the body center. If
such a point does not exist, then we compute the set of points, each of them is the closest from the
body center to each circle. Out of them, we choose the one that is closest to the body center and in
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the intersection. Suppose that there does not exist such a point. Then, one of vertices must be the
solution. We choose the one closest to the body center among those contained in the intersection. For
more details in computing the initial body center position, refer to Appendix. If there does not exist
the common intersection of the disks, we discard the spheres which do not intersect the one whose
corresponding end-effector has the biggest importance value, and repeat this process for the rest of
disks.

5.2 Body Posture Computation

If the initial body center position estimate does not allow all limbs to be reachable to the goal positions,
we need to adjust the body posture consisting of the center position, the orientation of the pelvis, and
that of the upper body. Since those segments are tightly coupled, a numerical method is adopted to find
their configurations. While numerical methods hardly guarantee a real-time response for computing
the inverse kinematics of an entire human figure, it is practical to solve only a small part of the IK
problem numerically, and to employ analytic methods for the rest of the task. Such a hybrid solver
was demonstrated in [17].

We formulate a restricted version of the IK problem for determining the posture of the body center,
the pelvis, and the upper body separately from the problem of solving the posture of the limbs. The
posture of a character can be written as v = (p0,q0,q1, · · · ,qn), where p0 and q0 are the position
and the orientation of body center, respectively. qi,1 ≤ i ≤ n, are the orientations of body segments
such as the waist and the upper body. When the character has a rigid torso, v is simply reduced to
(p0,q0,q1), since n = 1.

The objective function consists of two terms:

E = Eg + αEp, (18)

where the first term Eg is for making the end-effectors reachable to their goals and the last term Ep is
to preserve the captured posture. We will explain those two terms in detail.

Eg is the sum of Ej’s each of which is the squared distance from the j-th end-effector to its goal
position when the limb is maximally stretched. Provided with the shoulder (or the coxa) position psj
of the j-th limb and its goal position pg

j , Ej is given as follows:

Ej =




0, if ||ps
j − pg

j || < lj,(
||ps

j − pg
j || − lj

)2
, otherwise,

(19)

where lj is the length of the j-th limb. This objective function is zero when the end-effector reaches
to its goal position. However, an end-effector of low importance has no need to preserve its captured
position. Thus, to relax the constraint on this end-effector, we enlarge the range of the shoulder (or
the coxa.) By substituting the length lj of each limb with the new radius rj = lj

wj
as mentioned in

Section 6.1, we have

Ej =




0 , if ||ps
j − pg

j || < rj,(
||ps

j − pg
j || − rj

)2
, otherwise.

Note that with the importance value wj of one, Ej plays a role of pulling the end effector to reach
to the goal position exactly. On the other hand, as importance value wj approaches zero, the j-th
end-effector keeps the original posture by preserving the joint angles.
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q0
θ

q(θ)n

Figure 7: Residual degree of freedom of shoulder

Letting q∗
i and p∗

0 be the captured orientation of the i-th segment and the position of the performer,
respectively, Ep is a weighted sum of the squared geodesic distances between qi and q∗

i for all 0 ≤
i ≤ n, and the squared distance between p0 and p∗

0:

Ep =
n∑

j=0

βj || ln(q−1
j q∗

j )||2 + γ||p0 − p∗
0||2. (20)

Minimizing Ep preserves the captured motion as much as possible. We find the optimal solution
that minimizes the objective function by employing the conjugate gradient method. Here, we use the
captured joint angles and the body center position computed in Section 5.1 as the initial values for our
optimization.

5.3 Limb Postures Computation

Given the position of a shoulder and that of the goal together with a hand orientation, we present
how our IK solver computes the configuration of an arm. The configuration of a leg can similarly
be computed from the hip position and foot position and orientation. As pointed out by Tolani et al.
[25] and Lee et al. [17], the angle between the brachium of the arm and its forearm can be computed
uniquely from the distance between the shoulder and the goal. We adjust the shoulder joint to locate
the wrist at the goal position. Even with the wrist position fixed at the goal position, the shoulder
joint still has one residual degree of freedom that rotates the elbow about the axis passing through the
shoulder and the wrist. Korein et al. [16] have parameterized that degree of freedom by the swivel
angle θ. As illustrated in Figure 7, the elbow traces a circle called elbow circle, as θ varies. Once θ is
chosen, the joint angle of the wrist is determined uniquely by the orientation of the hand.

