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Abstract. Current methods for authentication and key agreement based
on public-key cryptography are vulnerable to quantum computing. We
propose a novel approach based on artificial intelligence research in which
communicating parties are viewed as autonomous agents which interact
repeatedly using their private decision models. Authentication and key
agreement are decided based on the agents’ observed behaviors during
the interaction. The security of this approach rests upon the difficulty of
modeling the decisions of interacting agents from limited observations, a
problem which we conjecture is also hard for quantum computing. We
release PyAMI, a prototype authentication and key agreement system
based on the proposed method. We empirically validate our method for
authenticating legitimate users while detecting different types of adver-
sarial attacks. Finally, we show how reinforcement learning techniques
can be used to train server models which effectively probe a client’s de-
cisions to achieve more sample-efficient authentication.

Keywords: Quantum resistance · Authentication · Key agreement ·

Multi-agent systems · Opponent modeling · Reinforcement learning

1 Introduction

Authentication and key agreement protocols are the foundation for secure com-
munication over computer networks. Most protocols in use today are based on
public-key cryptographic methods such as Diffie-Hellman key exchange, the RSA
cryptosystem, and elliptic curve cryptosystems [5]. These methods rely on the
difficulty of certain number theoretic problems which can be solved efficiently
using quantum computing [19]. Thus, researchers are studying alternative math-
ematical problems believed to be safe against quantum computing [5]. Standards
organizations such as the US National Institute of Standards and Technology [6]
are calling for new quantum-safe proposals for standardization.

We propose a novel formulation of authentication and key agreement inspired
by research in artificial intelligence (AI) and machine learning. In the proposed
method, communicating parties are viewed as autonomous agents which interact
repeatedly using their private decision models. Authentication and key agree-
ment are based solely on the agents recognizing each other from their observed
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behavior, and no private information is sent at any time during the process. Our
approach creates a bridge to AI research in two ways:

Security – The method’s security rests upon the difficulty of modeling an
agent’s decisions from limited observations about its behavior – a long-standing
problem in AI research known as opponent modeling [1]. We conjecture that the
problem is as hard for quantum computing, since the problem is fundamentally
one of missing information regarding the causality in an agent’s decisions (details
in Sec. 3). There are no known quantum algorithms to solve opponent modeling;
indeed, if such an algorithm was invented as an attack on our method, it could
provide significant novel insights for AI research.

Optimization – By formulating authentication as a multi-agent interaction
process, we can employ concepts and algorithms for optimal decision-making

from reinforcement learning (rl) [21] to optimize the efficiency of the process.
The idea is to enable communicating agents to be strategic about probing each
other’s reactions to maximize authentication accuracy and efficiency. We apply
rlmethods to our framework to optimize the agent models to reduce the number
of interactions required to reach high-confidence authentication decisions.

In summary, our contributions are the following. We introduce a protocol for
secure authentication and key agreement based on recognizing an agent from
limited observations of its actions. We show empirically that our method ob-
tains high accuracy in rejecting different categories of adversarial agents, while
accepting legitimate agents with high confidence. We release a prototype im-
plementation of this protocol, called PyAMI, which allows remote machines to
authenticate to one another and generate symmetric session keys. Finally, we
introduce an approach for optimizing security based on rl and show empirically
that it leads to a significantly more efficient protocol in terms of the required
number of client/server interactions than a default random probing server agent.

2 Related Work

Post-quantum alternatives: Among current post-quantum methods in the
literature, those based on the fields of coding theory [20], lattice theory [12],
and multivariate quadratic polynomials [15] provide existing entity identifica-
tion schemes. Such schemes avoid quantum vulnerability by relying on problems
for which there is no known quantum algorithm. The use of optimization and
decision-theoretic principles, however, makes our approach fundamentally differ-
ent to other lines of investigation in post-quantum security which rely primarily
on the development of new cryptographic operators.

