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Abstract

Many virtual environments and games must be populated with syn-
thetic characters to create the desired experience. These characters
must move with sufficient realism, so as not to destroy the visual
quality of the experience, yet be responsive, controllable, and effi-
cient to simulate. In this paper we present an approach to character
motion calledSnap-Together Motionthat addresses the unique de-
mands of virtual environments. Snap-Together Motion (STM) pre-
processes a corpus of motion capture examples into a set of short
clips that can be concatenated to make continuous streams of mo-
tion. The result process is a simple graph structure that facilitates
efficient planning of character motions. A user-guided process se-
lects “common” character poses and the system automatically syn-
thesizes multi-way transitions that connect through these poses. In
this manner well-connected graphs can be constructed to suit a par-
ticular application, allowing for practical interactive control without
the effort of manually specifying all transitions.

Keywords: Motion Synthesis, Virtual Environments, Motion Capture

1 Introduction

Advances in graphics hardware and rendering software have made
it possible to build visually rich virtual worlds, creating possibili-
ties for entertainment and training applications. For many of these
applications, the virtual worlds must be populated with believable
synthetic characters. Creating such characters is challenging. To
fit with the visual richness provided by virtual environments, char-
acters must move in realistic ways. At the same time, in order to
meet interactivity demands they must also be efficiently animated
and controllable by the simulation.

In this paper we introduce a methodology that allows quality mo-
tions to be synthesized in a controllable manner with little run-time
overhead. A corpus of motion capture data is processed into a set
of short clips that can be “snapped together” (concatenated) into
seamless streams of motions at run time. This process is guided
by a human author who identifies (either independently or via help
from our system) character poses that appear frequently in the cor-
pus. Each such pose serves as a jump point at which any motion
that enters can be followed by any motion that leaves, as shown in
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Figure 1: Schematic of the authoring process. A linear corpus of motion (here a

single walking motion) has a common pose identified through a user-guided process.

Figure 2: Transitions are generated around the common pose, forming a simple

graph.

Figures 1 and 2. The result is a simple graph structure that allows
clips to be connected into longer motions.

All transition generation and cleanup operations are performed au-
tomatically by our system. At run time, a character animation mod-
ule need only play precomputed clips in a valid order as determined
by the graph. User involvement in the graph construction process
allows for the clips to connect in ways that facilitate control. That
is, the animation designer guides the system into building a graph
with a structure that is contrived to be easy to exploit at run time. In
particular, if the designer creates a graph with a high branching fac-
tor, the run-time motion planner will have the flexibility to choose
from several options when a new action must be taken.

Our approach is closely related to previous non-linear animation
methods. In particular, our final graph structures are akin to the
move treescommon in computer games. The key difference is that
our graphs are constructed opportunistically based on a provided
data corpus and some user guidance on how to form a usable graph.
In contrast, traditional move trees use specially contrived motions
and hand-crafted transitions. In a sense, we provide a new approach
for constructing the data structures used by existing approaches to
real-time animation synthesis. The increased automation of our ap-
proach reduces the planning, effort, and skill required to author the
graph structures, and it is possible to author graphs with a degree
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of connectivity that would be extremely tedious to construct using
traditional methods.

Our work involves two main contributions, each of which facilitate
the authoring of character motion for virtual environments. First,
we provide an improved authoring methodology where candidate
transition points are identified automatically. This aids in the cre-
ation of graphs with a small number ofhubnodes containing a large
number of edges. We speed the process of adding clips to the graph
by allowing an author to add entire hubs to a graph at a time, and
we can further simplify construction by automatically suggesting
hubs based on the original motion data.

The second main contribution of our work is to provide methods
for generating multi-way transitions. Our framework allowscut
transitions, which involve simply concatenating two clips together
without further processing. This is done by adjusting the original
motions such that these transitions are seamless, i.e., they areC1

smooth and satisfy the appropriate constraints. The advantages of
such an approach are that it keeps the resulting graph compact and
allows efficient generation of motions at run time. The challenge is
to connect multiple motions in a manner that avoids visual artifacts.