This swivel angle θ can be described with a unit quaternion formulation. The unit quaternion q(θ)
representing the rotation by θ about the axis n is e

θn
2 for −π < θ ≤ π, where θ is measured from a

reference point on the circle. Representing this point by a unit quaternion q0, we have

q(θ) = e
θn
2 q0. (21)

Differently from the original version of Lee et al. [17] which determines θ by a numerical op-
timization, we solve for θ analytically so that the arm posture deviates as small as possible from
the captured posture. Thus, we choose θ that minimizes the geodesic distance φ from the captured
shoulder joint orientation q∗ to q(θ). Since φ = arccos(q∗ · q(θ)), the geodesic distance φ is mini-

mized when q∗ · q(θ) is maximized. By definition, e
θn
2 =

(
cos θ

2 ,n sin θ
2

)
. Let q∗ = (w∗,v∗) and
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q0 = (w0,v0). Then, their inner product is given as follows:

q∗ · q(θ) = (w∗,v∗) ·
{(

cos
θ

2
,n sin

θ

2

)
(w0,v0)

}

= a cos
θ

2
+ b sin

θ

2

=
√

a2 + b2 sin
(

θ

2
+ α

)
, (22)

where

α = tan−1 a

b
a = w∗w0 + v∗ · v0

b = w0n · v∗ − w∗n · v0 + v∗ · (n× v0) .

The sine function has the maximum at π
2 and −π

2 . Thus, the maximum of the inner product q∗ · q(θ)
is obtained either at q (−2α + π) or at q (−2α − π). Since the distance of two points in the unit
quaternion space is inversely proportion to their dot product, q (−2α + π) is the closest from q∗ if
q∗ · q (−2α + π) > q∗ · q (−2α − π); otherwise, q(−2α − π) is the closest.

Now, with both captured and computed limb postures available, we blend them together to obtain
a realistic motion. For this purpose, we perform spherical linear interpolation between each captured
joint orientation of a limb with its corresponding IK solution. Let qik and q∗ik are the orientation of the
k-th joint in the i-th limb obtained from the IK solver and that from the captured posture. Then the
blended joint angle q′ik can be described by spherical linear interpolation as follows:

q′
ik = slerp(q∗ik, qik, wi)

= ewi ln(qikq∗−1
ik )q∗

ik, (23)

where wi is the importance value of the i-th limb. That is, the limb with the high importance value
can preserve the end-effector position, and that with low importance can preserve the captured joint
angles.

Here, non-penetration condition may be violated, since the posture is blended without concerning
the constraints. Thus, the blended posture has to be adjusted explicitly to prevent unwanted penetra-
tion. Provided with the predefined external objects for each end-effector, this violation can be detected
easily. Before penetrating an object, the end-effector touches the boundary of the object. A natural
position of the end-effector would move on the surface of the object without penetration. Thus, the
preferable position of the end-effector during penetration is the intersection point of the object bound-
ary and the line segment from the shoulder to the end-effector. This position moves continuously in
accordance with the end-effector movement. The penetration problem can be effectively eliminated
by adjusting the limb posture using the IK solver for limbs.

6 Analysis of Temporal Constraints

In retargetting motions, we must preserve important temporal aspects of the motion, as well as spatial
aspects. Gleicher [12] emphasizes the importance of avoiding the introduction of high-frequencies
during adaptation. Both this work and the work of Lee and Shin [17] provide approaches for avoiding
the addition of discontinuities during adaptation. Unfortunately, both schemes rely on examining
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durations of motions and therefore can only be applied in off-line applications. In this section, we
show that the approach presented in this paper does not introduce unwanted discontinuities into the
resulting motion.