Symmetric AKE: Protocols for symmetric authenticated key-exchange (AKE)
such as Kerberos [13] often rely on a third party to provide session keys. Their
session key may also be generated independently of the long-term key (LTK).
In our protocol, parties generate session keys without the aid of an extra entity,
and derive it based on the LTK. With respect to authentication, protocols like
[3] often use a MAC tag based on the LTK, while our protocol uses a test of
statistical similarity to determine whether a party possesses the expected LTK.
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Information-theoretic secrecy: Information-theoretic protocols rely on
security which can be achieved without any assumptions on an attacker’s com-
putational limits. Shannon’s introduction of such protocols required a shared
secret key between communicating parties over a noiseless channel [18]. Later
protocols replaced this requirement of a shared key by introducing stochasticity
[23]. Our key agreement protocol is similar to Shannon’s original setting, relying
upon a shared secret in the form of the client’s decision model, but it is instead
used to generate the session key itself for symmetric encryption and decryption.

Multi-agent modeling / interactive processes: Agent-based modeling
has been applied quite broadly in the field of security, such as for analyzing
dynamics between parties in a computer network [22]. Our protocol is a novel
application of multi-agent theory and optimization to cryptographic authenti-
cation. Game-theoretic approaches, particularly security games, have also been
proposed for cyber-defense scenarios between attacker and defenders [10]. Our
own work does not rely on equilibrium concepts which are difficult to scale [7]
and based on normative rationality assumptions.

3 Authentication via Multi-agent Interaction

This section details our proposed protocol, calledAuthentication viaMulti-agent
Interaction (ami; pronounced “Am I?”). In the following, we use calligraphic
letters (e.g., X ) to denote sets, lower case letters to denote elements of sets and
functions, and upper case letters to denote random variables. We use ∆(X ) to
denote the set of all probability distributions over elements of set X .

We consider a setting in which a client seeks to authenticate to a server as
a particular user, u. The server must decide whether the client is the intended
(legitimate) user u or an adversarial client attempting to access the server as the
intended user.

Protocol:When a client seeks to authenticate, the server initiates an interac-
tion process which proceeds through time steps t = 0, 1, 2, ...., l (cf. Figure 1). At
each time step t, the client and server independently choose actions At

c and At
s,

respectively, with values in a finite set of available actions, A := {1, ..., n}. The
agents then send their chosen actions to each other. The server associates a proba-
bilistic decision model, πu, with each legitimate user; the decision model is known
only to the server agent and the legitimate user. At the end of the interaction pro-
cess, the server decides whether the interaction history Hl := (A0

s, A
0

c , ..., A
l
s, A

l
c)

was generated with a client using the model πu associated with the legitimate
user. If the server decides it has been interacting with this model, then it authen-
ticates the client as user u; otherwise, it rejects the client agent.

We formalize agent decision models as functions mapping the past interaction
history to a distribution over the available actions. That is, the client chooses
actions with the model πc : Ht → ∆(A) whereHt is the set of possible interaction
histories up to time t. Similarly, the server agent chooses actions with a model
πs. Various model representations could be used, including probabilistic decision
trees, probabilistic finite state automata, and neural networks. Jointly, the server
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Client

model: πc

Server

model: πs

User: u

t = 0: A0

c A0

s

t = l: Al

c Al

s

...

Auth: yes iff. (A0

c, ..., A
l

c) ∼ πu

session key:
key(Hl, πc)

session key:
key(Hl, πu)

Fig. 1: Multi-agent Interaction Protocol

and client agent define a distribution on (l + 1)-step interaction histories, ps,c.
If the client in the interaction process is a legitimate client then they use the
decision model πu (i.e., πc = πu) that is a shared secret between the server and
legitimate client. To perform authentication, the server decides whether a given
interaction history has been produced by ps,u or not. To do so, we equip ami with
a test function, test : Hl → {0, 1} that returns 1 if and only if an interaction
H ∼ ps,u. In Section 4 we describe how this function can be implemented with
a frequentist hypothesis test.

Key agreement: If the client is successfully authenticated, a secret session
key can be computed as a function key(Hl, π), where the client uses key(Hl, πc)
and the server uses key(Hl, πu); if πc = πu, then the computed keys will be
equal. One possible implementation of the key function is by concatenating the
probabilities πu(A

t
c|Hl), t = 0, ...l and pushing the resulting bit-string through a

suitable hash function to produce a key with a desired length.