The remainder of this paper is divided into five sections. First, we
clarify in Section 2 the limitations of current tools for constructing
graphs and how we propose to address these limitations. In Sec-
tion 3 we discuss related work. In Section 4 we describe our algo-
rithms and explain how they fit into the overall process of building
a graph. Finally, in Section 5 we present some example results and
then we conclude in Section 6 with a discussion of the advantages
and drawbacks of our approach.

2 Issues with Current Practices

In order to create streams of high-quality motion, current applica-
tions assemble static clips of motion created with traditional anima-
tion techniques such as motion capture or keyframing. The assem-
bly process requires making transitions between motions. These
transitions may be difficult to create, such as a transition between a
running clip and one where the character is lying down, or trivial, if
the end of one clip is identical to the beginning of the next. In prac-
tice, simple techniques such as linear blends are capable of creating
transitions in cases where the motions are similar.

A set of motion clips and transitions between them form a graph
where the edges are pieces of motions and the nodes are choice
points connecting motions. A graph of this type called amove tree
is common in computer games [14, 15]. Move trees are constructed
by pre-planning movements such that the initial clips have similar
beginning and end points. An artist then chooses the exact points
in the clips where transitions are to occur and creates the transition
motions. Most commercial motion editing tools, such as Character
Studio, Softimage XSI, Diva, or Messiah:Animation, provide some
support for applying simple transition methods (e.g., linear blends)
at identified points.

The structure of a graph can have a significant impact on its use-
fulness. In general, the more well-connected a graph is, the more
controllable the animation will be. Ideally, all clips of motions will
connect, allowing any action to take place at any time. In practice,
good transitions between radically different clips are prohibitively
difficult to create. Tradeoffs must therefore be made between the
quality of the transitions and the connectivity of the graphs.

While it may not be possible to have all clips connect directly, well-
constructed graphs nonetheless typically have nodes with many in-
coming and outgoing edges. We call such nodeshubs. Hubs are

desirable because they offer advantages in both flexibility and sim-
plifying the problem of generating motion that meets high-level re-
quirements. For example, a particular hub might contain several
different kinds of punches and kicks, in which case a character
could easily string together a sequence of strikes according to a
high-level reasoning module (e.g., he should throw a punch combi-
nation since the opponent’s guard is down). Similarly, there might
be a “walking” hub that has several outgoing edges which each cor-
respond to taking a step in some direction. Combined with jogging
and running hubs, a planning module could move characters in the
virtual environment simply by specifying a speed and direction.

Graphs containing hubs are difficult to construct. Authors must find
places in the motion corpus where several motions come together
and devise multi-way transitions, a much more difficult problem
than making just two clips join smoothly. Current tools offer lit-
tle support for the creation of hubs. Our framework, in contrast,
explicitly supports the creation of hub nodes. Instead of having to
hand-select a set of clip boundaries that are conducive to quality
transitions, we are able to automatically provide the user with sets
of clips whose starting and ending frames are “close”. Moreover,
given the desired transition locations we automatically modify the
original database so cut transitions are possible. Specifically, at
every transition the clips join seamlessly and any constraints in the
motion (such as that a foot must planted on the ground) are enforced
even if these constraints exist across transition boundaries.

In computer games and other virtual environments, move trees have
demonstrated the utility of synthesizing motion based upon a hand-
crafted graph. The main limitation of this technique is in the diffi-
culty of the authoring process: the necessary manpower limits the
complexity of the graphs and the range of applications that can af-
ford to build them. Our framework provides an alternative to man-
ual authoring that alleviates this problem.

3 Alternate Approaches

The computer animation literature provides a number of ways of
generating motion for synthetic characters. Since virtual environ-
ments require continuous streams of motion, some approaches are
clearly inappropriate. Two obvious examples are keyframing and
motion capture, which only create individual, static clips. Simi-
larly, while motion capture editing [4, 11, 3, 23, 19, 5] and multi-
target motion interpolation [22, 20] allow one to adapt a motion to
new circumstances, these methods are still only capable of produc-
ing individual clips.

Procedural approaches have the advantage, in principle, of being
able to generate flexible motions of arbitrary length. Perhaps the
largest class of such approaches is physically-based motion syn-
thesis. While physically-based methods have been successful for
many natural phenomena, they have failed to scale to the complex-
ities of character motions, with the exception of a few particular
actions such as running [6] and jumping [13]. More ad hoc pro-
cedural methods have succeeded at a larger range of character mo-
tions [17, 18], but they require each new motion to be generated by
hand and often do not produce realistic results.