To begin, we must assume that the initial motion is free of unwanted discontinuities. This assump-
tion is not restrictive because the movement of the performer is continuous. Discontinuities may be
introduced by noise in the capture process, but these are generally removed by the filtering process
described in Section 3. The continuity of the initial motion applies to both the captured joint angles
and end-effector positions.

Given continuous paths for the end-effectors, our IK solver will provide continuous trajectories
for the parameters. Achieving this requires the solver to make consistent changes. That is, similar
inputs to the solver must provide similar outputs. To guarantee this consistency, our IK solver tries
to find the solution in an on-line manner so that it is close to the filtered posture, while satisfying the
kinematic constraints.

For our IK solver, the only kinematic constraints are the positions of end-effectors. These con-
straints are specified at every frame as temporal constraints. As an end-effector is approaching an
object in the environment, its distance to the object is monotonically decreasing. Similarly, the dis-
tance is monotonically increasing as the end-effector is departing from the object. When the end-
effector touches (or passes by) the object, the monotonicity changes but the distance function is still
continuous at that instance.

For any continuous distance function, our importance function gives continuous importance values
as described in Section 4. In other words, the importance values are consistently changed to reflect the
temporal proximity of end-effectors to the environment. Therefore, the importance values have inter-
frame coherence. Since our IK solver utilizes as input the reference motion data and the importance
values, we can exclude unexpected motion artifacts such as unwanted jerkiness. That is, enforced
to minimize the change from the reference motion, our IK solver tries to find an intended motion.
Moreover, guided by the importance values for interaction with the environment, it also predicts the
future temporal constraints and continuously pays attention to them for motion coherence.

7 Experimental Results

For puppetry performance, we use a MotionStar Wireless motion capture device from Ascension Tech,
Inc. with 14 sensors and two extended range transmitters. Each of sensors attached on a performer
captures the magnetic field emitted by a transmitter to report its position and orientation up to 144
times per second.

Our prototype system has been deployed for production and has been used successfully to create
a virtual character for a children’s television program as well as a virtual news reporter. Both have
been shown on Korean national television, called KBS. A frog-like creature shown in Figure 8(a) is
called “Pang-Pang”, who regularly appears in a daily TV show for children to demonstrate his comic
performance. Thanks to the capability of our system for synthesizing realistic motion in real time,
Pang-Pang and a real actor can interact each other. Figure 8(b) shows a virtual character “Aliang”
who has performed the role of a news reporter for the election of Korea National Assembly. Even
in a time-critical situation such as reporting interim election results, Aliang can accomplish his role
successfully.

The skeleton used in our system has 43 degrees of freedom including 11 revolute joints of 3
degrees of freedom, 4 hinges on elbows and knees, and the position of the body and its orientation.
The floor is modeled as a plane for all of the uses of our system to date.
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(a) Pang-Pang (b) Aliang

Figure 8: Virtual characters on air controlled by our prototype system

Table 1: The number of iterations in numerical solver with and without center position estimation

the number of iterations
motion #frames without with

Blubby Sally Blubby Sally
Walk 39 47 0 0 0

Throw 157 244 0 0 0
Jump 88 111 0 0 0

Handstand 211 266 38 0 0
Dance 591 1253 0 1 0

Total (61 Clips) 9692 15634 429 8 0

To test our system’s performance, we created two puppets specifically designed to provide chal-
lenging retargetting problems. The character named long tall Sallyhas long arms and legs, while a
ball-shaped man called Blubbywith extremely short legs. To perform experiments, 61 prerecorded
motion clips were used as the input for motion retargetting.

Table 1 shows the number of iterations in numerical optimization with and without initial body
center position estimation. Statistics for five selected motion clips are given in the first five rows of
the table. The total figures for 61 clips are shown in the last row. Since Sally has long arms and legs,
she can reach the captured end-effector positions without moving its body position. Thus, the number
of iterations for Sally is small even without initial position estimation. However, with estimated initial
positions, the number of iterations decreases to zero for our test motion clips.