Forward secrecy: ami supports forward secrecy [9] to ensure that a compro-
mised (e.g. stolen) legitimate user model cannot be used to compute past session
keys. ami transforms πu after each successful authentication process, such that
the new model is a function π′

u = φ(πu, Hl) of the old model, and such that φ is
hard to invert. One possible transformation is to first reset a random seed to the
value of the session key. Then, for each τ = 0, ..., l, resample a new probability
distribution for πu(Hτ ). Since server and client use the same seed, they produce
identical models π′

u and π′

c. The session key cannot be recovered from a trans-
formed model except by exhaustive search in the space of random seeds - with
a sufficiently large key size, this is computationally infeasible [16].

Extension to more than two agents: ami also supports mutual group
authentication in which more than two parties authenticate to each other. In this
case, each agent i = 1, ...,m has its own model πi which is a shared secret with all
other legitimate agents. The models are now defined over interaction histories
which include the chosen actions of all agents at each time step, (At

1
, ..., At

m).
Each agent authenticates each other agent using an authentication test, and
the key function is similarly defined over all models, key(Hl, π1, ..., πm). In the
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remainder of this paper, we will focus on the basic setting in which a single client
only authenticates to a single server.

PyAMI Open-Source Framework: Towards further research on and adop-
tion of ami as a quantum-secure authentication protocol, we have developed an
open-source Python application, PyAMI1. PyAMI consists of a multi-agent sys-
tem where agents run on separate (virtual) machines, and communicate to au-
thenticate over network sockets using TCP. During an interaction process, server
and client machines transmit actions over a network to build the shared inter-
action history. After successful authentication, both parties compute identical
session keys using the key agreement algorithm.

4 Authentication via Hypothesis Testing

To provide high-confidence authentication decisions, ami uses the framework of
frequentist hypothesis testing to decide whether a given interaction history was
generated between the server and a legitimate client or an adversarial client. For
a given history, h, we first specify the null hypothesis “h was generated from
πu.” To decide on the correctness of this hypothesis, we compute a test statistic
from the interaction history and determine whether the test statistic value is too
extreme for the distribution of the test statistic under the null hypothesis. More
formally, letting z : H → R denote a test statistic function, a hypothesis test
computes the p-value

p := Pr(|z(H)| ≥ |z(h)|), H ∼ ps,u. (1)

Intuitively, p is the probability of observing a z value at least as extreme as
z(h) if interacting with the legitimate client model. The p-value is then compared
to a pre-determined significance level, α, to determine whether the interaction
came from the legitimate client or not:

test(h) =

{

1 (authenticate) if p-value ≥ α

0 (reject) if p-value < α .
(2)

We use a hypothesis test which was designed for non-stationary multi-agent
interaction [2]. Essentially, this test defines a flexible test statistic for multi-agent
interaction, learns the distribution of this test statistic during an interaction (we
use the score functions defined in [2]), and computes p from the learned distribu-
tion. Our only modification from the original algorithm is to fit the distribution
of the test statistic with a normal distribution rather than a skew-normal distribu-
tion. This change allows us to compute p-values using the analytic normal CDF
instead of the ratio-approximation proposed in [2], which led to more accurate
results in our experiments.

An important aspect of the hypothesis testing approach is its interpretability.
The p-value has a well-defined semantics and the significance level α allows us

1 PyAMI code and documentation: https://github.com/uoe-agents/PyAMI

https://github.com/uoe-agents/PyAMI
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to exactly control the false negative rate of the test. Under the null-hypothesis
πc = πu, p is uniformly distributed in [0, 1] and so a false negative occurs at
exactly the rate α. If the legitimate client is incorrectly rejected, the client can
retry the interaction process. The probability of k successive false negatives is
αk which rapidly goes to zero.

5 Protocol Security

The problem of modeling the behavior of another agent from limited observations
of its actions is widely studied in the AI research literature and known to be
hard [1]. The problem is fundamentally one of missing information regarding the
causality in an agent’s decisions, and this information can be difficult to extract
from limited observations. Even with a publicly known agent model structure –
which this paper assumes – a complex model will involve large parameter spaces;
inferring exact parameter values from a few observed authentications is infeasible.
The use of a quantum computer over a classical one will not aid in solving this
specific type of problem, as it is more aligned with an information-theoretic type
of hardness rather than computational hardness [11].