Some recent approaches to motion synthesis involve constructing
mathematical models based on a set of motion capture data. In
particular, researchers have used hidden markov models [2] and
switched linear dynamic systems [12] to create new motion. Such
methods provide a straightforward way of generating arbitrarily-
long streams of motion, but as yet it is unclear how they can be
adapted to provide the high-level control required for virtual envi-
ronments.
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A number of graph-based approaches to motion synthesis have re-
cently been developed that fully automate the graph construction
process [1, 8, 10]. These methods allow graphs to be constructed
quite quickly at the expense of providing severely limited control
over the graph structure; indeed the generated graphs wereunstruc-
tured.

In contrast to the explicitly designer-structured graphs of the pre-
vious section, unstructured motion graphs have no pre-determined
connections between movements, and can make no guarantees
about how quickly one motion can be reached from another. The
path between two motions might be complex. Therefore, methods
for synthesizing motions from unstructured graphs rely on search.
By looking ahead, the search algorithms make choices that not only
meet current needs, but have paths to future goals.

Unstructured graphs are inappropriate for interactive applications
for several reasons. Interactive systems preclude lookahead and
therefore search algorithms. Another problem is that it is diffi-
cult to know what motions are possible in an unstructured graph,
since the connectivity is complex. For example, if a designer knows
that a certain set of transitions will be required for a character’s
actions, there is no way to ensure that they are contained in the
graph. Third, the control approaches currently used in interactive
applications rely on known structure. For these reasons, we believe
that interactive applications demand designer control over the graph
structure.

Recently the graph-based approach has been extended to manually-
constructed graphs in which the fundamental unit is not a static clip
of motion, but rather a set of carefully-chosen clips that can be inter-
polated [16]. Parameterizing these interpolations appropriately can
given one a finer degree of control over a character; for example,
in the work cited one could specify locomotion in a continuum of
directions and speeds, rather than from a discrete set of choices. At
present it is unclear how readily this approach generalizes to larger,
more expressive sets of motions.

4 Constructing Graphs

We assume the user has a database of motion capture data in a
standard skeletal format. The number of motions in the database
is irrelevant; it might contain many short clips or a single long
clip. Each frame of motion is represented by a vector of parameters
(p,q1, . . . ,qn,o1, . . . ,on), wherep is a three-vector specifying
the position of the root joint in world coordinates,qi is a quaternion
specifying the orientation of theith joint in its parent’s coordinate
system, andoi is a three-vector indicating the offset of theith joint
in its parent’s coordinate system1. We assume that there is some lin-
ear indexing of the corpus, so a particular frame’s vector is denoted
by Fi for framei of the corpus.

We also assume the motions are annotated with relevant constraints
on end-effector positions. In this paper we limit our attention to
footplant constraints, which specify that either the heel or ball of
a particular foot must be planted over some set of frames (hence a
total of four possible constraints may exist on a given frame). These
types of constraints are by far the most common in motion capture
data, and so this restriction is minor.

In our framework each edge in a graph is a clip of motion and each
node is defined by a group of frames at which transitions are to

1Most motion capture processing systems assume perfectly rigid skele-
tons, in which caseoi is not explicitly represented. We use this more gen-
eral skeleton representation since we employ the constraint solver described
in [9], which adds small length changes to bones.
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Figure 3: The top diagram schematically represents an initial database with two

motions; on the left it is represented as two groups of frames and on the right is the

corresponding graph. The middle diagram shows the result of making a match set out

of four frames. This breaks the database into smaller clips and adds a new node to the

graph. The bottom diagram demonstrates the addition of a second match set.

occur. This group of frames is called amatch setand each element
of the match set is amatch frame. If the original database hasn
motions, then the corresponding graph has a trivial structure with
2n nodes andn edges; refer to Figure 3. Each match set naturally
partitions the database into shorter clips, which in turn correspond
to edges in the graph that attach at a common node.

In our system graphs are built one node at a time by choosing match
sets. If desired, an author can simply select the match frames man-
ually. The author may also specify a particular frame and have the
system automatically build a match set out of a group of similar
frames. Finally, the author can have the system create a match set
out of the largest collection of similar frames in the database.