The effect of initial position estimation is obvious for Blubby with short legs. To make him reach
a given position, the numerical solver iteratively adjusts the position of Blubby and the joint angles at
its torso. With our body center position estimation, the number of iterations decreases significantly.
In most cases, our estimation algorithm finds the body position that makes the end-effectors reachable
to their goal positions without any help of the numerical solver.

Table 2 gives an overall performance of our on-line motion retargetting algorithm excluding ren-
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Table 2: Elapsed time

Blubby Sally
motion #frames elapsed per elapsed per

time frame time frame
(msec) (msec) (msec) (msec)

Walk 39 203 5.2 206 5.3
Throw 157 864 5.5 876 5.6
Jump 88 466 5.3 474 5.4

Handstand 211 1135 5.4 1139 5.4
Dance 591 3188 5.4 3201 5.4

Total (61 Clips) 9692 52543 5.4 52732 5.4

dering time. Timing information is obtained on a SGI Indigo2 workstation with an R10000 195 MHz
processor and 128 Mbytes memory. The execution time for each example depends on the number of
iterations in numeric optimization. The tables show a real-time performance for each of examples.

In Figure 13, a captured walking motion is applied to a character with various methods. The upper
images of Figure 13 reveal artifacts due to the geometric inconsistency between the performer and the
puppet. Since the positions of feet are not cared in motion retargetting, the supporting foot is sliding.
In contrast, the middle motion preserves the positions well. However, the motions of the arms look
unrealistic, since the joint angles of the arms are over-adjusted to preserve the positions of the hands.
The bottom figure is generated by our motion retargetting. The supporting foot is fixed at the proper
position without sliding, and the joint angles of the arms are preserved as the original ones.

With conventional approaches based on joint angle preservation, there would also exist foot-
sliding artifacts when the character has longer limbs as given in the top of Figure 14. Moreover,
the middle image exhibits unintended bending of legs due to position preservation and an ill-selected
initial body position. By assigning low importance values to the hands and estimating the body posi-
tion, we have a better result in which the legs are not bent as shown in right figure. Figure 15 gives
images of more examples.

8 Conclusions & Future Work

We have presented a new approach for on-line motion retargetting that transforms motions of a per-
former to a virtual character of a different size. Introducing the notion of the importance of an
end-effector, we have been able to generate the realistic motion of the character in real time while
preserving the characteristics of captured motions as much as possible. KBS (Korean Broadcasting
System), the largest public television broadcasting company in Korea, has been adopting our on-line
motion retargetting algorithm to control the virtual character, Pang Pang in a daily TV show for chil-
dren. This show has become one of the favorites among children partly due to Pang Pang’s successful
performance. KBS also successfully showed the performance of a virtual reporter, Aliang for the real
election using this algorithm.

Our approach addresses only the interaction between the end-effectors of a character and an en-
vironment. However, we may also have a different type of interaction among the segments of a
character themselves. Due to the geometric difference of the character from a performer, for exam-
ple, its end-effectors may penetrate its body, and also its hands are hard to touch each other without
interpenetration for clapping. Thus, to resolve these artifacts, the IK solver should be enhanced to
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efficiently handle self-interactions.
We focus on handling only the geometric discrepancy between a performer and a puppet. To

generate more realistic motions, retargetting should also incorporate the characteristics of the puppet.
Anthropomorphized animals such as cartoonic birds and monkeys have their unique characteristics of
motions. Those motions can hardly be captured directly from a human performer, and thus give an
additional barrier to overcome.
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A Finding the Closest Point on the Intersection of Spheres

As given in Section 6, there are three type of surface elements: spheres, circles, and vertices. We
describe how we find the closest point on each type of elements to a given point p. It is trivial to find
the closest point on a sphere to the given point. Therefore, we skip to explain the other cases.