An information-theoretic key agreement protocol is considered (weakly) se-
cure if: (1) the two parties’ generated session keys agree with very high proba-
bility, (2) the key is nearly uniformly distributed, and (3) is nearly statistically
independent of the information leaked to an intruder [11]. ami is a symmetric
key protocol and mandates that client and server generate identical session keys,
fulfilling the first condition.

Regarding the second condition; in an experimental setting, ami uses random
instantiation so that the choice of user and server model is uniformly distributed
over the space of possible models, which is significant as the session key is a
function, key(Hl, π), of these models. Additionally, this key generation procedure
includes a hash function as a final step – we note that it is possible to also use
a universal hashing mechanism here, similar to [4] where universal hashing is
applied so that possible outputs are equiprobable for an intruder.

With respect to the third condition, ami limits the publicly observable in-
formation by which an intruder may attempt to reconstruct πu and generate
the correct session key. It does this in two ways – first, it limits the length of
the public interaction required for successful authentication (see optimization in
Sec. 8). Second, it implements a forward secrecy transform intended to limit all
observations from a specific model πu to a single interaction session. The only
way an intruder may obtain more than a single history from the same client
model is in the unlikely event of a false negative, in which a legitimate client is
incorrectly rejected (see Sec. 4). We provide an empirical study of such a scenario
in Section 6 to demonstrate how ami is robust against a maximum likelihood
estimation (MLE) attack2 even in the absence of the forward secrecy feature.

2 Assuming a uniform prior distribution over possible models πu, the best estimate of
πu an attacker can formulate is the MLE; MLE is generally a preferred estimator
among frequentist methods due to its statistical and asymptotic properties [8].
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6 Empirical Study: Authentication

We now present an empirical study of the ami protocol. Our experiments are pri-
marily designed to answer the following questions: 1) Does ami correctly accept
a legitimate client? 2) Does ami correctly reject adversarial clients? 3) How does
the length of interaction histories affect ami’s accuracy? 4) How robust is ami to
Maximum Likelihood Estimation attacks? 5) How much time does PyAMI need
to complete an interaction process?

6.1 Authentication Empirical Set-up

In our basic empirical setting, agents choose actions from A = {1, ..., 10}. The
server model and legitimate client model are probabilistic decision trees (pdts)
– decision trees in which each node has a probability distribution over actions.
The tree is traversed using the k = 5 most recent actions of the other agent (i.e.,
the client tree is traversed with the server’s actions). We choose pdts as they are
computationally cheap to sample actions from and easy to randomly generate.

For each experimental trial run, we randomly generate the server and true
user decision model by setting each node in the pdt to be a softmax distribution
with logit values sampled uniformly in [0, 1] and temperature parameter τ . The
server decision model uses the value τ = 1.0 for near-uniform random action
selection; the client uses τ = 0.1. We find lower entropy in the client’s action
selection leads to better authentication accuracy with shorter interaction lengths.
In each experimental trial, we generate interaction histories between the server
and legitimate client and measure accuracy of the decisions made by ami. We
also evaluate interactions between the server agent and adversarial agents. We
formulate the following adversarial behaviors to create such interactions:

Random: Generate a random adversarial pdt with the same dimensions
and temperature τ as the legitimate client pdt.

Replay: Replay client actions from observed interactions between the legit-
imate client and server to create adversarial “replayed” interaction histories.

Maximum Likelihood Estimation (MLE-k): Compute a maximum like-
lihood estimate of the legitimate client pdt based on k complete interaction
histories with the legitimate client, assuming an identical pdt structure. We set
k = 100 in these experiments.