Once the graph designer has finished creating match sets, our sys-
tem automatically adjusts the motions so the corresponding transi-
tions can be executed with simple cuts. This requires choosing a
common posefor the match set, so that each match frame can be
replaced by a rigid transformation of the common pose, and then
transforming the surrounding frames such that this replacement is
seamless. Any motion leading into the pose can then be followed
by any of the motions exiting it, creating a multi-way transition.

The remainder of this section details our method. We first explain
our process for helping a graph designer build match sets, then we
describe our method for adjusting the original motions to generate
seamless cut transitions, and finally we discuss the details of actu-
ally generating motion with the final graph.

4.1 Choosing Match Frames

Our system helps an author create match sets (and therefore nodes
in the graph) by finding collections of frames that are similar to one
another. This is accomplished through a scalar functionD(Fi,Fj)
that defines the distance between two framesFi andFj. We use
the same distance function as in [8], which has the advantage of
automatically choosing a common coordinate system forFi andFj.
That is, since a motion is fundamentally unchanged by a rotation
about the vertical axis and a translation along the floor plane,Fj

needs to be “aligned” withFi before the distance can be computed.

3
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Figure 4: The distance between two framesFi andFj is calculated as follows.

(1) Small neighborhoods of frames are extracted aboutFi andFj. (2) These sets of

frames are converted into two point clouds. (3) The optimal sum of squared distances

between corresponding points is computed given that each point cloud can be rotated

about the gravity axis and translated in the floor plane.

The distance calculation, motivated in [8], is shown in Figure 4. It
works on clouds of points to avoid scaling issues in angle compu-
tations. First, small neighborhoods of frames are extracted around
both Fi andFj. Two point clouds are then formed by attaching
markers to the skeletons. Finally, the optimal weighted sum of
squared distances is computed given that rigid 2D transformations
may be applied to each point cloud. That is, we calculate

D(Fi,Fj) = min
θ,x0,z0

X

k

wk‖pi,k −Tθ,x0,z0pj,k‖2, (1)

wherepi,k is the kth point in the cloud generated from framei
andTθ,x0,z0 is a linear transformation consisting of a rotation of
θ degrees about they (vertical) axis followed by a translation of
(x0, z0). The weightswi sum to 1 and are chosen to give the most
importance toFi andFj and less importance to frames toward the
edges of the neighborhoods.

This optimization has the following closed-form solution:

θ = arctan

P
i wi(xiz

′
i − x′izi)− (xz′ − x′z)P

i wi(xix′i + ziz′i)− (xx′ + zz′)
(2)

x0 = (x− x′ cos(θ)− z′ sin θ) (3)

z0 = (z + x′ sin(θ)− z′ cos θ), (4)

wherex =
P

i wixi and the other barred terms are defined simi-
larly.

For every pair of frames in the database there are two possible tran-
sitions, one that connects frames precedingFi to frames following
Fj and one that connects frames precedingFj to frames following
Fi. D allows one to assign to each of these transitions a quality esti-
mate and a coordinate transformation that aligns the ending motion
with the starting motion. To speed interaction with our system, the
distances and aligning coordinate transformations are precomputed
for every pair of frames in the database.

Given a particular frameF and a user-defined threshold, we find a
match setS = {F1, . . . ,Fn} as follows. For each motion in the
database, we can form a 1D function by considering the distances
betweenF and every frame of this motion. The local minima of
these functions correspond to locally optimal transition points. We
form a setS′ of the frames corresponding to local minima whose
values are below the threshold. These frames satisfy the similarity
requirement for being match frames, but there is one more con-
dition that must be met. Each match frame is associated with a
displacement map that smoothly introduces the corresponding tran-
sitions into the motion database. As will be discussed more fully
in Section 4.2, to create these displacement maps we require match
frames to be at leastwmin frames apart. So, in order of lowest dis-
tance toF, we add toS the frames fromS′ that are at leastwmin

frames from every existing match frame.

If the graph designer wantsF to serve as a hub node in the graph,
thenS determines the transitions that connect to this hub. By inter-
actively choosing different thresholds the designer can determine
an appropriate tradeoff between the number of edges attached to
the hub and the quality of the resulting motions. The designer may
also want to create a node based on the largest group of similar
frames in the database. This can be found simply by formingS
for every frame in the database and returning the one with the most
elements. Ties are broken based on the lowest average distance be-
tween frames inS and the frame used to generateS.