Now, consider the closest point on a circle to p. We start with how to construct the circle C , which
is the common intersection of the two spheres S1 and S2. The radius rc of C can be computed with
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Figure 9: Intersection of two spheres

Pythagorean theorem. Let csi and rsi for i = 1, 2, 3 be the center of the sphere Si and its radius,
respectively. The radius rc of C satisfies the following equations:

r2
c + x2 = r2

s1
, and (24)

r2
c + (||d|| − x)2 = r2

s2
, (25)

where x is the distance between the center cc of C and that of S1, and d is the vector from s1 to s2.
Solving those equations, we get

r2
c = r2

s1
− (r2

s1
− r2

s2
+ ||d||2)2

4||d||2 . (26)

Here, spheres, S1 and S2 intersect unless if r2
c is negative. From Equations (24) and (25),

x =
r2
s1

− r2
s2

+ ||d||2
2||d|| . (27)

Thus,

cc =
r2
s1 − r2

s2 + ||d||2
2||d|| · d

||d|| + cs1 . (28)

Let n be the normal vector of the plane where the circle lies. Then,

n =
d

||d|| . (29)

h

p

p̂cc

l̂pc

cc − p
l

Figure 10: Closest point from a point to a circle

We are ready to find the closest point on the circle C to the given point p. Let h be the projection
of the vector cc − p onto the normal vector n of the plane, that is, h = [n · (cc − p)]n. Then, the
closest point pc on C to p is

pc = cc +
p̂− cc

||p̂ − cc||rc. (30)
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where p̂ = p + h, that is, p̂ is the projection of p onto the plane containing C . As shown in

Figure 10, the distance l from p to pc is
√

||h||2 + l̂2, where l̂ is the distance from p̂ to pc, that is,

l̂ = ||p̂ − cc|| − rc.

cs3
n

cc1

cc2

h

Figure 11: Intersection of a sphere and a plane

Finally, we show how to find the closest among vertices, if any, to the given point p. Given those
vertices, it is trivial to find the closest. Thus, we focus on explaining how to compute the vertices
lying at the corners of the common intersection of three spheres, S1, S2 and S3. We first calculate
the intersection circle C1 of two spheres S1 and S2. Cutting the sphere S3 with the plane containing
C1, we have the circle C2. Provided with the center point cc1 of C1 and the normal vector n of the
plain containing the circle C1, the center point cc2 of C2 is the projection of the center point cs3 of
the sphere S3 onto the plane. Thus,

cc2 = cs3 + h, (31)

where h is the vector from cs3 to cc2 on the plane, that is, h = [n · (cc1 − cs3)]n. The radius rc2 of
C2 is given as follows:

r2
c2 = r2

s3
− ||h||2, (32)

where rs3 is the radius of the sphere S3. The sphere S3 does not touch the plane if r2c2 has a negative
value. Two vertices determined by three spheres are the intersection of the circles C1 and C2. To

v1

cc1

rv

u
cc2d

cv

v2

Figure 12: Intersection of two circles

compute the intersection of C1 and C2, we evaluate the mid-point cv of the vertices v1 and v2 (see
Figure 12.) Similarly to the sphere-sphere intersection, the mid-point cv and the distance rv from
each of vertices to c are given as follows:

r2
v = r2

c1 −
(r2

c1 − r2
c2 + ||d||2)2

4||d||2 , and (33)

cv =
r2
c1 − r2

c2 + ||d||2
2||d|| · d

||d|| + cc1 , (34)
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where the d is the vector from the cc1 to cc2 . The normalized direction vector u from cv to v1

is obtained from the cross product of n and d, that is, u = n×d
||n×d|| . Hence, we have the vertices

v1 = cv + rvu and v2 = cv − rvu.
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(a) the captured joint angles only

(b) a conventional IK solution with kinematic constraints on end-effectors

(c) Proposed algorithm combining the captured joint angles and the IK solution

Figure 13: Walking motion of Blubby
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(a) the captured joint angles only

(b) a conventional IK solution with kinematic constraints on end-effectors

(c) Proposed algorithm combining the captured joint angles and the IK solution

Figure 14: Walking motion of Sally
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(a) Throwing

(b) Jumping

(c) Handstand

Figure 15: Example motions of Blubbyand Sally
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