To evaluate ami we generate 1000 interaction histories between the server
and legitimate client, and 1000 interaction histories between the server and each
type of adversarial behavior for varying interaction history lengths. We report
authentication accuracy on each set of interaction histories as the percentage of
interaction histories correctly identified as either legitimate or adversarial (Ran-
dom, Replay, or MLE). For experimental rigor, we repeat this process over 100
different server and legitimate client models, and present the averaged results in
Figure 2. For the hypothesis test we use a significance level of α = 0.1.
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Fig. 2: Authentication accuracy as a function of interaction length. For each
considered interaction length we evaluate accuracy on every metric. For Real,
Replay, and MLE metrics, results show accuracy on 1000 histories, averaged over
100 different server and legitimate client pairs. For the Random metric, results
show accuracy on 1000 histories, averaged over 100 different server models.

6.2 Authentication Empirical Results

Figure 2 shows the empirical accuracy of ami with the legitimate client and
against each type of adversary for a varying number of interaction history lengths.
As expected, the accuracy for the legitimate client model is unaffected by the
interaction history length and always remains around 0.9, due to our chosen
significance threshold. For shorter history lengths (l < 50), MLE is the strongest
attack tested. Once interaction histories are sufficiently long (l ≥ 50), however,
accuracy is perfect against adversarial clients and nothing is gained by further
increasing the interaction history length. We emphasize that the MLE adversary
cannot successfully authenticate even after observing 100 interaction histories

from the legitimate client (as used by the MLE agent in Figure 2). Furthermore,
the probability that adversaries observe 100 interaction histories before a forward
secrecy transform is applied is α100 = 10−100.

We conduct an additional experiment to evaluate how many observed interac-
tions are required for an MLE attack to obtain a high probability of authentica-
tion (with forward secrecy disabled). Figure 3a plots authentication accuracy on
an MLE attack provided with an increasing number of histories. Results are av-
eraged across 100 random client-server pairs, where accuracy is computed on 100
MLE histories for each pair. It also plots the probability of an intruder observ-
ing as many histories. For longer history lengths (|Hl| = 200), and with specified
model complexity, at least 500 observed histories are required for an MLE at-

tack to meaningfully lower the authentication accuracy, and the probability of
observing this much data before a forward secrecy transform is 10−500 under
ami. These results provide empirical evidence for the difficulty of constructing a
successful attack from observed data, even by the best model estimation method,
and without bounds on computational power.
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(a) Effect of varying history length for fixed
action space size |A| = 10.
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Fig. 3: Average authentication accuracy against MLE attacks versus number of
histories used for the MLE attack. Results averaged over 100 different client-
server pairs. Standard error not shown due to low variation (< 0.01).

We also demonstrate that ami’s parameters can be tuned to further decrease
the effectiveness of MLE attacks. In Figure 3b, we fix the history length at
|Hl| = 100, then vary the size of the action space A in the client and server PDT
models. The results show that larger action spaces – corresponding to more
complex models – are more secure against MLE attacks in terms of number of
histories the attacker must observe.

Finally, we include timing experiments for PyAMI’s multi-agent interaction
process. We measure the time for a full interaction history – the transmission of
all actions between separate machines – to complete. For our experiments we use
virtual machines on Google Compute Engine situated within the same geographic
region (us-west1) and measure the time taken for a server-client interaction in the
one-way authentication setup. For interaction lengths of |Hl| = {50, 100, 200},
we recorded interaction times of {(28± 2)ms, (54± 2)ms, (112± 10)ms} respec-
tively, averaged over 100 trials. These results show that ami within PyAMI could
be feasibly deployed to provide real-time authentication and key agreement.

7 Optimizing Server Actions

Our empirical evaluation demonstrated that ami robustly rejects various attack
types while allowing legitimate clients to authenticate. We now show how the
server’s decision model can be further optimized for protocol efficiency, as mea-
sured by the required interaction length before the p-value is sufficiently small
to reject an adversary. When the server interacts with an adversarial client, its
actions can probe where the adversary may fail to match the legitimate client’s
action distributions. Effective probing actions can lead to higher confidence de-
cisions in shorter interaction history lengths. Using shorter histories reduces the
amount of observations adversaries can gather, thus improving the security of
the protocol against model reconstruction attacks like the MLE attack. We show
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how an effective server probing model can be learned for a given legitimate client
model πu via reinforcement learning (rl) [21].