4.2 Creating Transitions

Once the graph designer has finished creating match sets
S1, . . . , Sn, our system adjusts the original database so the motions
join seamlessly at all transitions points. Since transitions always
occur between frames of a match set, it is sufficient to adjust the
original motions such that the match frames are all identical, i.e.,
the values and velocities of each skeletal parameter are the same. If
there are no constraints on the motions, this is accomplished solely
through adaptation of displacement mapping techniques [23, 3]. If
constraintsare present, then matters are more complicated. Ap-
plying displacement maps will violate constraints, and if we subse-
quently use existing methods [4, 11, 9] to enforce them, the motions
may change such that the match frames are no longer identical. We
consider both of these cases, first treating transition generation in
the absence of constraints and then when constraints exist.

4.2.1 Transitions Without Constraints

If constraints aren’t present, then for each match setSi our system
creates an “average” frameFSi with a skeletal pose that is rep-
resentative of the poses in the match frames. This pose is called
thecommon pose. Our system then applies displacement maps that
transform each match frame to have the common pose.

Figure 5 depicts our algorithm. In the original database the match
frames are scattered about in a global reference frame. If we
are to compute an average pose, the match frames must first be
aligned. As discussed in Section 4.1, every pair of match frames
Fj,Fk ∈ Si has a rigid 2D transformation that aligns them for the

4
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Figure 5: (top) In the original motions, match frames are scattered in the global

coordinate system. (middle) We choose a particular match frame, align the others to it,

and compute an average skeletal posture to serve as the common pose. (bottom) Using

a set of displacement maps, each match frame is altered to have this common pose.

purposes of executing a transition. LetTjk be the transformation
that when applied toFj aligns it withFk. Since each transforma-
tion was computed independently via equations(2)−(4), in general
they will be inconsistent in the sense thatTjkTkl 6= Tjl. We could
attempt to find a set of coordinate transforms thatare consistent
by, for example, adjusting Equation(1) to optimize simultaneously
over several coordinate transforms. However, for more than two
point clouds there is no simple closed form solution and an expen-
sive nonlinear optimization would be necessary. On the other hand,
we observe that if the match frames inSi are sufficiently similar
then the coordinate transformations will beapproximatelyconsis-
tent. Hence we may simply select one particular match frame to
define the coordinate transforms for every other match frame. Say
we selectFjbase . Then we redefine theTpq to be

Tpq := T′pq = TjbasepT
−1
jbaseq

. (5)

These new coordinate transforms guarantee thatTpqTqr = Tpr.
We can now align thekth match frame inSi with Fjbase by apply-
ing the transformationTkjbase .

In practiceFjbase is not chosen arbitrarily. Rather, our system at-
tempts to choose the match frame that is closest to being in the “cen-
ter” of the other frames. This corresponds to choosing the match
frame with the smallest sum of distances to the other match frames.

Once we have chosenFjbase , our system computesFSi by aligning
the match frames into the coordinate system ofFjbase . The root
position, joint offsets, and joint orientations ofFSi are the average
of the corresponding quantities in the match frames. The average
joint orientation is computed as in [16].

We can now form displacement maps that replace eachFk ∈ Si

with T−1
kjbase

FSi (Figure 5). Since each match frame is identical,
motion is guaranteed to be continuous at transitions. This use of
displacement maps is similar to previous work [10, 1] which used
displacement maps to guaranteeC0 continuity at transitions. How-
ever, for motions with very different velocity characteristicsC0

continuity may be insufficient (Figure 6). For this reason we extend
previous efforts by building displacement maps that preserveC1

continuity. For each skeletal parameter we compute the average ve-
locity over all match frames. We then construct displacement maps
such that motions pass through the common pose with these pa-

motion 1

motion 2

C0 transition

motion 1 w/displacement added

motion 2 w/displacement added

C1 transition

Figure 6: C0 transitions can still cause discontinuities if motions have very differ-

ent velocities. For this reason we useC1 smooth displacement maps.

wmin

Figure 7: At each match frame a displacement map is used to smoothly alter the

motion so as to facilitate transitions; this figure depicts a motion with three match

frames and the corresponding displacement maps. On each side the displacement map

extends up to either the next match frame or the motion boundary, whichever comes

first. Displacement maps are required to extend at leastwmin frames on either side,

so match frames must be at leastwmin frames apart.

rameter velocities. Since the motions are represented as discretely
sampled signals, care must be taken in computing derivatives. Be-
cause continuity is most important at a scale greater than a single
frame, we estimate derivatives by calculating finite differences at
each point in a small window and filtering the results.