We pose the server optimization problem as follows. During training, the
server decision model interacts with unknown clients over a series of length l

episodes in which each episode runs an ami authentication process with a fixed
client. At the end of the interaction the server receives a reward,Rl = 1−p where
p is the p-value of the hypothesis test. The server is rewarded for producing low
p-values when interacting with adversaries. The learning objective is thus:

πs ∈ argmax
π

Eπ

[

Rl

∣

∣

∣

∣

Hl ∼ ps,c, πc

]

, (3)

in which the client model, πc, is sampled from an adversarial population (in our
experiments we sample random pdts the same way as Sec. 6). By applying an rl

algorithm to optimize (3) w.r.t. the server’s decision model, we obtain a model
that attempts to quickly reach high-confidence decisions.

We note that the server model is optimized with respect to a particular legiti-
mate client model. After successful authentication, the legitimate client model is
transformed via a function φ so as to preserve forward secrecy. In principle, this
could render the server optimization obsolete since the client model has changed.
To address this concern, we can define φ to randomly permute the indexing of
the client’s actions at each leaf node of its pdt. The random permutation gener-
ator is seeded by the session key, which depends on exact knowledge of the user
model. From an outside observer’s perspective the distribution over elements of
A will have changed, and is uniform on expectation assuming the permutation
is sampled uniformly-randomly; thus an attacker could never learn anything but
the uniform distribution over actions. However, since the permutation is known
to both the legitimate client and the server, the server model can un-permute
the actions received from the client and apply the trained server model.

8 Empirical Study: Optimized Probing

We conduct an empirical study to addresses the question: does effective probing
lead to more efficient authentication relative to random probing?

In these experiments, the server model is a feedforward neural network which
outputs the logits of a softmax distribution over the action space. We use |A| = 5
and train with maximum interaction lengths of 50 steps. To more clearly show
the benefit of servermodel optimization, we use legitimate client pdtmodels with
higher entropy action selection (τ = 0.5) than in Section 6. Such client models
would be harder for an attacker to learn but also necessitate longer interaction
histories for high confidence rejection decisions. Thus, server policy optimization
is more crucial to shorten the required interaction histories.

Using the ppo rl algorithm [17], we train the server model for 5 million steps
with 5,000 environment steps across three parallel processes for each model up-
date. We train the server for a fixed legitimate client model against an adversarial
population of 100 randomly generated pdts. After training, we evaluate the rate
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Fig. 4: Average p-value per timestep over 10 different optimized servers interact-
ing with Random adversaries. Shaded areas show standard error.

of p-value convergence for the trained server. We compute the average p-value
per timestep, averaged over a different population of 100 held-out adversarial
pdts. As a baseline, we evaluate a uniform-random probing server model. We
repeat the server optimization process 10 times for different randomly generated
legitimate clients (and unique populations of adversarial clients), to ensure our
optimization method is effective not just for a specific server-client pair.

Figure 4 shows that the RL-trained server model leads to substantially faster
convergence of p-values than uniform probing, reducing the required number of
timesteps by 70% and 79% on average for thresholds of α = 0.1 and α = 0.05,
respectively. The trained model is able to identify sequences of actions which
lead to more informative observations for authenticating client agents.

9 Conclusion and Future Work

We contributed a novel protocol for secure authentication and key agreement
based on abstract multi-agent interaction and agent modeling. We have shown
empirically that our protocol is highly accurate in authenticating legitimate users
and rejecting different types of adversarial attacks. The protocol allows for con-
trol over authentication accuracy by choice of hypothesis test parameters, and
by the chosen complexity of agent models. We released an open-source frame-
work which employs our protocol in a distributed setting, and demonstrated the
feasibility of this framework through timing experiments between remote server-
client pairs. Finally, we showed how reinforcement learning can be used to train
server models to achieve highly sample-efficient authentication.

Importantly, this work lays the ground work for multi-party authentication
through multi-agent systems. Such a system raises new questions for how agents
can jointly optimize security and efficiency; we believe that multi-agent reinforce-
ment learning may offer a promising solution [14]. Future work could consider
variable-length interaction histories, as such an authentication test could be more
active in collecting additional information when facing decision uncertainty.
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