Each side of a displacement map extends to either the nearest match
frame or a boundary of the motion, whichever comes first (Fig-
ure 7). To ensure that changes do not occur too rapidly, we require
match frames to be spaced at leastwmin frames apart. If there aren
joints in the skeleton, then the displacement map consists of2n+1
splines: one for the root position,n for the joint offsets, andn for
the joint orientations. The ends of each spline have zero value and
derivative and the center is chosen to map the relevant parameter to
the target value and derivative. We construct these splines out of
two Hermite cubic segments; for orientations we construct quater-
nion splines using the method in [7].

4.2.2 Transitions With Constraints

If displacement maps are applied to the original motions, then any
constraints on those motions are likely to be violated. We now con-
sider how to create smooth multi-way transitions while simultane-
ously preserving constraints. We focus on the most common kinds
of constraints, which are footplant constraints. A footplant con-
straint specifies that either the left heel, right heel, left ball, or right
ball must be fixed on the ground. To enforce a footplant constraint,
two things must be done: 1) positions must be chosen for each con-
strained joint and then 2) the motion must be smoothly adjusted so
the constrained joints are in these positions. We use the method
of [9] to enforce footplant constraints. This algorithm has the im-
portant property that one can ensure that a particular frame is not al-
tered by constraining the root, heels, and balls of the feet to remain
in their current positions. We refer to this aslockingthe frame.

As in the previous section, our basic strategy is to construct a rep-
resentative frameFSi for each match setSi and use displacement
maps to make the match frames identical toFSi . We define a con-

5
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straint to exist inFSi if and only if it exists on a majority of the
match frames2, which means that individual match frames may end
up gaining and/or losing constraints.

Since constraints must be enforced in the final motion,FSi must
satisfy all of its constraints, i.e., the constrained joints must be on
the ground. Assume this is true. As in Section 4.2.1 we can apply
displacement maps such that for all match sets each match frame
is identical to the appropriate common pose. If we then lock each
match frame and apply the constraint enforcement algorithm, our
database of motions will have the desired properties: all constraints
will be enforced and each match set will contain identical frames.

While we could choose the common poses using the same algo-
rithm as in Section 4.2.1, this method fails to take into account
constraint information. This is problematic since by locking each
match frame, we are forcing the motions returned by the constraint
solver to pass through the common poses. For example, say the
left heel isunconstrainedon some match frame that is only a few
frames away from a region where the left heel must be planted. If
the left heel happens to be far from the ground in the common pose,
then the constraint solver will be forced to generate a motion where
the foot leaves the ground with unnatural speed.

Intuitively, we would like to select theFSi such that when we re-
place each match frame with the appropriate common pose and lock
it, the locking has as little effect as possible. That is, if we imag-
ine not doing this locking and enforcing constraints, we would like
the match frames to nonetheless remain unchanged. In light of this
we use the following two-step iterative procedure for determining
a particularFSi . We start out by creating a “working set” that ini-
tially contains copies of the match frames as they appear in the orig-
inal motions. Each iteration estimates the common pose by averag-
ing the working set, and creates a variant of each motion that passes
through this common pose using the same displacement map tech-
nique described in Section 4.2.1. This possibly violates constraints.
Next, we apply the constraint enforcement algorithm to the modi-
fied motions, possibly adjusting the matched frames. After this the
matched frames, which may no longer be identical, are copied back
into the working set. Each iteration begins with the motion from the
original database and evolves the common pose. At the end of the
final iteration we set the common poseFSi to be the average of the
poses in the working set. In our experiments only a small number
of iterations (3-5) were necessary.

TheFSi generated through the above algorithm will not necessarily
satisfy their constraints. We can correct this by choosing positions
for the constraints and applying inverse kinematics. However, con-
straint positions in general can not be found independently for each
FSi . In particular, if two common poses share a constraint and bor-
der a clip that has this constraint on each frame, then the constraint
positions for the common poses must be chosen such that in this
clip they are in the same location. This issue arises in many com-
mon situations, such as if the character stands in place. We describe
a solution to this problem in the Appendix.

4.3 Generating Motion at Run Time

Each transition involves two pieces of information: the clip we’re
transitioning to and the coordinate transformation that aligns it with
the current clip. At run time these coordinate transformations are
the only information that needs to be kept track of. That is, to play
the current clip, we simply adjust the root of every (precomputed)

2We have found that requiring all match frames to have the same con-
straint state, as suggested by [10], forces us to exclude too many good po-
tential matches.

Figure 8: On top are the five frames of a match set generated automatically for a

short sneaking motion. On the bottom is the corresponding common pose.

Figure 9: A schematic of the two-node martial arts graph generated with our sys-

tem. Our algorithm for creating match sets automatically selected left and right “ready”

stances as the hubs of the graph.

frame by the current coordinate transformation, and whenever we
make a transition we update this transformation.

As discussed in previous graph-based approaches to motion syn-
thesis [21, 10, 8], certain nodes of the graph may be dead ends in
the sense that they are not part of any cycle. Once such a node is
entered, there is a limit to how much further animation can be pro-
duced. This is unacceptable for virtual environments, since char-
acters must be animated for arbitrarily long amounts of time. Our
system notifies the graph designer of possible dead ends by finding
the nodes that are not part of the largest strongly connected com-
ponent [10, 8]. The designer may then decide to either add new
transitions or remove these nodes.

5 Results

We have implemented a system based on the methods in Section 4
and applied it to a number of motion datasets. Figure 10 is a screen-
shot of the window seen by the graph designer. In the upper right
is a visualization of the distance function; pixel(i, j) represents
D(Fi,Fj), with darker pixels corresponding to lower distances. On
the far upper right is a slice of the2D distance function showing the
distances between a frame selected by the user and the other frames
in the database. The bottom of the window shows a schematic of the
graph given the current match sets. The horizontal black lines rep-
resent original motions and the vertical lines indicate match frames.
All frames of the same match set are the same color. Clicking on a
segment in this schematic causes the corresponding clip to be dis-
played in the upper left window.
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We created a set of graphs by having the system automatically cre-
ate nodes based on the largest sets of match frames. To test the
system, we started with a single motion of someone sneaking for
thirteen seconds and built a graph with a single node and 7 clips;
see Figure 8. We then moved on to larger data sets, constructing
graphs and driving their input with a video game controller. We
first built a two-node graph out of a dataset containing 900 frames
(30 seconds) of martial arts motions (Figure 9). The common poses
generated automatically by the system corresponded to two “ready”
stances, one with the left foot forward and one with the right foot
forward. We then mapped the clips to buttons on a gamepad, al-
lowing a user to interactively direct the character to punch, kick,
dodge, shuffle-step, and switch stances. We next built a one-node
graph out of 3000 frames (100 seconds) of walking data. This graph
allowed a user to guide a character by specifying the curvature of its
path, where the options ranged from a gentle arc to a sharp about-
face. Finally, we combined these two datasets into a larger graph
that allowed all of the previous operations plus the ability to switch
between walking and fighting modes.

The semi-automatic nature of our system makes it possible to pro-
duce graphs quite quickly. The total amount of time necessary to
build the martial arts graph — from raw data to being able to in-
teractively control a character — was about 12 minutes, and the
walking graph took about 20 minutes. Most of this time was spent
deciding how to map the clips to the gamepad.

6 Discussion

In this paper we have described a framework for synthesizing char-
acter motions in virtual environments by assembling clips built
from a corpus of motion capture data. We meet the visual quality
demands of virtual environments by preserving the fidelity of the
original motions. We meet performance demands by performing
all processing of the motions at authoring time, so at run time clips
can simply be concatenated in appropriate orders. Finally, we meet
controllability and responsiveness demands by allowing the user to
guide the graph building process to ensure that the graph has a us-
able structure. Specifically, we support and encourage the creation
of hub nodes that allow many different actions to be reachable from
a common point.

Our approach automates tedious portions of the graph construction
process and makes it possible to use data more opportunistically.
This can allow graphs to be created from a wide range of data that
was not specifically captured for graph construction, and it can also
enable designers to build graphs of a scope that would otherwise be
too expensive to produce.

The authoring tool described in this paper required several new
techniques to be developed:

1. We automatically identify potential hub nodes, allowing a
graph designer to avoid tedious parts of the construction pro-
cess.

2. We introduceC1 displacement maps as a means of creating
higher quality cut transitions.

3. We provide a method for satisfying constraints as a prepro-
cess, allowing the complexity of constraint satisfaction to be
avoided at run time.

The run-time execution of our approach is intentionally similar to
current (and successful) methods that use manually constructed
graphs. We believe this will make it easier to apply our methods

in practical virtual environments. Moreover, by reducing the ef-
fort required to construct graphs suitable for run-time synthesis, we
hope to make run-time animation accessible to a broader array of
applications.
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Appendix

TheFSi generated through the iterative algorithm of Section 4.2.2
will in general not satisfy their constraints unless these constraints
are explicitly enforced. This amounts to identifying positions for
each constraint and then performing inverse kinematics to ensure
the relevant joints reach these positions. This process is compli-
cated by the fact that the choice of constraint positions can not be
made independently for eachFSi . Consider the case whereF ∈ Si

andF′ ∈ Sj share some constraints and border a clip that also
has these constraints on every frame. For the resulting motion to
be continuous, we require thatFSi andFSj (when transformed to
be aligned withF andF′) place the constrained joints in the same
location;FSi andFSj are linked on these constraints. Since con-
straints can exist anywhere in the original motions, common poses
can be linked arbitrarily.

Linked constraints are not an artifact of having a bizarre set of mo-
tions. On the contrary, they occur in quite ordinary datasets. Con-
sider, for example, a set of motions of someone waiting around im-
patiently. The character might shuffle its feet, tap its toes, and make
subtle shifts in posture to redistribute its weight. In the likely event
that constraints exist on every frame of the dataset,everycommon
pose will have linked constraints with every other common pose.

To ensure continuous motion, linked constraint positions ofFSi and
FSj need only be identical up to a2D rigid transform. Recall that
when making a transition we first align the starting and ending mo-
tions so the match frames are in the same position and orientation.
Section 4.2.1 explained how to determine these coordinate trans-
formations based on the values we computed forD (Section 4.1).
However, we are free to pick different transformations, and in par-
ticular we can select ones specifically to align constraint positions.

Figure 11: Up to a rigid2D transformation, the configuration of two feet that are

flat on the floor is uniquely defined by the distance between the centers of the feet and

the orientation of each foot relative to the line connecting the centers.

So: the problem is to ensure that any linked constraint positions are
identical up to a2D rigid transformation, orrigidly similar. We
can determine how common poses are linked simply by looking
at every clip and determining whether the bordering match frames
share constraints that exist throughout the clip. If the only linked
constraints are on joints of the same foot, then since the foot is rigid
the constraint positions are automatically rigidly similar. If linked
constraints exist for all four joints on the feet, then letC1 andC2

be the segments connecting the centers of the feet in, respectively,
the starting common pose and the ending common pose (Figure 11).
Also, letΘL1 andΘR1 be the orientations of the left and right foot
in the starting common pose relative toC1, and letΘL2 andΘR2

be defined similarly. To ensure rigid similarity it is sufficient to
require‖C1‖ = ‖C2‖, ΘL1 = ΘL2 , andΘR1 = ΘR2 . If there
are only two or three linked constraints and they exist on joints of
different feet, then the situation can be reduced to the four-joint case
by rotating any foot with only one linked joint about that joint such
that it is flat on the floor.

We can divide common poses into equivalence classes via con-
straint linkage. Each common pose in an equivalence class has
linked constraints on both feet with at least one other common pose
in that same class. For each equivalence class, we find the aver-
age foot orientations and distance between the foot centers. Each
common pose is then adjusted to have these average parameters.

We have now ensured that every set of linked constraint position are
rigidly similar. However, the coordinate transformations that align
clips (as computed in Section 4.2.1) may not align the constraints
positions. This can be addressed by redefining these coordinate
transformations such that the constraint positions are identical for
the last frame of the starting clip and the first frame of the ending
clip.
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